
Midterm Review
Elyse Cornwall and Amrita Kaur

July 13, 2023

Contributions made from previous CS106B Instructors

Midterm Logistics

• Monday, July 17 from 7-9pm in Hewlett Teaching Center, Room 200
• Students with exam accommodations have already been contacted

• On paper, using pen/pencil

• Closed-book and closed-device.
• Reference sheet on Stanford library functions

• Notes sheet (one page, front and back, 8-1/2" x 11", have anything you

want on it)

• All information is here

2

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/refsheet.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/

Midterm Logistics

• Evaluate your problem-solving skills and conceptual understanding

of the material, not your ability to use perfect syntax
• Most points awarded for valid approach to solving the problem, fewer

points for the minute details of executing your plan

• Not taking off points for
• Missing braces around clearly indented blocks of code

• Missing semicolons

• Missing #include

3

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

Roadmap - Midterm Coverage

Core
Tools

C++

Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

5

Algorithmic
Analysis

RecursionC++

Abstract Data
Structures

Using Abstractions

C++ Fundamentals

6

Variables

• We use variables to store information in our programs

• Variables have a type and a name

int enrollment;

string className;

We name variables using “camelCase” capitalization

C++ Types

Numbers

• int, long // 100
• float, double // 3.14

Text

• char, string // ‘a’, “apple”

Booleans

• bool // true, false

Console Output

• We use cout and << to print information to the user

• To start printing on a new line, we use endl

Functions

Parameters ReturnFunction

Passing Parameters into Functions

Pass by value

• Callee gets a copy of a
variable from the caller
function

• Changes to that variable that
occur in callee do not persist
in caller

Pass by reference

• Callee gets a reference to a
variable from the caller
function

• Now, the callee can directly
modify the original variable

11

Passing Parameters into Functions

void valueFunc(Vector<int> vec) {
 vec[0] = 100;
}

void refFunc(Vector<int>& vec) {
 vec[0] = 100;
}

12

Whoever calls valueFunc will give
this function a copy of their Vector.

Whoever calls refFunc will give this
function access to their Vector.

Passing Parameters into Functions

void valueFunc(Vector<int> vec) {
 vec[0] = 100;
}

void refFunc(Vector<int>& vec) {
 vec[0] = 100;
}

13

Vector<int> vec = {1, 2, 3};

valueFunc(vec);

// valueFunc doesn’t change our Vector

EXPECT_EQUAL(vec, {1, 2, 3});

refFunc(vec);

// refFunc does change our Vector!

EXPECT_EQUAL(vec, {100, 2, 3});

When Do We Pass by Reference?

Yes:

• When we want the callee
function to edit our data

• To avoid making copies of
large data structures

• When we need to return
multiple values

No:

• Just because

• Passing by reference is risky
because another function can
modify your data!

• When the data we’re passing
to the callee is small, and thus
copying isn’t expensive

14

Conditionals

// assuming age variable is already defined
if (age < 12) {

cout << "Eligible for kids meal.";
} else if (age > 65) {

cout << "Eligible for senior discount.";
} else {

cout << "Must use regular menu.";
}

While Loops

• “While this condition is true, do this”

• Use when you don’t know how many times you want to repeat

while (condition) {

// code to repeat while condition is true

}

For Loops

• Use when you know how many times you want to repeat

• Typical for loop uses int counter i that starts at 0:

for (int i = 0; i < 10; i++) {

cout << i << endl;

}

For Each Loops

• We can also loop for each element in a collection
• Vectors, Grids, Sets, Maps

Vector<int> vec = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

for (int elem : vec)

cout << elem << endl;

}

String

19

• Data type that represents a sequence of characters

• Marked by double quotes

• Ex: “apple”

Char
• Data type that represents a single character (letters, digits, symbols)
• Marked by single quotes
• Ex: ‘a’
• Have numerical representation (ASCII codes)

“apple”

20

‘a’ ‘p’ ‘p’ ‘l’ ‘e’

0 1 2 3 4

Key Characteristics of Strings

• Mutable in C++

• Concatenated using + or +=
• Add strings and strings, output is a string

• Add strings with chars, output is a string

• Adding chars will NOT give a string output

• Compared using relational operators (<, >, ==, !=)

