Recursive Problem Solving

Elyse Cornwall
July 12th, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements

e HW1 IGs this week

 Midterm exam next Monday
* Find all logistics and practice material here
e Today is the last lecture covered on the midterm
* Thursday and Friday optional review

* No class on Monday
* First part of Assignment 3 released Friday (helpful recursion practice)

* Rest of assignment comes out after the midterm

2
Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/

Roadmap

Abstract Data
Structures

Core

++
Tools €

Wow, we’ve made lots of progress!

Object-Oriented Memory
Programming Management
Linked Advanced
Data Algorithms
Structures

Algorithmic
Analysis 3

Stanford University

(Sidibou discovers fractals)

Fractals Recap

4
Stanford University

Fractal

* Any repeated, graphical pattern
 Composed of repeated instances of the same shape or pattern,
arranged in a structured way

>pbH
< R
CHAIEI

o S ()
IR

5
Stanford University

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position

2. It has a different size

3. It has a different orientation
4. It has a different

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

Stanford University

lteration + Recursion

* It’s completely reasonable to mix iteration and recursion in the
same function.

* Recursion doesn’t mean “the absence of iteration.” It just means
“solving a problem by solving smaller copies of that same
problem.”

* [teration and recursion can be very powerful in combination!

7
Stanford University

Why do we use recursion?

Stanford University

Why do we use recursion?

* Elegant
* Some problems have beautiful, concise recursive solutions
» Efficient

* Recursive solutions can have faster runtimes
* Dynamic
* WEe’'ll explore recursive backtracking next week :)

9
Stanford University

An elegant solution:
Tower of Hanoi

10
Stanford University

Tower of Hanoi

* Try playing online!
* https://www.mathsisfun.com/games/towerofhanoi.html
* What strategies do you use? Try getting to 5 disks.

11
Stanford University

https://www.mathsisfun.com/games/towerofhanoi.html

Solving with 3 Disks

3 DISKS

U
Lllcollleldd

Stanford University

Solving with 4 Disks

L1l

Stanford University

Solving with 4 Disks

Al |

Eventually, we need to get this bottom disk over here.

14
Stanford University

Solving with 4 Disks

14|

We’ll need to get the smaller 3 disks out of the way,

15
Stanford University

Solving with 4 Disks

141

Move the bottom piece over...

16
Stanford University

Solving with 4 Disks

114

Then stack the 3 smaller disks on top.

17
Stanford University

Solving with 4 Disks

1. Move tower of 3 disks onto middle peg
2. Move 4th disk over
3. Move tower of 3 disks onto end peg

18
Stanford University

Solving with 4 Disks

1. Move tower of 3 disks onto middle peg
2. Move 4th disk over
3. Move tower of 3 disks onto end peg

We know how to do steps 1 and 3 - same as solving with 3 disks.

Lll—111

Stanford University

Solving with 5 Disks

1. Move tower of 4 disks onto middle peg
2. Move 5th disk over
3. Move tower of 4 disks onto end peg

We know how to do steps 1 and 3 - same as solving with 4 disks.

20
Stanford University

Solving with N Disks

1. Move tower of N-1 disks onto middle peg
2. Move Nth disk over
3. Move tower of N-1 disks onto end peg

21
Stanford University

Tower of Hanoi as a Recursive Process

To solve Tower of Hanoi for N disks:
Solve for N-1 disks (but place on the middle peg)
Move Nth disk over to the end peg
Solve for N-1 disks (but move from middle peg to end peg)

22
Stanford University

Tower of Hanoi as a Recursive Process

To solve Tower of Hanoi for N disks:
Solve for N-1 disks (but place on the middle peg)
Move Nth disk over to the end peg
Solve for N-1 disks (but move from middle peg to end peg)

Is that really it? Let’s code it up! ™

23
Stanford University

Solution

void solveTowers(int n, char start, char end, char aux) {
if (n == 0) {
return;
k;
solveTowers(n-1, start, aux, end);
moveSingleDisk(start, end);

solveTowers(n-1, aux, end, start);

24
Stanford University

An efficient solution:
Binary Search

25
Stanford University

Dictionary Lookups

@ What'’s your algorithm for finding a word in a dictionary?

 Where do you start?
* If the first page you look at doesn’t have the word, how do you proceed?

26
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

27
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 500
Looking up: “toaster”

28
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 500
Looking up: “toaster”

29
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 500
Looking up: “toaster”

30
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 750
Looking up: “toaster”

31
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 750
Looking up: “toaster”

32
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 750
Looking up: “toaster”

33
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 875
Looking up: “toaster”

34
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 875
Looking up: “toaster”

35
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 875
Looking up: “toaster”

36
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 812
Looking up: “toaster”

37
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 812
Looking up: “toaster”

38
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 812
Looking up: “toaster”

39
Stanford University

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 844
Looking up: “toaster”

40
Stanford University

Dictionary Lookups 2o S A

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 844
Looking up: “toaster”

41
Stanford University

@ Was This Efficient?

