Midterm Review

Elyse Cornwall and Amrita Kaur
July 13, 2023

Contributions made from previous CS106B Instructors Stanford University

Midterm Logistics

 Monday, July 17 from 7-9pm in Hewlett Teaching Center, Room 200
e Students with exam accommodations have already been contacted

e On paper, using pen/pencil

* Closed-book and closed-device.

e Reference sheet on Stanford library functions
* Notes sheet (one page, front and back, 8-1/2" x 11", have anything you

want on it)
e Allinformation is here

Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/refsheet.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/

Midterm Logistics

e Evaluate your problem-solving skills and conceptual understanding

of the material, not your ability to use perfect syntax
* Most points awarded for valid approach to solving the problem, fewer
points for the minute details of executing your plan
* Not taking off points for
* Missing braces around clearly indented blocks of code
* Missing semicolons
* Missing #include

Stanford University

Roadmap

Using Abstractions Bwldmg Abstractions

TN
Linked
Data
\ Structures
N \
R e

Core

Stanford University

Roadmap - Midterm Coverage

Using Abstractions

C

Core

Object-Oriented Memory

Programming Management

Linked Advanced
Data Algorithms
Structures

S =

Stanford University

C++ Fundamentals

Stanford University

Variables

* We use variables to store information in our programs
* Variables have a type and a name

int enrollment;

string className;

We name variables using “camelCase” capitalization

Stanford University

C++ Types

Numbers

 1int, long
« float, double

Text
* char,string

Booleans

e bool

// 100
// 3.14

// ¢a9 , “apple”

// true, false

Stanford University

Console Output

* We use cout and << to print information to the user
* To start printing on a new line, we use end L

int main(Q)

1]
cout << "Hello, World!" << endl;
cout << "Hello, World!" << endl;
cout << "Hello, World!" << endl;
return 0;

[] HelloWorld Console [Completed]
L B g A 9 9
Hello, World!

Hello, World!
Hello, World!

Stanford University

Functions

Parameters Function Return

Stanford University

11

Passing Parameters into Functions

Pass by value Pass by reference
Callee gets a copy of a - Callee gets a reference to a
variable from the caller variable from the caller
function function
Changes to that variable that - Now, the callee can directly
occur in callee do not persist modify the original variable
in caller

=

Stanford University

12

Passing Parameters into Functions

void valueFunc(Vector<int> vec) { Whoever calls valueFunc will give
vec[0] = 100; this function a copy of their Vector.

}

void refFunc(Vector<int>& vec) { Whoever calls re fFunc will give this
vec[0] = 100; function access to their Vector.

}

Stanford University

13

Passing Parameters into Functions

void valueFunc(Vector<int> vec) {

vec[0] = 100; Vector<int> vec = {1, 2, 3};
} "\\\\-\\\\\\
valueFunc(vec);

// valueFunc doesn’t change our Vector

EXPECT_EQUAL (vec, {1, 2, 3});

void refFunc(Vector<int>& vec) {
vec[0] = 100; - refFunc(vec) ;

// refFunc does change our Vector!
EXPECT_EQUAL (vec, {100, 2, 31});

Stanford University

When Do We Pass by Reference?

Yes:

When we want the callee
function to edit our data

To avoid making copies of
large data structures

When we need to return
multiple values

No:

Just because

Passing by reference is risky
because another function can
modify your data!

When the data we’re passing
to the callee is small, and thus
copying isn’t expensive

14
Stanford University

Conditionals

// assuming age variable 1is already defined
if (age < 12) {

cout << "Eligible for kids meal.";
} else if (age > 65) {

cout << "Eligible for senior discount.";
} else {

cout << "Must use regular menu.";

Stanford University

While Loops

 “While this condition is true, do this”

* Use when you don’t know how many times you want to repeat

while (condition) {

// code to repeat while condition 1i1s true

Stanford University

For Loops

* Use when you know how many times you want to repeat
* Typical for loop uses int counter 1 that starts at O:

for (int i = 0; i < 103 i++) {

cout << i << endl;

@(D\IO‘\LHA&UJI\)D—‘OLQ

Stanford University

For Each Loops

* We can also loop for each element in a collection
e Vectors, Grids, Sets, Maps

Vector<int> vec = {6, 1, 2, 3, 4, 5, 6, 7, 8, 9};
for (int elem : vec)

cout << elem << endl;

@(D\IO‘\LHA&UJI\)D—‘OLQ

Stanford University

String

e Data type that represents a sequence of characters
 Marked by double quotes
e Ex:%“apple”

Char

» Data type that represents a single character (letters, digits, symbols)
* Marked by single quotes

e Ex:‘@’

 Have numerical representation (ASCII codes)

Stanford University

20

Stanford University

21

Key Characteristics of Strings

e Mutable in C++ word[1] =

* Concatenated using + or +=
e Add strings and strings, output is a string
e Add strings with chars, output is a string
e Adding chars will NOT give a string output

* Compared using relational operators (<, >, ==, I=)

Stanford University

C Strings and Strings

string word = “apple” + “sauce”;

« Concatenating C strings with +
* Not possible (does not compile)

string wordl = “apple”;
string word = wordl + “sauce”;