21

word[1] = ‘q’;

��

C Strings and Strings

string word = “apple” + “sauce”;

• Concatenating C strings with +
• Not possible (does not compile)

string word1 = “apple”;

string word = word1 + “sauce”;

• Concatenating C++ and C string with +
• Works perfectly! (autoconversion of C string)

22

Libraries for Strings and Chars

• <cctype> library
• Built-in C++ char methods

• <string> library
• Built-in C++ string methods

• “strlib.h” library
• Stanford string functions

23

24

Don’t Memorize - You’ll Have a Reference

Practice problem: Hashtags

Write a function Vector<string> findHashtags(string s)

that returns a Vector of all of the hashtags in the string s. A hashtag

starts with a ‘#’ and ends with a space or the end of the string.

- findHashtags(“CS is #so #cool”) returns {“#so”, “#cool”}

- findHashtags(“#what #is good”) returns {“#what”, “#is”}

- findHashtags(“nothing to see here”) returns {}

25

Vector<string> findHashtags(string s) {
 Vector<string> result;
 bool inHashtag = false;
 string curWord = "";
 for (char ch: s) {
 if (ch == '#') {
 inHashtag = true; // start of hashtag
 } else if (ch == ' ' && inHashtag) {
 inHashtag = false; // end of hashtag, add to Vector
 result.add(curWord);
 curWord = "";
 }
 if (inHashtag) {
 curWord += ch;
 }
 }
 if (inHashtag) {
 result.add(curWord); // add hashtag if it came at the end of s
 }
 return result;
}

26

Abstract Data Types (ADTs)

27

• Aka containers or data structures

• Allow programmers to store data in predictable, organized ways

• Can use without understanding the underlying implementation

Abstract Data Type (ADTs)

28

Big Questions

• What type of data is stored in each ADT?

• How can you manipulate the data in each ADT?

• When would you want to use each specific ADT?

• What are the similarities and differences between the ADTs?

29

Vectors

30

4 7 -3 6
0 1 2 3

• Ordered (indexed)

• 1-dimensional

• Can grow and shrink in size

• All elements must be of the same type

Vectors

31

4 7 -3 6
0 1 2 3

• Ordered (indexed)

• 1-dimensional

• Can grow and shrink in size

• All elements must be of the same type

Vectors

32

4 7 -3 6
0 1 2 3

• Ordered (indexed)

• 1-dimensional

• Can grow and shrink in size

• All elements must be of the same type

Vectors

33

• Ordered (indexed)

• 1-dimensional

• Can grow and shrink in size

• All elements must be of the same type

4 7 -3 6 2
0 1 2 3 4

Vectors

34

4 7 -3 6
0 1 2 3

• Ordered (indexed)

• 1-dimensional

• Can grow and shrink in size

• All elements must be of the same type

Vectors

35

4 7 -3 6
0 1 2 3

• Ordered (indexed)

• 1-dimensional

• Can grow and shrink in size

• All elements must be of the same type

The Stanford Vector Library

• vec.size(): Returns the number of elements in the vector.
• vec.isEmpty(): Returns true if the vector is empty, false otherwise.
• vec[i]: Selects the ith element of the vector.
• vec.add(value): Adds a new element to the end of the vector.
• vec.insert(index, value): Inserts the value before the specified

index, and moves the values after it up by one index.
• vec.remove(index): Removes the element at the specified index, and

moves the rest of the elements down by one index.
• vec.clear(): Removes all elements from the vector.
• vec.sort(): Sorts the elements in the list in increasing order.

For more information, check out the Stanford Vector class documentation!