* How many pages did we have to read to find the answer?
* How many pages would we have to read if we did a linear search
(scanning from beginning to end)?

42
Stanford University

Binary Search

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

43
Stanford University

Binary Search

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 - 8

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

Let’s try to find the number 6 in our Vector

44
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 - 8

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

Too big, look left

45
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 @ 3

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

XN

When there are two middles, we’ll just choose the first one

46
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

0 @ 3

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

Too small, look right

47
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

Lot @ What’s going to happen to our search range?
* Le
What is our new range of indices?

 Can / - . er?

Too small, look right

48
Stanford University

BI Nd ry Sea rc h Let’s try to find the number 6

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

49
Stanford University

Binary Search

* Let’s say we have a sorted Vector of integers
 (Can we use the same algorithm as before to look up a number?

Found it! &: & &
50
Stanford University

Binary Search as a Recursive Process

Binary search over some range of sorted elements:

1. Choose element in the middle of the range

2. If this element is our target, success!

3. If element is less than our target, do binary search to the right

4. |If element is greater than our target, do binary search to the left

51
Stanford University

DEMO: Binary Search

52
Stanford University

Solution

int binarySearchHelper (Vector<int>& v, int target, int start, int end) {
if (start > end) {
return -1;
}
int mid = (start + end) / 2;
int elem = v[mid];
if (elem == target) {
return mid;
} else if (elem < target) {
return binarySearchHelper (v, target, mid + 1, end);
} else {

return binarySearchHelper (v, target, start, mid - 1);

53
Stanford University

@ Was This Efficient?

* How many elements did we have to check to find the answer?
* How many elements would we have to look at if we did a linear
search (scanning from beginning to end)?

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

54
Stanford University

@ Was This Efficient?

* How many elements did we have to check to find the answer?
* How many elements would we have to look at if we did a linear
search (scanning from beginning to end)?

-1 2 6 12 37 | 41 12 88 90

0] 1 2 3 4 5 6 I 8

$ So, is binary search more efficient than linear search?

55
Stanford University

Runtime of Binary Search

 Must be faster than O(n), since it’s faster than a linear search

* Must be slower than O(1), since it takes longer for larger input sizes

Constant | Logarithmic Linear nlogn Quadratic | Polynomial | Exponential
0(n*) 0(a")
0(1) 0(log n) o(n) O(n log n) 0(n?) K> 1 2> 1
56

Stanford University

Runtime of Binary Search

 Must be faster than O(n), since it’s faster than a linear search

* Must be slower than O(1), since it takes longer for larger input sizes

Constant | Logarithmic Linear nlogn Quadratic | Polynomial | Exponential
0(n%) 0(a")
0(1) 0(log n) o(n) O(n log n) 0(n?) K> 1 2> 1

What does a logarithmic runtime look like? |

57
Stanford University

Runtime of Binary Search

 We're searching through N elements and eliminating half until only

one element remains:
* 1000 pages — 500 pages — 250 pages — ... — 1 page
* N—>N2—->N4— .. —-2->1

58
Stanford University

Runtime of Binary Search

 We're searching through N elements and eliminating half until only
one element remains:
* 1000 pages — 500 pages — 250 pages — ... — 1 page
* N—>N2—->N4— .. —-2->1
* How many steps does it take to get from N down to 17
e Let’s think of it thisway: 1 —2 — ... > N/4 —>N/2 —> N
 Number of times we multiply by 2 to get to N

59
Stanford University

Runtime of Binary Search

 We're searching through N elements and eliminating half until only

[aYa¥al nlomnn'l' rnmainc-

If X is the number of times we multiply by 2 to get N...
2 = N

o | x = log,N

* Let’sthink of itthisway:1 —>2 — ... > N/4—>N/2 —>N

 Number of times we multiply by 2 to get to N

60
Stanford University

Runtime of Binary Search

* Binary search has runtime O(log n)
« Common runtime for algorithms that halve search space at every step

Quadratic O(n?)
/ Linear O(n)

Runtime /

____Logarithmic O(log n)

Constant O(1)

/ ? 4 61

Input size (n) Stanford University

#£ Binary search is more efficient than linear

search, in terms of its Big-O runtime.

DEMO: Binary Search Time Trials

62
Stanford University

Big-O of ADT Operations

Vectors Queues Sets

e .size() - 0(1) .size() - 0(1) .size() - 0(1)
.add() - 0(1) .peek() - 0(1) .isEmpty() - 0(1)
v[i] - 0(1) .enqueue() - 0(1) .add() - 222

.insert() - 0(n)
.remove() - 0(n)
.sublist() - 0(n)
traversal - 0(n)

Grids Stacks Maps

.numRows () - 0(1) .size() - 0(1) .size() - 0(1)
.numCols() - 0(1) .peek() - 0(1) .isEmpty() - 0(1)

grid[i1[j] - 0(1) .push() - 0(1) m[key] - 222
.inBounds () - .pop() - O(1) .contains() - 222

O(l) X
_ 2 .isEmpty() - 0(1) traversal - 0(n)
traversal 0(n*) traversal - 0(n)