« Concatenating C++ and C string with +
« Works perfectly! (autoconversion of C string)

22

Stanford University

23

Libraries for Strings and Chars

e <cctype> library

* Built-in C++ char methods
« <string> library

* Built-in C++ string methods
« “strlib.h” library

« Stanford string functions

Stanford University

24

Don’t Memorize - You’ll Have a Reference

Strings

str.at(i) or s[1i]

character at a given 0-based index in the string

str.append(str)

add text to the end of a string (#n-place)

str.compare(str)

return -1, 0, or 1 depending on relative ordeting

str.erase(i, Llength)

delete text from a string starting at given index (in-place)

str.find(str)
str.rfind(str)

returns the first or last index where the start of the given string or character
appeats in this string (or string: :npos if not found)

str.insert(i, str)

add text into a string at a given index (#n-place)

str.length() or str.size()

number of characters in this string

str.replace(i, len, str)

replaces Len chars at given index with new text (in-place)

str.substr(start, Llength) or
str.substr(start)

returns the next Length characters beginning at index start (inclusive);
if Length is omitted, grabs from start to the end of the string

endsWith(str, suffix), startsWith(str, prefix) | returns true if the string begins or ends with the given prefix/suffix

integerToString(int), stringToInteger(str) returns a conversion between numbers and strings

stringContains(str, substr)

true if substr contained in str

stringSplit(str, separator)

breaks apart a string into a Vector of substrings divided by separator

toLowerCase(str), toUpperCase(str)

returns an upper/lowercase version of a string

trim(str)

returns string with any surrounding whitespace removed

char

isalpha(c), isdigit(c), isspace(c),
ispunct(c), islower(c), isupper(c),

returns true if character is an alphabetic character from a-z or A-Z, a digit from 0-9, a
whitespace character (space, \t, \n, etc.), a punctuation mark (#, $, |, etc.) respectively

tolower(c), toupper(c)

returns lower/uppercase equivalent of a character (unchanged if not alpha)

Stanford University

25

Practice problem: Hashtags

Write a function Vector<string> findHashtags(string s)
that returns a Vector of all of the hashtags in the string s. A hashtag
starts with a ‘#’ and ends with a space or the end of the string.

findHashtags (“CS 1is #so #cool”) returns {“#s0”, “#cool”}

findHashtags (“#what #is good”) returns {“#what”, “#is”}

findHashtags(“nothing to see here”) returns {}

Stanford University

26
Vector<string> findHashtags(string s) {

Vector<string> result;
bool inHashtag = false;

string curWord = "";
for (char ch: s) {
if (ch == "#') {
inHashtag = true; // start of hashtag
} else if (ch == ' ' && 1inHashtag) {
inHashtag = false; // end of hashtag, add to Vector
result.add(curWord);
curWord = "";
}

if (inHashtag) {
curWord += ch;

}
}
if (inHashtag) {

result.add(curWord); // add hashtag if it came at the end of s
}

return result;

Stanford University

S

Abstract Data Types (ADTs)

28

Abstract Data Type (ADTSs)

* Aka containers or data structures
* Allow programmers to store data in predictable, organized ways
* (Can use without understanding the underlying implementation

Stanford University

29

Big Questions

 What type of data is stored in each ADT?

* How can you manipulate the data in each ADT?

* When would you want to use each specific ADT?

* What are the similarities and differences between the ADTs?

Stanford University

30

Vectors

* Ordered (indexed)

* 1-dimensional

* Can grow and shrink in size

* All elements must be of the same type

Stanford University

31

Vectors

* Ordered (indexed)

* 1-dimensional

* Can grow and shrink in size

* All elements must be of the same type

Stanford University

32

Vectors

* Ordered (indexed)

* 1-dimensional

* Can grow and shrink in size

* All elements must be of the same type

Stanford University

33

Vectors

* Ordered (indexed)

 1-dimensional

* Can grow and shrink in size

* All elements must be of the same type

Stanford University

34

Vectors

* Ordered (indexed)

 1-dimensional

* Can grow and shrink in size

* All elements must be of the same type

Stanford University

35

Vectors

* Ordered (indexed)

* 1-dimensional

* Can grow and shrink in size

* All elements must be of the same type

Stanford University

36

The Stanford Vector Library

« vec.size():Returnsthe number of elements in the vector.

 vec.isEmpty(): Returns true if the vector is empty, false otherwise.

 vec|[1]: Selects the ith element of the vector.

« vec.add(value):Adds a new element to the end of the vector.

« vec.insert(index, value):Insertsthe value before the specified
index, and moves the values after it up by one index.

« vec.remove (index): Removes the element at the specified index, and
moves the rest of the elements down by one index.

« vec.clear ():Removes all elements from the vector.

 vec.sort():Sorts the elements in the list in increasing order.

For more information, check out the Stanford Vector class documentation!