36

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Vector.html

Grids

37

0 1 2

• Ordered (rows and cols are indexed)

• 2-dimensional

• Fixed dimensions

• All elements must be of the same type

2 5 -1

10 11 3

19 -4 -2

4 6 2

0

1

2

3

Grids

38

0 1 2

• Ordered (rows and cols are indexed)

• 2-dimensional

• Fixed dimensions

• All elements must be of the same type

2 5 -1

10 11 3

19 -4 -2

4 6 2

0

1

2

3

Grids

39

0 1 2

• Ordered (rows and cols are indexed)

• 2-dimensional

• Fixed dimensions

• All elements must be of the same type

2 5 -1

10 11 3

19 -4 -2

4 6 2

0

1

2

3

Grids

40

0 1 2

• Ordered (rows and cols are indexed)

• 2-dimensional

• Fixed dimensions

• All elements must be of the same type

2 5 -1

10 11 3

19 -4 -2

4 6 2

0

1

2

3

Grids

41

0 1 2

• Ordered (rows and cols are indexed)

• 2-dimensional

• Fixed dimensions

• All elements must be of the same type

2 5 -1

10 11 3

19 -4 -2

4 6 2

0

1

2

3

The Stanford Grid Library

• grid.numRows(): Returns the number of rows in the grid.

• grid.numCols(): Returns the number of columns in the grid.

• grid[i][j]: selects the element in the ith row and jth column.

• grid.resize(rows, cols): Changes the dimensions of the

grid and re-initializes all entries to their default values.

• grid.inBounds(row, col): Returns true if the specified

row, column position is in the grid, false otherwise.

For more information, check out the Stanford Grid documentation!

42

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

Stack

43

• Ordered (not indexed)

• Last In, First Out (LIFO)

• Only the top element of the stack is accessible

• Important operations:

• stack.push(value): Add an element onto the top of the stack

• stack.pop(): Remove an element from the top of the stack and

return it

• stack.peek(): Look at the element from the top of the stack, but

don’t remove it

The Stanford Stack Library

44

• stack.push(value): Add an element onto the top of the stack
• stack.pop(): Remove an element from the top of the stack and

return it
• stack.peek(): Look at the element from the top of the stack,

but don’t remove it
• stack.isEmpty(): Returns a boolean value, true if the stack is

empty, false if it has at least one element
• Note: a runtime error occurs if a pop() or peek() operation is

attempted on an empty stack
• stack.clear(): Removes all elements from the stack
• stack.size(): Returns the number of elements in the stack

For more information, check out the Stanford Stack class documentation!

Dracula

Ender’s Game

Skyward

push pop

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack.html

Queue

45

• Ordered (not indexed)

• First In, First Out (FIFO)

• Add to back, remove from front

• Important operations:

• queue.enqueue(value): Add an element to the back of the

queue

• queue.dequeue(): Remove an element from the front of the

queue and return it

• queue.peek(): Look at the element from the front of the queue,

but don’t remove it

The Stanford Queue Library

46

• queue.enqueue(value): Add an element to the back of the queue
• queue.dequeue(): Remove an element from the front of the queue and return it
• queue.peek(): Look at the element from the front of the queue, but don’t remove it
• queue.isEmpty(): Returns a boolean value, true if the queue is empty, false if it

has at least one element
• Note: a runtime error occurs if a dequeue() or peek() operation is attempted on an

empty queue
• queue.clear(): Removes all elements from the queue
• queue.size(): Returns the number of elements in the queue

For more information, check out the Stanford Queue class documentation!

enqueue dequeue

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue.html

Tradeoffs with Stacks and Queues

What are some downsides?

• No random access of elements

• Difficult to traverse - requires removal of elements

• No easy way to search

47

What are some benefits?

• Useful for many real world problems

• Easy to build such that access is guaranteed to be fast

Set

• Unordered

• No duplicates
• All unique elements

• Faster at finding elements than ordered

data structures

• Can be compared and combines using

operands (==, !=, +, *, -)

48

The Stanford Set Library

49

• set.add(value): Adds the value to the set, ignores if the set
already contains the value

• set.remove(value): Removes the value from the set, ignores
if the value is not in the set

• set.contains(value): Returns a boolean value, true if the set
contains the value, false otherwise

• set.isEmpty(): Returns a boolean value, true if the set is
empty, false otherwise

• set.size(): Returns the number of elements in the set

For more information, check out the Stanford Set class documentation!