.dequeue() - 0(1)
.isEmpty() - 0(1)
traversal - 0(n)

.remove() - 222
.contains() 2??
traversal - 0(n)

63
Stanford University

Big-O of ADT Operations

Vectors Queues Sets
. -S;§?§) _O?§§) .size() - 0(1) .size() - 0(1)
.a - _ : -
V5 o) .peek () 0(1) .isEmpty () 0(1)

.add() - 0(log n)
.remove() - 0(log n)
.contains() - 0(log n)
traversal - 0(n)

.enqueue() - 0(1)
.dequeue() - 0(1)
isEmpty () - 0(1)
traversal - 0(n)

.insert() - 0(n)
.remove() - 0(n)
.sublist() - 0(n)
traversal - 0(n)

Grids Stacks Maps

.numRows () - 0(1) .size() - 0(1) .size() - 0(1)
.numCols() - 0(1) .peek() - 0(1) .isEmpty () - 0(1)

grid[i113] - 0(1) .push() - 0(1) m[key] - 0(log n)
.inBounds () - .pop() - 0(1) .contains() - 0(log n)

O(l) X
_ 2 .isEmpty() - 0(1) traversal - 0(n)
traversal 0(n*) traversal - 0(n)

64
Stanford University

Big-O of ADT Operations

Vectors Queues Sets
. 'S;ée() - 0(1) e .size() - 0(1) - .size() - 0(1)
e .ac (Z 6 g(l) e .peek() - 0(1) e .isEmpty() - 0(1)
* V_[-l:l (1) o enaueue() — 0(1) e .add() - O('l,og n)
: y :) e« .remove() - O(log n)
X n Behind the scenes, Sets and Maps use)« .contains() - 0(log n)
. tif binary search to find elements! e traversal - 0(n)
Grids Maps
e .1 . e .size() - 0(1)
. .| Moreon that later in the course... .« .isEmpty() - 0(1)
. gIIELIJéJ%) A e .push() - O(I) . m[key].— O(log n)
. O}g)oun S e .pop() - 0(1) e .contains() - 0(log n)
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal - 0(n)
e traversal - 0(n)

65
Stanford University

Big-O of Recursive Functions

66
Stanford University

Big-O of Recursive Functions

Depends on:

* Big-O of each execution of the function
e Number of recursive calls

67
Stanford University

main() ne
Factorial, Revisited .
factorial() n 5
Tt MmN (\ s
£ .
1nt fartonrial (1t n) [aCtor-Ia-L() n 4
nt fartonrial (At)Y S factor-ia-l_() n 3
nt factordal (dnt n) [
ot _factordal (dnt n) [factor'lal() n 2
S ctorial() n 1
; int factorial (int n) {
J I .
] if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text 63
} Stanford University

main() ne
Factorial, Revisited .
factorial() n 5
O T NN AL W § .
LA factorial() n 4
.. @ What’s the runtn?ve of factorial() n: | s
one call to factorial?
ot factordal (0t n) [T factor'lal() n 2
S ctorial() n 1
; int factorial (int n) {
] I .
1 if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text 69
} Stanford University

main() o
Factorial, Revisited .
factorial() n 5
|
L C)(l)] factorial() n 4
L All qfthese op.er.atlo'ns factorial() n:| 1
(comparison, multiplication) are
constant time. factorial() n:|
e E— ctorial() n 1
; int factorial (int n) {
'] if (n == 0) { ctorial() n 0
i return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text 70
} Stanford University

main() ne
Factorial, Revisited .
factorial() n 5
O T NN AL W § .
LA factorial() n 4
.| @& How many times does factorial() m:| s
factorial get called?
ot factordal (0t n) [T factor'lal() n 2
N ctorial() n 1
; int factorial (int n) {
] I .
] if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text 7
} Stanford University

main() ne
Factorial, Revisited .
factorial() n 5
|
L 0(n) times factorial() n 4
| We decr.ease nby 1 eacl? recursive factorial() n:| 1
call, so it takes n recursive calls to
get down to the base case.] factorial() n:|
e —— torial() n 1
; int factorial (int n) {
] I .
] if (n == 0) { ctorial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text 72
} Stanford University

main() ne
Factorial, Revisited .
factorial() p 5
1
". — factorial() n:| 4
nt
’ - 1 ?
.| What’s the runtime of factorial: factorial() n: | ,
0(1) * 0(n) = 0O(n)
_] factorial() n 5
~ , .« 4 AR A\ c _,tor-ia-l-() n 1
; int factorial (int n) {
J 1 i f (n —— @) { :tor‘ial() n 0
. return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text 73
} Stanford University

Recap

 Tower of Hanoi: Elegant
* Recursive approach is much cleaner than the iterative one
* Binary search: Efficient
* Allows us to find elements from a sorted collection in O(log n) time
* Calculating Big-O of recursive functions
* Think about the function’s runtime and the number of recursive calls

74
Stanford University

See you tomorrow (optionally)!

CETERETET T