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

37

Grids

* Ordered (rows and cols are indexed)

e 2-dimensional

* Fixed dimensions

* All elements must be of the same type

0] 1 2
0] 2 5 -1
1 10 11 3
2 19 -4 -2
3 4 6 2

Stanford University

Grids

* Ordered (rows and cols are indexed)

e 2-dimensional
* Fixed dimensions

* All elements must be of the same type

(0] 1 2
0 2 5 -1
1 10 11 3
2 19 -4 -2
3 4 6 2

38

Stanford University

39

Grids

* Ordered (rows and cols are indexed)

* 2-dimensional

* Fixed dimensions

* All elements must be of the same type

0] 1 2
0] 2 5 -1
1 10 11 3
2 19 -4 -2
3 4 6 2

Stanford University

40

Grids

* Ordered (rows and cols are indexed)

e 2-dimensional

* Fixed dimensions

* All elements must be of the same type

(0] 1 2
0 2 5 -1
1 10 11 3
2 19 -4 -2
3 4 6 2

Stanford University

41

Grids

* Ordered (rows and cols are indexed)

e 2-dimensional

* Fixed dimensions

* All elements must be of the same type

0] 1 2
0] 2 5 -1
1 10 11 3
2 19 -4 -2
3 4 6 2

Stanford University

42

The Stanford Grid Library

e grid.numRows (): Returns the number of rows in the grid.

e grid.numCols(): Returnsthe number of columns in the grid.

e grid[i][7j]:selectsthe elementin the ith row and jth column.

e grid.resize(rows, cols):Changesthe dimensions of the
grid and re-initializes all entries to their default values.

e grid.inBounds(row, col):Returns true if the specified
row, column position is in the grid, false otherwise.

For more information, check out the Stanford Grid documentation!

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

43

Sta C k PUSH \ POP

TOP

 Ordered (not indexed)
e LastIn, First Out (LIFO)
* Only the top element of the stack is accessible

* Important operations:
« stack.push(value): Add an element onto the top of the stack
 stack.pop(): Remove an element from the top of the stack and
return it
« stack.peek(): Look at the element from the top of the stack, but
don’t remove it

Stanford University

The Stanford Stack Library

« stack.push(value): Add an element onto the top of the stack
 stack.pop(): Remove an element from the top of the stack and
return it

« stack.peek(): Look at the element from the top of the stack, push pop
but don’t remove it l T
 stack.isEmpty(): Returns aboolean value, true if the stack is
empty, false if it has at least one element Dracula >
« Note: a runtime error occurs if a pop() or peek() operation is < Skyward >
attempted on an empty stack
« stack.clear (): Removes all elements from the stack < Ender’s Game >

« stack.size(): Returnsthe number of elements in the stack

For more information, check out the Stanford Stack class documentation!

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack.html

45

BACK FRONT
Queue 65 4| 3 2 N
1

 Ordered (not indexed) -
* First In, First Out (FIFO)
 Add to back, remove from front
* Important operations:
« queue.enqueue(value): Add an element to the back of the
queue
« queue.dequeue(): Remove an element from the front of the
gueue and return it
« queue.peek(): Look at the element from the front of the queue,
but don’t remove it

Stanford University

46

The Stanford Queue Library

« queue.enqueue(value): Add an element to the back of the queue
« queue.dequeue(): Remove an element from the front of the queue and return it
« queue.peek(): Look at the element from the front of the queue, but don’t remove it
« queue.isEmpty(): Returnsaboolean value, true if the queue is empty, false if it
has at least one element
« Note: a runtime error occurs if a dequeue() or peek() operation is attempted on an
empty queue
queue.clear (): Removes all elements from the queue
« queue.size(): Returnsthe number of elements in the queue

For more information, check out the Stanford Queue class documentation!

' 4 .0
A\

enqueue —P> \, E —P> dequeue
| ' Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue.html

47

Tradeoffs with Stacks and Queues

What are some downsides?

* No random access of elements
* Difficult to traverse - requires removal of elements
* No easy way to search

What are some benefits?

e Useful for many real world problems
e Easy to build such that access is guaranteed to be fast

Stanford University

48

Set

Unordered

No duplicates
e Allunique elements
e Faster at finding elements than ordered
data structures
* Can be compared and combines using

operands (==, I=, +, *, -)

Stanford University

49

The Stanford Set Library

set.add(value): Adds the value to the set, ignores if the set
already contains the value

set.remove(value): Removes the value from the set, ignores
if the value is not in the set

set.contains(value): Returns a boolean value, true if the set
contains the value, false otherwise

set.isEmpty(): Returns a boolean value, true if the set is
empty, false otherwise

set.size(): Returns the number of elements in the set

For more information, check out the Stanford Set class documentation!

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set

Set Patterns and Pitfalls

* Use for each loops to iterate over a set
for (type currElem : set) {

// process elements one at a time

}

e Cannot use anything that attempts to index into a set

for(int 1=0; 1 < set.size(); i++) {
// does not work, no index!
cout << set[i];

50

Stanford University

Map

Unordered

Collection of pairs
* Called key/value pairs

Use the key to quickly find the value
e Keys must be unique

Generalization of ordered data
structure, where “indices” are not
integers

Keys

~

-

Kendall

Roman

~
\

7

Siobhan -

)