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Set

Set Patterns and Pitfalls

• Use for each loops to iterate over a set

for(type currElem : set) {

 // process elements one at a time
}

50

• Cannot use anything that attempts to index into a set

for(int i=0; i < set.size(); i++) {
// does not work, no index!
cout << set[i];

}

Map

• Unordered

• Collection of pairs
• Called key/value pairs

• Use the key to quickly find the value
• Keys must be unique

• Generalization of ordered data

structure, where “indices” are not

integers

51

Keys Values

Kendall

Roman

Siobhan

452-4363

346-5742

947-3462

The Stanford Map Library

52

• map.clear(): Removes all key/value pairs from the map

• map.containsKey(key): Returns true if the map contains a value for the given key

• map[key]: Returns the value mapped to the given key

• If key is not in the map, adds it with the default value (e.g., 0 or "")

• map.get(key): Returns the value mapped to the given key

• If key is not in the map, returns the default value for the value type, but does not add it to the map.

• map.isEmpty(): Returns true if the map contains no key/value pairs (size 0)

• map.keys(): Returns a Vector copy of all keys in the map

• map[key] = value and map.put(key, value): Adds a mapping from the given key to the given value; if the

key already exists, replaces its value with the given one

• map.remove(key): Removes any existing mapping for the given key (ignored if the key doesn't exist in the map)

• map.size(): Returns the number of key/value pairs in the map

• map.toString(): Returns a string such as "{a:90, d:60, c:70}"

• map.values(): Returns a Vector copy of all the values in the map

For more information, check out the Stanford Map class documentation!

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Map

Map Patterns and Pitfalls

• Use for each loops to iterate over a map

for(type currKey : map) {

 // see map values using map[currKey]

// don’t edit the map
}

53

for(type currKey : map.keys()) {

 // see map values using map[currKey]

// can now edit the map!
}

Map Patterns and Pitfalls

• Use for each loops to iterate over a map

• Auto-insert: a feature that can also cause bugs

map[key]: Returns the value mapped to the given key

• If key is not in the map, adds it with the default value (e.g., 0 or "")

54

Recap of ADTs

Ordered ADTs

55

Elements with indices

• Vectors (1D)
• Grids (2D)

Elements without indices

• Stacks (LIFO)
• Queues (FIFO)

Unordered ADTs

• Sets (unique elements)
• Maps (key, value pairs)

Nested ADTs

• We can “nest” ADTs (e.g. Map<string, Set<string>>)

• This allows us to represent more complex data

• Nested ADTs can be tricky to work with, especially because of

reference and copies

56

Practice Problem (Vectors)

Write a function removeBadPairs that accepts a reference to a Vector of integers and
removes any adjacent pair of integers in the list if the left element of the pair is larger than
the right element of the pair. Every pair's left element is an even-numbered index in the list,
and every pair's right element is an odd index in the list.

If the vector has an odd length, the last element is not part of a pair and is also considered
"bad;" it should therefore be

removed by your function.

If an empty vector is passed in, the vector should still be empty at the end of the call.

57

Practice Problem (Vectors) - Example

Suppose a variable called vec stores the following element values:

{3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1}
We can think of this list as a sequence of pairs:

{3, 7, 9, 2, 5, 5, 8, 5, 6, 3, 4, 7, 3, 1}
The pairs 9-2, 8-5, 6-3, and 3-1 are "bad" because the left element is larger than the right
one, so these pairs should be removed.

So the call of removeBadPairs(vec) would change the vector to store:

{3, 7, 5, 5, 4, 7}

58

Practice Problem (Vectors) - Solution 1

void removeBadPairs(Vector<int>& v) {
if (v.size() % 2 != 0) {

v.remove(v.size() - 1);
}
for (int i = v.size() - 1; i > 0; i--) {

if (i % 2 != 0 && v[i - 1] > v[i]) {
v.remove(i);
v.remove(i - 1);

}
}

}

59

Practice Problem (Vectors) - Solution 2

void removeBadPairs(Vector<int>& v) {
if (v.size() % 2 != 0) {

v.remove(v.size() - 1);
}
for (int i = 0; i < v.size(); i += 2) {

if (v[i] > v[i + 1]) {
v.remove(i);
v.remove(i);
i -= 2;

}
}

}

60

Practice Problem (Maps)
Write a function byAge that accepts three parameters:

1. a reference to a Map where each key is a person's name (a string) and the associated value is
that person's age (an integer) (this map should not be modified in your function)

2. an integer for a minimum age
3. an integer for a max age

Your function should return a new Map with information about people with ages between the
minimum and maximum, inclusive. For this result Map:

• each key is an integer age
• the value for a key is a string with the names of all people at that age, separated by "and" if

there is more than one person of that age
• the order of names for a given age should be in alphabetical order, such as "Bob and Carl" rather

than "Carl and Bob" (this is the order in which they naturally occur in the parameter map)
• include only ages between the min and max inclusive, where there is at least one person of that

age in the parameter map
• if the map passed is empty, or if there are no people in the map between the min/max ages,

return an empty map.

61

Practice Problem (Maps) - Example

If a Map named ages stores the following key:value pairs:

{"Allison":18, "Benson":48, "David":20, "Erik":20,
"Galen":15, "Grace":25, "Helene":40, "Janette":18,
"Jessica":35, "Marty":35, "Paul":28, "Sara":15,
"Stuart":98, "Tyler":6, "Zack":20}

The call of byAge(ages, 16, 25) should return the following map:

{18:"Allison and Janette", 20:"David and Erik and Zack",
25:"Grace"}

For the same map, the call of byAge(ages, 20, 40) should return the following map:

{20:"David and Erik and Zack", 25:"Grace", 28:"Paul",
35:"Jessica and Marty", 40:"Helene"}

62

Practice Problem (Maps) - Solution 1

Map<int, string> byAge(Map<string, int>& ages, int min, int max) {
Map<int, string> result;
for (string name : ages) {

int age = ages[name];
if (min <= age && age <= max) {

if (result.containsKey(age)) {
string value = result.get(age);
value += " and " + name;
result.put(age, value);

} else {
result.put(age, name);

}
}

}
return result;

}

63

Practice Problem (Maps) - Solution 2

Map<int, string> byAge(Map<string, int>& ages, int min, int max) {
Map<int, string> result;
for (string name : ages) {

if (min <= ages[name] && ages[name] <= max) {
if (result.containsKey(ages[name])) {

result[ages[name]] += " and ";
}
result[ages[name]] += name;

}
}
return result;

}

64

Algorithmic Analysis

65

The Big Idea: Big-O

• General enough to compare across different computer systems

• Focuses on how the runtime will grow with the input size
• It’s all about growth rate

• This allows us to predict the runtime of future inputs

66

Different Big-O Time Complexities

67

Constant Logarithmic Linear n log n Quadratic Polynomial Exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk)
k ≥ 1

O(an)
a > 1

Faster Slower

What Does this Graph Mean?

68

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2)

What Does this Graph Mean?

69

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2) For an input of size 4

- O(1) takes 1 ms
- O(log n) takes 2 ms
- O(n) takes 4 ms
- O(n2) takes 16ms

What Does this Graph Mean?

70

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2) For an input of size 4

- O(1) takes 1 ms
- O(log n) takes 2 ms
- O(n) takes 4 ms
- O(n2) takes 16 ms

For an input of size 8
- O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
- O(n2) takes 64 ms

What Does this Graph Mean?

71

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2) For an input of size 4

- O(1) takes 1 ms
- O(log n) takes 2 ms
- O(n) takes 4 ms
- O(n2) takes 16 ms

For an input of size 8
- O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
- O(n2) takes 64 ms

If an algorithm is O(1), it takes the same
amount of time to run no matter the input size!

.add() takes the same amount of time for a
Vector of size 1 and 100,000.

What Does this Graph Mean?

72

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2) For an input of size 4

- O(1) takes 1 ms
- O(log n) takes 2 ms
- O(n) takes 4 ms
- O(n2) takes 16 ms

For an input of size 8
- O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
- O(n2) takes 64 ms

If an algorithm is O(log n), it often involves
splitting n in half at each step.

Binary search! This is pretty darn efficient.

What Does this Graph Mean?

73

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2) For an input of size 4

- O(1) takes 1 ms
- O(log n) takes 2 ms
- O(n) takes 4 ms
- O(n2) takes 16 ms

For an input of size 8
- O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
- O(n2) takes 64 ms

If an algorithm is O(n), the runtime scales
linearly with the input size. Runtime grows the

same amount that input size grows.

A for loop over a Vector of size n is O(n).

What Does this Graph Mean?