51

Values

4 N
452-4363

346-5742

947-3462

- j

Stanford University

52

The Stanford Map Library

e map.clear(): Removes all key/value pairs from the map
e map.containsKey(key): Returns true if the map contains a value for the given key
e map[key]: Returns the value mapped to the given key
e If key is not in the map, adds it with the default value (e.g., ® or ")
e map.get(key): Returns the value mapped to the given key
e If key is notin the map, returns the default value for the value type, but does not add it to the map.
e map.isEmpty(): Returns true if the map contains no key/value pairs (size 0)
e map.keys():ReturnsaVector copy of all keys in the map
e map[key] = valueandmap.put(key, value):Addsa mapping from the given key to the given value; if the
key already exists, replaces its value with the given one
e map.remove (key): Removes any existing mapping for the given key (ignored if the key doesn't exist in the map)
e map.size():Returns the number of key/value pairs in the map
e map.toString():Returnsastringsuchas"{a:90, d:60, c:70}"
e map.values(): Returns a Vector copy of all the values in the map

For more information, check out the Stanford Map class documentation!

Stanford University

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

Map Patterns and Pitfalls

e Use for each loops to iterate over a map
for (type currKey : map) {
// see map values using map[currKey]

// don’t edit the map
}

for (type currKey : map.keys()) {
// see map values using map[currKey]

// can now edit the map!

53

Stanford University

54

Map Patterns and Pitfalls

e Use for each loops to iterate over a map
* Auto-insert: a feature that can also cause bugs

map [key]: Returns the value mapped to the given key
* If key is not in the map, adds it with the default value (e.g., © or "")

Stanford University

Recap of ADTs

Ordered ADTs

Elements with indices

Vectors (1D)
Grids (2D)

Elements without indices

Stacks (LIFO)
Queues (FIFO)

Unordered ADTs

Sets (unique elements)
Maps (key, value pairs)

55

Stanford University

56

Nested ADTs

* We can “nest” ADTs (e.g. Map<string, Set<string>>)
* This allows us to represent more complex data

* Nested ADTs can be tricky to work with, especially because of
reference and copies

Stanford University

57

Practice Problem (Vectors)

Write a function removeBadPa+irs that accepts a reference to a Vector of integers and
removes any adjacent pair of integers in the list if the left element of the pair is larger than
the right element of the pair. Every pair's left element is an even-numbered index in the list,
and every pair's right element is an odd index in the list.

If the vector has an odd length, the last element is not part of a pair and is also considered
"bad;" it should therefore be

removed by your function.

If an empty vector is passed in, the vector should still be empty at the end of the call.

Stanford University

58

Practice Problem (Vectors) - Example

Suppose a variable called vec stores the following element values:
{3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1}
We can think of this list as a sequence of pairs:

{3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1}

The pairs 9-2, 8-5, 6-3, and 3-1 are "bad" because the left element is larger than the right
one, so these pairs should be removed.

So the call of removeBadPairs (vec) would change the vector to store:
{3, 7, 5, 5, 4, 7}

Stanford University

59

Practice Problem (Vectors) - Solution 1

void removeBadPairs(Vector<int>& v) {
if (v.size() % 2 1= 0) {
v.remove(v.size() - 1);
}
for (int i = v.size() - 1; 1 > 0; 1i—--) {
if (1 % 2 !'= 0 && v[i - 1] > v[i]) {
v.remove(i);
v.remove(i - 1);

}
}
}

Stanford University

60

Practice Problem (Vectors) - Solution 2

void removeBadPairs(Vector<int>& v) {
if (v.size() % 2 1= 0) {
v.remove(v.size() - 1);
}
for (int i = 0; i < v.size(); 1 += 2) {
if (v[i] > v[i + 1]) {
v.remove (i) ;
v.remove (i) ;
i -= 2;
}
}
}

Stanford University

61

Practice Problem (Maps)

Write a function byAge that accepts three parameters:

1.

2.
3.

a reference to a Map where each key is a person's name (a string) and the associated value is
that person's age (an integer) (this map should not be modified in your function)

an integer for a minimum age

an integer for a max age

Your function should return a new Map with information about people with ages between the
minimum and maximum, inclusive. For this result Map:

each key is an integer age
the value for a key is a string with the names of all people at that age, separated by "and" if
there is more than one person of that age
the order of names for a given age should be in alphabetical order, such as "Bob and Carl" rather
than "Carl and Bob" (this is the order in which they naturally occur in the parameter map)
include only ages between the min and max inclusive, where there is at least one person of that
age in the parameter map
if the map passed is empty, or if there are no people in the map between the min/max ages,
return an empty map.
Stanford University

62

Practice Problem (Maps) - Example

If a Map named ages stores the following key:value pairs:

{"Allison":18, "Benson":48, "David":20, "Erik":20,
"Galen'":15, "Grace":25, "Helene":40, "Janette'":18,
"Jessica":35, "Marty":35, "Paul":28, '"Sara":15,
"Stuart":98, "Tyler":6, "Zack":20}

The call of byAge (ages, 16, 25) should return the following map:

{18:"Allison and Janette", 20:"David and Erik and Zack",
25:"Grace"}

For the same map, the call of byAge (ages, 20, 40) should return the following map:

{20:"David and Erik and Zack", 25:"Grace'", 28:"Paul",
35:"Jessica and Marty'", 40:"Helene"}