74

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2) For an input of size 4

- O(1) takes 1 ms
- O(log n) takes 2 ms
- O(n) takes 4 ms
- O(n2) takes 16 ms

For an input of size 8
- O(1) takes 1 ms
- O(log n) takes 3 ms
- O(n) takes 8 ms
- O(n2) takes 64 ms

If an algorithm is O(n2), it might involve an
O(n) operation within an O(n) operation.

A for loop over a Grid of size n x n is O(n2).

O(n)
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}

O(n2)
int vectorMax(Vector<int> &v) {

for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

75

n n

runtimeruntime

O(n)
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}

O(n2)
int vectorMax(Vector<int> &v) {

for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

76

n n

runtimeruntime

Practice problem: Runtime of printWords
void printWord(string word) {
 for (int i = 0; i < 10; i++) {
 cout << word << endl;
 }
}

int printWords(Vector<string> words) {
 for (string word: words) {
 printWord(word);
 }
}

77

Practice problem: Runtime of printWords
void printWord(string word) {
 for (int i = 0; i < 10; i++) {
 cout << word << endl;
 }
}

int printWords(Vector<string> words) {
 for (string word: words) {
 printWord(word);
 }
}

78

For a Vector of size n, we
loop n times.

Within this loop, we call
printWord, which prints

our word 10 times.

This is n * 10 operations,
which simplifies to O(n).

Practice problem: Runtime of printWords
void printWord(string word) {
 for (int i = 0; i < 10; i++) {
 cout << word << endl;
 }
}

int printWords(Vector<string> words) {
 for (string word: words) {
 printWord(word);
 }
}

79

For a Vector of size n, we
loop n times.

Within this loop, we call
printWord, which prints

our word 10 times.

This is n * 10 operations,
which simplifies to O(n).

Practice problem: Runtime of printWords
void printWord(string word) {
 for (int i = 0; i < 10; i++) {
 cout << word << endl;
 }
}

int printWords(Vector<string> words) {
 for (string word: words) {
 printWord(word);
 }
}

80

For a Vector of size n, we
loop n times.

Within this loop, we call
printWord, which prints

our word 10 times.

This is n * 10 operations,
which simplifies to O(n).

Practice problem: Runtime of printWords
void printWord(string word) {
 for (int i = 0; i < 10; i++) {
 cout << word << endl;
 }
}

int printWords(Vector<string> words) {
 for (string word: words) {
 printWord(word);
 }
}

81

If printWords takes 30s to run for a
Vector with 1 million elements, how

long will it take for a Vector with
4 million elements?

Practice problem: Runtime of printWords
void printWord(string word) {
 for (int i = 0; i < 10; i++) {
 cout << word << endl;
 }
}

int printWords(Vector<string> words) {
 for (string word: words) {
 printWord(word);
 }
}

82

120s.
For a function with O(n) runtime,

runtime scales linearly with input size.

Practice problem: Runtime of reverseVec
Vector<int> reverseVec(Vector<int> vec) {

 Vector<int> result;

 int n = vec.size();

 for (int i = 0; i < n; i++) {

 int elem = vec.remove(0);

 result.insert(0, elem);

 }

 return result;

}

83

Practice problem: Runtime of reverseVec
Vector<int> reverseVec(Vector<int> vec) {

 Vector<int> result;

 int n = vec.size();

 for (int i = 0; i < n; i++) {

 int elem = vec.remove(0);

 result.insert(0, elem);

 }

 return result;

}

84

For a Vector of size n, we loop
n times.

Within this loop, we remove
and insert, both of which

are O(n).

This is n * O(n) operations,
which simplifies to O(n2).

Practice problem: Runtime of reverseVec
Vector<int> reverseVec(Vector<int> vec) {

 Vector<int> result;

 int n = vec.size();

 for (int i = 0; i < n; i++) {

 int elem = vec.remove(0);

 result.insert(0, elem);

 }

 return result;

}

85

For a Vector of size n, we loop
n times.

Within this loop, we remove
and insert, both of which

are O(n).

This is n * O(n) operations,
which simplifies to O(n2).

Practice problem: Runtime of reverseVec
Vector<int> reverseVec(Vector<int> vec) {

 Vector<int> result;

 int n = vec.size();

 for (int i = 0; i < n; i++) {

 int elem = vec.remove(0);

 result.insert(0, elem);

 }

 return result;

}

86

For a Vector of size n, we loop
n times.

Within this loop, we remove
and insert, both of which

are O(n).

This is n * O(n) operations,
which simplifies to O(n2).

Practice problem: Runtime of reverseVec
Vector<int> reverseVec(Vector<int> vec) {

 Vector<int> result;

 int n = vec.size();

 for (int i = 0; i < n; i++) {

 int elem = vec.remove(0);

 result.insert(0, elem);

 }

 return result;

}

87

If reverseVec takes 5ms to run
for a Vector with 100,000 elements,

how long will it take for a Vector
with 200,000 elements?

Practice problem: Runtime of reverseVec
Vector<int> reverseVec(Vector<int> vec) {

 Vector<int> result;

 int n = vec.size();

 for (int i = 0; i < n; i++) {

 int elem = vec.remove(0);

 result.insert(0, elem);

 }

 return result;

}

88

20ms.
For a function with O(n2) runtime,

doubling input size quadruples runtime.

Recursion

89

What is recursion?

• A problem-solving technique in which

tasks are completed by reducing them

into repeated, smaller tasks of the same

form.

• The function calls itself and every time,

the problem becomes a little smaller

90

Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly

• Recursive case
• More complex version of the problem that cannot be directly answered

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the

problem for you!

91

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.

2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance

of the same problem, and make progress towards the base case.

92

Three “Musts” of Recursion

93

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

1. Your code must have a case

for all valid inputs.

2. You must have a base case

that does not make

recursive calls.

3. When you make a recursive

call it should be to a simpler

instance of the same

problem, and make progress

towards the base case.

Recursive vs Iterative Methods

94

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5, time = 5.823 ms

n = 100,000, time = 8.703 ms

n = 1,000,000, “segmentation fault”

n = 5, time = 5.485 ms

n = 100,000, time = 5.589 ms

n = 1,000,000, time = 7.501 ms

Iteration + Recursion

• It’s completely reasonable to mix iteration and recursion in the

same function.

• Recursion doesn’t mean “the absence of iteration.” It just means

“solving a problem by solving smaller copies of that same

problem.”

• Iteration and recursion can be very powerful in combination!

95

Big-O of Recursive Functions

Depends on:

• Big-O of each execution of the function

• Number of recursive calls

96

Factorial, Revisited

97

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

Factorial, Revisited

98

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

What’s the runtime of one
call to factorial?

Factorial, Revisited

99

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

O(1)
All of these operations

(comparison, multiplication) are
constant time.

Factorial, Revisited

100

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

How many times does
factorial get called?

Factorial, Revisited

101

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

O(n) times
We decrease n by 1 each recursive
call, so it takes n recursive calls to

get down to the base case.

Factorial, Revisited

102

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

What’s the runtime of factorial?
O(1) * O(n) = O(n)

Fractal

• Any repeated, graphical pattern

• Composed of repeated instances of the same shape or pattern,

arranged in a structured way

103

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size
3. It has a different orientation
4. It has a different order

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

Why do we use recursion?

• Elegant
• Some problems have beautiful, concise recursive solutions

• Ex: Towers of Hanoi

• Efficient
• Recursive solutions can have faster runtimes

• Ex: Binary Search

105

• We have a sorted Vector of integers and want to find some target

• Binary search over some range of sorted elements:
• Choose element in the middle of the range

• If this element is our target, success!

• If element is less than our target, do binary search to the right

• If element is greater than our target, do binary search to the left

Binary Search

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

106

Runtime of Binary Search

• We’re searching through N elements and eliminating half until only

one element remains:
• 1000 pages → 500 pages → 250 pages → … → 1 page

• N → N/2 → N/4 → … → 2 → 1

• How many steps does it take to get from N down to 1?
• Let’s think of it this way: 1 → 2 → … → N/4 → N/2 → N

• Number of times we multiply by 2 to get to N

107

Runtime of Binary Search

• We’re searching through N elements and eliminating half until only

one element remains:
• 1000 pages → 500 pages → 250 pages → … → 1 page

• N → N/2 → N/4 → … → 2 → 1

• How many steps does it take to get from N down to 1?
• Let’s think of it this way: 1 → 2 → … → N/4 → N/2 → N

• Number of times we multiply by 2 to get to N

If x is the number of times we multiply by 2 to get N…
2x = N

x = log2N

108

Runtime of Binary Search

• Faster than O(n), since it’s faster than a linear search

• Slower than O(1), since it takes longer for larger input sizes

• It’s O(log n)

Constant Logarithmic Linear n log n Quadratic Polynomial Exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk)
k ≥ 1

O(an)
a > 1

109

Approaching recursive problems

• Look for self-similarity.