Stanford University

63

Practice Problem (Maps) - Solution 1

Map<int, string> byAge(Map<string, int>& ages, int min, 1int max) {
Map<int, string> result;
for (string name : ages) {
int age = ages[name];
if (min <= age && age <= max) {
if (result.containsKey(age)) {
string value = result.get(age);

value += " and " + name;
result.put(age, value);
} else {

result.put(age, name);
}
}
}

return result;

Stanford University

Practice Problem (Maps) - Solution 2

Map<int, string> byAge(Map<string, int>& ages, int min, int max) {
Map<int, string> result;
for (string name : ages) {
if (min <= ages[name] && ages[name] <= max) {
if (result.containsKey(ages[name])) {
result[ages[name]] += " and ";
}
result[ages[name]] += name;
}
}

return result;

Stanford University

65

Algorithmic Analysis

Stanford University

The Big Idea: Big-O

* General enough to compare across different computer systems

* Focuses on how the runtime will grow with the input size
* It’s all about growth rate

* This allows us to predict the runtime of future inputs

Stanford University

Different Big-O Time Complexities

67

Constant | Logarithmic Linear nlogn Quadratic | Polynomial | Exponential
0(n%) 0(a")
0(1) 0(log n) o(n) O(n log n) 0(n?) K> 1 2> 1
Faster < > Slower

Stanford University

68

What Does this Graph Mean?

Quadratic O(n?)

/ Linear O(n)
Runtime ¢ / . :
/ EEENES Logarithmic O(log n)
\ 5 Constant O(1)
ARRRRRRRRRE

Input size (n) Stanford University

What Does this Graph Mean?

Quadratic O(n?) : :
Linear O(n) For an input of size 4

| / / - 0(1) takes 1 ms

| - O(log n) takes 2 ms
| / - O(n) takes 4 ms
— / - 0O(n?) takes 16ms

4]

<~ | -
// BEERE= Logarithmic O(log n)
s
7

Runtime

L —T

Constant O(1)

/ 2 € 8

Input size (n) Stanford University

70

What Does this Graph Mean?

: 2
Quadratic O(n”) For an input of size 4

Linear O(n)

/

Runtime

| Logarithmic O(log n)

Constant O(1)

Input size (n)

- 0(1) takes 1 ms

- O(log n) takes 2 ms
- O(n) takes 4 ms

- 0O(n?) takes 16 ms

For an input of size 8
O(1) takes 1 ms

- O(log n) takes 3 ms

- O(n) takes 8 ms

- 0O(n?) takes 64 ms

Stanford University

71

What Does this Graph Mean?

If an algorithmis O(1), it takes the same For an input of size 4

amount of time to run no matter the input size! - 0O(1) takes 1 ms
- O(log n) takes 2 ms

. - 0O(n) takes 4 ms
.add () takes the same amount of time for a - 0(n?) takes 16 ms

Vector of size 1 and 100,000.

For an input of size 8
Logarithmic O(logn) - ©O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
Constant O(1) - 0(n?) takes 64 ms

Runtime

Input size (n)

Stanford University

72

What Does this Graph Mean?

. . . . For an input of size 4
If an algorithm is O (log n), it often involves ~ o() tzkes 1 ms

splitting n in half at each step. - O(log n) takes 2 ms

- O(n) takes 4 ms

Binary search! This is pretty darn efficient. - 0(n’) takes 16 ms

!

For an input of size 8
Logarithmic O(logn) - ©O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
Constant O(1) - 0(n?) takes 64 ms

Runtime

Input size (n) Stanford University

73

What Does this Graph Mean?

If an algorithm is O (n), the runtime scales For an input of size 4
linearly with the input size. Runtime grows the - O(1) takes 1 ms

_ _ - Of(log n) takes 2 ms
same amount that Input size grows. - 0(n) takes 4 ms

- 0O(n?) takes 16 ms

A for loop over a Vector of sizenisO(n).
| ! ! | For an input of size 8
Logarithmic O(logn) - O(1) takes 1 ms
- O(log n) takes 3 ms
- 0O(n) takes 8 ms
Constant O(1) - 0O(n?) takes 64 ms

Runtime

Input size (n) Stanford University

74

What Does this Graph Mean?

. For an input of size 4
2
If an algorithm is O (n<), it might involve an _ 0(1) takes 1 ms

O (n) operation within an O (n) operation. - O(log n) takes 2 ms

- O(n) takes 4 ms

A for loop over a Grid of size n xn is O (n?). - O(n’) takes 16 ms

!

For an input of size 8
Logarithmic O(logn) - ©O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
Constant O(1) - 0O(n?) takes 64 ms

Runtime

Input size (n) Stanford University

75

runtime : runtime
VA
n n
0(n) 0(n?)
int vectorMax(Vector<int> &v) { int vectorMax(Vector<int> &v) {

for (int num: v) {

int currentMax = v[0];
[0]; bool seenLarger = false;

int n = v.size(); for (int compareNum: v) {
for (int i = 1; i < n; i++) { if (compareNum > num) {

. . seenlLarger = true;

if (currentMax < v[i]) { 1

currentMax = v[i]; ks
if (!seenLarger) {

} return num;

} }

}

return currentMax; return -1:
b

Stanford University

76

runtime : runtime
VA
n n
0(n) 0(n?)
int vectorMax(Vector<int> &v) { int vectorMax(Vector<int> &v) {

for (int num: v) {

int currentMax = v[0];
[0]; bool seenLarger = false;

int n = v.size(); for (int compareNum: v) {
for (int i = 13 i < nj di++) { if (compareNum > num) {

. . seenlLarger = true;

if (currentMax < v[i]) { 1

currentMax = v[i]; ks
if (!seenLarger) {

¥ return num;

} }

}

return currentMax; return -1:
b

Stanford University

77

Practice problem: Runtime of printWords

void printWord(string word) {
for (int i = 0; i < 10; i++) {
cout << word << endl;

}

int printWords(Vector<string> words) {
for (string word: words) {
printWord(word) ;

}

Stanford University

78

Practice problem: Runtime of printWords

void printWord(string word) {
for (int i = 0; i < 10; i++) {
cout << word << endl;
}
}

int printWords(Vector<stigng> words) {
for (string word: words) {

printWord(word) ;
}

For a Vector of size n, we
loop n times.

Within this loop, we call
printWord, which prints
our word 10 times.

Thisisn * 10 operations,
which simplifiesto O(n).

Stanford University

79

Practice problem: Runtime of printWords

void printWord(string word) {

ize N
for (int 4 = 05 1 < 103 i+4) I For a Vector of size n, we

cout << word << endl; |OOp N times.
}
1 ~ Within this loop, we call
printWord, which prints
int printWords(Vector<string> words) { our word 10 times.

for (string word: words) {

rintWord(word) ; . . .
g ()5 Thisisn * 10 operations,

) which simplifiesto O(n).

Stanford University

80

Practice problem: Runtime of printWords

void printWord(string word) {

ize N
for (int 4 = 05 1 < 103 i+4) I For a Vector of size n, we

cout << word << endl; |OOp n times.
+
1 Within this loop, we call
printWord, which prints
int printWords(Vector<string> words) { our word 10 times.

for (string word: words) {

rintWord(word) ; . . .
g ()5 Thisisn * 10 operations,

) which simplifiesto O(n).

Stanford University

81

Practice problem: Runtime of printWords

void printWord(string word) {
for (int i = 0; i < 10; i++) {
cout << word << endl;
}
}

If porintWords takes 30s to run for a
Vector with 1 million elements, how
long will it take for a Vector with
4 million elements?

int printWords(Vector<string> words) {

for (string word: words) {
printWord(word) ;

}

Stanford University

82

Practice problem: Runtime of printWords

void printWord(string word) {

for (int i = 0; i < 10; +i++) { 120s.
cout << word << endl; For a function with O (n) runtime,
} runtime scales linearly with input size.

}

int printWords(Vector<string> words) {
for (string word: words) {
printWord(word) ;

}

Stanford University

83

Practice problem: Runtime of reverseVec

Vector<int> reverseVec(Vector<int> vec) {
Vector<int> result;
int n = vec.size();
for (int 4 = 0; i < n; di++) {
int elem = vec.remove(0);
result.insert(0, elem);
}

return result;

Stanford University

84

Practice problem: Runtime of reverseVec

Vector<int> reversevec(Vector<int> vec) { | pqr 3 Vector of size n, we loop
’

Vector<int> result; N times

= d

int n = vec.size();

f int i = 0; 1 < nj; i++ T .
or (int 1 Tem) o Within this loop, we remove

and insert, both of which
are0(n).

int elem = vec.remove(0);
result.insert(0, elem);

}

return result; . . .
’ Thisisn * O(n) operations,

which simplifies to O (n?).

Stanford University

85

Practice problem: Runtime of reverseVec

Vector<int> reversevec(Vector<int> vec) { | pqr 3 Vector of size n, we loop
’

Vector<int> result; N times

int n = vec.size();

f int i = 0; 1 < nj; i++ T .
or (int 1 T) Ao | Within this loop, we remove

int elem = vec.remove(0 ;‘?__———”’ . :
) (8) and 1nsert, both of which
result.insert(0, elem);

are0(n).

}

return result; . YECTOT ST / .)

v.add(val) or v += val appends value to end of vector [0]¢))
v.clear() removes all elements o) e rat I O n S
v.get(i) or v[i] returns value at given index ’

} v.insert(i, val) inserts at given index, shifting subsequent values right 2
v.isEmpty() returns true if there are no elements O (n)
v.remove(1i) removes value at given index, shifting subsequent values left *
v.set(i, val) or v[i] = val replaces value at given index
v.size() returns number of elements
v.subList(start, length) returns new vector containing subrange of elements \\

Stanford University

86

Practice problem: Runtime of reverseVec

Vector<int> reversevec(Vector<int> vec) { | pqr 3 Vector of size n, we loop
’

Vector<int> result; N times

int n = vec.size();

f int i = 0; 1 < nj; i++ T .
or (int 1 Tam) o Within this loop, we remove

and insert, both of which
are0(n).

int elem = vec.remove(0);
result.insert(0, elem);

}

return result; . . .
’ Thisisn * O(n) operations,

which simplifies to O (n?).