• Try out an example.
• Work through a simple example and then increase the complexity.

• Think about what information needs to be “stored” at each step in the

recursive case

• Ask yourself:
• What is the base case? (What is the simplest case?)

• What is the recursive case? (What pattern of self-similarity do you see?)

110

Practice Problem #1
Write a recursive function named replaceAll that accepts three parameters:

1. a string s
2. a char from
3. a char to

This function returns a new string that is the same as s but with any occurrences of from changed to to.

Your function is case-sensitive; if the character from is, for example, a lowercase 'f', your function should not
replace uppercase 'F' characters. In other words, you should not need to write code to handle case issues in this
problem.

Additional stipulations:

• Do not use any loops; you must use recursion.
• Do not declare any global variables.
• Do not call any of the following string functions: find, rfind, indexOf, contains, replace,

split. (The point of this problem is to solve it recursively; do not use a library function to get around
recursion.)

• Do not use any auxiliary data structures like Vector, Map, Set, array, etc.

111

Practice Problem #1 - Example

The call of replaceAll("crazy raccoons", 'c', 'k')

should return "krazy rakkoons".

The call of replaceAll("BANANA", 'A', 'O') should return

"BONONO".

112

Practice Problem #1 - Solution 1

string replaceAll(string s, char from, char to) {
if (s.empty()) {

return s;
} else {

char first = s[0];
string rest = s.substr(1);
if (first == from) {

first = to;
}
return first + replaceAll(rest, from, to);

}
}

113

Practice Problem #2 - Solution 2

string replaceAll(string s, char from, char to) {
if (s == "") {

return s;
} else if (s[0] == from) {

return to + replaceAll(s.substr(1), from, to);
} else {

return s[0] + replaceAll(s.substr(1), from,
to);
}

}

114

Practice Problem #2
Write a recursive function named removeEvens that accepts a Stack of integers and an integer K as
parameters and removes the first K even numbers starting from the top of the stack, leaving all other
elements present in the same relative order. You should also return the number of elements that were
removed.

• If the stack does not contain K even values, remove as many evens as you can and return the
number that were removed.

• If the stack does not contain any elements with even values, the stack should not be modified
and you should return 0

Additional stipulations:

• Do not use any loops; you must use recursion.
• Do not use any auxiliary data structures like Stack, Queue, Vector, Map, Set, array, string, etc.

This includes making a "backup" of the stack passed as a parameter, or passing it by value to
copy it.

• Do not declare any global variables.

115

Practice Problem #2 - Example

Consider a stack named stack that contains the following elements:

(bottom) {8, 1, 4, 9, 5, 2, 6, 7, 12} (top)

The call of removeEvens(stack, 3) should remove the 3 even element
values closest to the top of the stack, which are 12, 6, and 2. The stack's
contents after the call should be {8, 1, 4, 9, 5, 7} and the function
should return 3.

if the call were removeEvens(stack, 7), there are not 7 even values in
the stack, but you should remove all five even values, 12, 6, 2, 4, and 8,
leaving the stack storing {1, 9, 5, 7}. You would return 5.

116

Practice Problem #2 - Solution

int removeEvens(Stack<int>& stack, int k) {
if (stack.isEmpty() || k <= 0) {

return 0;
} else {

int top = stack.pop();
if (top % 2 == 0) {

// even value; remove from stack, count toward 'k'
return 1 + removeEvens(stack, k - 1);

} else {
// odd value; keep in stack, recur on rest of stack for evens
int result = removeEvens(stack, k);
stack.push(top);
return result;

}
}

}

117

Good luck on the midterm!
You can do this!!

118