Stanford University

87
Practice problem: Runtime of reverseVec

Vector<int> reverseVec(Vector<int> vec) {
Vector<int> result;

int n = vec.size();

for (int i = 0; i < nj; i++) {
If reverseVec takes 5ms to run

, for a Vector with 100,000 elements,
result.insert(0, elem); o
, how long will it take for a Vector
with 200,000 elements?

int elem = vec.remove(0);

return result;

Stanford University

88

Practice problem: Runtime of reverseVec

Vector<int> reverseVec(Vector<int> vec) {

Vector<int> result;

int n = vec.size();

for (int 4 = 0; i < n; di++) {
int elem = vec.remove(0);

result.insert(0, elem);

}

return result;

20ms.
For a function with O (n?) runtime,
doubling input size quadruples runtime.

Stanford University

89

Recursion

Stanford University

What is recursion?

A problem-solving technique in which
tasks are completed by reducing them
into repeated, smaller tasks of the same
form.

The function calls itself and every time,
the problem becomes a little smaller

90

Rqu&gION
RECURSION
RECURSION

Here we go again

Stanford University

91

Two main components

e Base case

The simplest version of your problem that all other cases reduce to
An occurrence that can be answered directly

e Recursive case

More complex version of the problem that cannot be directly answered
Break down the task into smaller occurrences

Take the “recursive leap of faith” and trust the smaller tasks will solve the
problem for you!

Stanford University

92

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.
2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance
of the same problem, and make progress towards the base case.

Stanford University

Three “Musts” of Recursion

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n * factorial(n-1);

93

Your code must have a case
for all valid inputs.

You must have a base case
that does not make
recursive calls.

When you make a recursive
call it should be to a simpler
instance of the same
problem, and make progress
towards the base case.

Stanford University

Recursive vs Iterative Methods

int factorial (int n) {

int factoriallterative (int n) {
it (n == 0) { int result = 1;
return 1; for (int i = 1; i <= n; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
}

n =5, time=5823ms n =5, time=5.485ms
n = 100,000, time=8.703 ms n = 100,000, time=5.589 ms

n = 1,000,000, “segmentation fault” n = 1,000,000, time=7.501ms

Stanford University

95

lteration + Recursion

* It’s completely reasonable to mix iteration and recursion in the
same function.

* Recursion doesn’t mean “the absence of iteration.” It just means
“solving a problem by solving smaller copies of that same
problem.”

* [teration and recursion can be very powerful in combination!

Stanford University

96

Big-O of Recursive Functions

Depends on:

* Big-O of each execution of the function
e Number of recursive calls

Stanford University

97

main() ne
Factorial, Revisited .
factorial() n 5
ot e (N [.
it factordial (et on) L factorial() n 4
ot faorctaoraal (St) L factor-ia'[_() n 3
int factorial (in+ n) £ .
‘0t factarial (diot n) factorial() n: | »
e ctorial() n 1
; int factorial (int n) {
. 1 if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

98

main() ne
Factorial, Revisited .
factorial() n 5
O T NN AL W § .
LA factorial() n 4
..l What’s theruntlme;ofone factorial() n:| 1
callto factorial?
ot factordal (0t n) [T factor'lal() n 2
S ctorial() n 1
; int factorial (int n) {
] I .
1 if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

99

main() o
Factorial, Revisited .
factorial() n 5
|
L 0(1)] factorial() n:[4
L All qfthese op.er.atlo'ns factorial() n:| 1
(comparison, multiplication) are
constant time. factorial() n:|
e E— ctorial() n 1
; int factorial (int n) {
'] if (n == 0) { ctorial() n 0
i return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

100

main() ne
Factorial, Revisited .
factorial() n 5
O T NN AL W § .
LA factorial() n:| 4
.| How many times does factorial() m:| s
factorial get called?
ot factordal (0t n) [T factor'lal() n 2
S ctorial() n 1
; int factorial (int n) {
] I .
] if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

101

main() ne
Factorial, Revisited .
factorial() n 5
|
L 0(n) times factorial() n 4
| We decr.ease nby 1 eacl? recursive factorial() n:| 1
call, so it takes n recursive calls to
get down to the base case.] factorial() n:|
e —— torial() n 1
; int factorial (int n) {
] I .
] if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

102

main() ne
Factorial, Revisited .
factorial() p 5
1
. factorial() n:| 4
’ - 1 ?
.| What’s the runtime of factorial: factorial() n: | ,
0(1) * 0(n) = 0O(n)
_] factorial() n 5
~ , .« 4 AR A\ c _,tor-ia-l-() n 1
; int factorial (int n) {
J 1 i f (n —— @) { :tor‘ial() n 0
. return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

103

Fractal

* Any repeated, graphical pattern
 Composed of repeated instances of the same shape or pattern,
arranged in a structured way

>pbH
< R
CHAIEI

o S ()
IR

Stanford University

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position

2. It has a different size

3. It has a different orientation
4. It has a different

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

Stanford University

105

Why do we use recursion?

* Elegant

* Some problems have beautiful, concise recursive solutions
* Ex: Towers of Hanoi

e Efficient

* Recursive solutions can have faster runtimes
* Ex: Binary Search

Stanford University

Binary Search

106

* We have a sorted Vector of integers and want to find some target

* Bi

nary search over some range of sorted elements:
Choose element in the middle of the range
If this element is our target, success!
If element is less than our target, do binary search to the right
If element is greater than our target, do binary search to the left

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 7 8

Stanford University

107

Runtime of Binary Search

 We're searching through N elements and eliminating half until only

one element remains:
* 1000 pages — 500 pages — 250 pages — ... — 1 page
* N—>N2—->N4— .. —-2->1
* How many steps does it take to get from N down to 17
e Let’s think of it thisway: 1 —2 — ... > N/4 —>N/2 —> N
 Number of times we multiply by 2 to get to N

Stanford University

108

Runtime of Binary Search

 We're searching through N elements and eliminating half until only

[aYa¥al nlomnn'l' rnmainc-

If X is the number of times we multiply by 2 to get N...
2 = N

o | x = log,N

* Let’sthink of itthisway:1 —>2 — ... > N/4—>N/2 —>N

 Number of times we multiply by 2 to get to N

Stanford University

Runtime of Binary Search

* Faster than O(n), since it’s faster than a linear search

* Slower than O(1), since it takes longer for larger input sizes
* It's O(log n)

109

Constant | Logarithmic Linear nlogn Quadratic | Polynomial | Exponential
k n
0(1) 0(log n) 0(n) 0(n log n) 0(n?) o ot

Stanford University

110

Approaching recursive problems

* Look for self-similarity.

* Try out an example.
* Work through a simple example and then increase the complexity.
* Think about what information needs to be “stored” at each step in the
recursive case
e Ask yourself:

 Whatis the base case? (What is the simplest case?)
* What is the recursive case? (What pattern of self-similarity do you see?)

Stanford University

111

Practice Problem #1

Write a recursive function named replaceAll that accepts three parameters:

1. astrings
2. achar from
3. acharto

This function returns a new string that is the same as s but with any occurrences of from changed to to.

Your function is case-sensitive; if the character from is, for example, a lowercase 'f', your function should not
replace uppercase 'F' characters. In other words, you should not need to write code to handle case issues in this
problem.

Additional stipulations:

* Do not use any loops; you must use recursion.

* Do not declare any global variables.

* Do not call any of the following string functions: find, rfind, index0f, contains, replace,
split. (The point of this problem is to solve it recursively; do not use a library function to get around
recursion.)

* Do not use any auxiliary data structures like Vector, Map, Set, array, etc.

Stanford University

112

Practice Problem #1 - Example

The call of replaceAll("crazy raccoons'", 'c', 'k')
should return "krazy rakkoons".

The call of replaceAl1(""BANANA", 'A', '0') shouldreturn
"BONONO".

Stanford University

113

Practice Problem #1 - Solution 1

string replaceAll(string s, char from, char to) {

if (s.empty()) {
return s;

} else {
char first = s[0];
string rest = s.substr(1l);
if (first == from) {
first = to;
}

return first + replaceAll(rest, from, to);

Stanford University

114

Practice Problem #2 - Solution 2

string replaceAll(string s, char from, char to) {
-i-F (s e llll) {
return s;
} else if (s[0] == from) {
return to + replaceAll(s.substr(1), from, to);
} else {
return s[0] + replaceAll(s.substr (1), from,
to);
}

Stanford University

115

Practice Problem #2

Write a recursive function named removeEvens that accepts a Stack of integers and an integer K as
parameters and removes the first K even numbers starting from the top of the stack, leaving all other

elements present in the same relative order. You should also return the number of elements that were
removed.

If the stack does not contain K even values, remove as many evens as you can and return the
number that were removed.

* Ifthe stack does not contain any elements with even values, the stack should not be modified
and you should return 0

Additional stipulations:

* Do not use any loops; you must use recursion.
* Do not use any auxiliary data structures like Stack, Queue, Vector, Map, Set, array, string, etc.

This includes making a "backup" of the stack passed as a parameter, or passing it by value to
copy it.

* Do not declare any global variables.

Stanford University

116

Practice Problem #2 - Example

Consider a stack named stack that contains the following elements:
(bottom) {8, 1, 4, 9, 5, 2, 6, 7, 12} (top)

The call of removeEvens (stack, 3) should remove the 3 even element
values closest to the top of the stack, which are 12, 6, and 2. The stack's
contents after the call should be {8, 1, 4, 9, 5, 7} andthe function
should return 3.

if the call were removeEvens (stack, 7), there are not 7 even values in
the stack, but you should remove all five even values, 12, 6, 2, 4, and 8,
leaving the stack storing {1, 9, 5, T7}.Youwould return5.

Stanford University

117

Practice Problem #2 - Solution

int removeEvens (Stack<int>& stack, int k) {
if (stack.isEmpty() || k <= 0) {
return 0;
} else {
int top stack.pop();
if (top % 2 == 0) {
// even value; remove from stack, count toward 'k'
return 1 + removeEvens(stack, k - 1);
} else {
// odd value; keep in stack, recur on rest of stack for evens
int result = removeEvens(stack, k);
stack.push(top);
return result;

Stanford University

118

Good luck on the midterm!
You can do this!!

Stanford University

