
Recursive Problem Solving
Elyse Cornwall

July 12th, 2023

Contributions made from previous CS106B Instructors

Announcements

• HW1 IGs this week

• Midterm exam next Monday

• Find all logistics and practice material here

• Today is the last lecture covered on the midterm

• Thursday and Friday optional review

• No class on Monday

• First part of Assignment 3 released Friday (helpful recursion practice)
• Rest of assignment comes out after the midterm

2

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

3

Algorithmic
Analysis

Recursion

Wow, we’ve made lots of progress!

Fractals Recap

(Sidibou discovers fractals)

4

Fractal

• Any repeated, graphical pattern

• Composed of repeated instances of the same shape or pattern,

arranged in a structured way

5

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size
3. It has a different orientation
4. It has a different order

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

Iteration + Recursion

• It’s completely reasonable to mix iteration and recursion in the

same function.

• Recursion doesn’t mean “the absence of iteration.” It just means

“solving a problem by solving smaller copies of that same

problem.”

• Iteration and recursion can be very powerful in combination!

7

Why do we use recursion?

8

Why do we use recursion?

• Elegant
• Some problems have beautiful, concise recursive solutions

• Efficient
• Recursive solutions can have faster runtimes

• Dynamic
• We’ll explore recursive backtracking next week :)

9

An elegant solution:
Tower of Hanoi

10

Tower of Hanoi

• Try playing online!
• https://www.mathsisfun.com/games/towerofhanoi.html

• What strategies do you use? Try getting to 5 disks.

11

https://www.mathsisfun.com/games/towerofhanoi.html

Solving with 3 Disks

12

Solving with 4 Disks

13

Solving with 4 Disks

Eventually, we need to get this bottom disk over here.
14

Solving with 4 Disks

We’ll need to get the smaller 3 disks out of the way,
15

Solving with 4 Disks

Move the bottom piece over…
16

Solving with 4 Disks

Then stack the 3 smaller disks on top.
17

Solving with 4 Disks

1. Move tower of 3 disks onto middle peg

2. Move 4th disk over

3. Move tower of 3 disks onto end peg

18

Solving with 4 Disks

1. Move tower of 3 disks onto middle peg

2. Move 4th disk over

3. Move tower of 3 disks onto end peg

We know how to do steps 1 and 3 - same as solving with 3 disks.

19

Solving with 5 Disks

1. Move tower of 4 disks onto middle peg

2. Move 5th disk over

3. Move tower of 4 disks onto end peg

We know how to do steps 1 and 3 - same as solving with 4 disks.

20

Solving with N Disks

1. Move tower of N-1 disks onto middle peg

2. Move Nth disk over

3. Move tower of N-1 disks onto end peg

21

Tower of Hanoi as a Recursive Process

To solve Tower of Hanoi for N disks:

Solve for N-1 disks (but place on the middle peg)

Move Nth disk over to the end peg

Solve for N-1 disks (but move from middle peg to end peg)

22

Tower of Hanoi as a Recursive Process

To solve Tower of Hanoi for N disks:

Solve for N-1 disks (but place on the middle peg)

Move Nth disk over to the end peg

Solve for N-1 disks (but move from middle peg to end peg)

Is that really it? Let’s code it up! 💻

23

Solution

void solveTowers(int n, char start, char end, char aux) {
 if (n == 0) {
 return;
 }
 solveTowers(n-1, start, aux, end);
 moveSingleDisk(start, end);
 solveTowers(n-1, aux, end, start);
}

24

An efficient solution:
Binary Search

25

Dictionary Lookups

👥 What’s your algorithm for finding a word in a dictionary?

• Where do you start?

• If the first page you look at doesn’t have the word, how do you proceed?

26

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

27

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 500
Looking up: “toaster”

28

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 500
Looking up: “toaster”

“midterm”

29

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 500
Looking up: “toaster”

Look right

30

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 750
Looking up: “toaster”

31

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 750
Looking up: “toaster”

“recursion”

32

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 750
Looking up: “toaster”

Look right

33

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 875
Looking up: “toaster”

34

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 875
Looking up: “toaster”

“vector”

35

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 875
Looking up: “toaster”

Look left

36

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 812
Looking up: “toaster”

37

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 812
Looking up: “toaster”

“tedious”

38

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 812
Looking up: “toaster”

Look right

39

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 844
Looking up: “toaster”

40

Dictionary Lookups

1. Open the dictionary to somewhere in the middle

2. If the word isn’t on this page, look left or right
a. Repeat step 2 until the word is found

Total pages: 1000
Current page: 844
Looking up: “toaster”

“toaster”

🎉🎉🎉

41

👥 Was This Efficient?

• How many pages did we have to read to find the answer?

• How many pages would we have to read if we did a linear search

(scanning from beginning to end)?

42

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

43

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Let’s try to find the number 6 in our Vector

0 8

44

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

Too big, look left

0 8

Let’s try to find the number 6

45

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

When there are two middles, we’ll just choose the first one

Let’s try to find the number 6

46

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Too small, look right

Let’s try to find the number 6

47

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

0 3

Too small, look right

👥 What’s going to happen to our search range?

What is our new range of indices?

Let’s try to find the number 6

48

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Let’s try to find the number 6

49

Binary Search

• Let’s say we have a sorted Vector of integers

• Can we use the same algorithm as before to look up a number?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

2 3

Found it! 🎉🎉🎉
50

Binary Search as a Recursive Process

Binary search over some range of sorted elements:

1. Choose element in the middle of the range

2. If this element is our target, success!

3. If element is less than our target, do binary search to the right

4. If element is greater than our target, do binary search to the left

51

DEMO: Binary Search

52

Solution

int binarySearchHelper(Vector<int>& v, int target, int start, int end) {

 if (start > end) {

 return -1;

 }

 int mid = (start + end) / 2;

 int elem = v[mid];

 if (elem == target) {

 return mid;

 } else if (elem < target) {

 return binarySearchHelper(v, target, mid + 1, end);

 } else {

 return binarySearchHelper(v, target, start, mid - 1);

 }

}
53

👥 Was This Efficient?

• How many elements did we have to check to find the answer?

• How many elements would we have to look at if we did a linear

search (scanning from beginning to end)?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

54

👥 Was This Efficient?

• How many elements did we have to check to find the answer?

• How many elements would we have to look at if we did a linear

search (scanning from beginning to end)?

-1 2 6 12 37 41 72 88 90

0 1 2 3 4 5 6 7 8

🎟 So, is binary search more efficient than linear search?
55

Runtime of Binary Search

• Must be faster than O(n), since it’s faster than a linear search

• Must be slower than O(1), since it takes longer for larger input sizes

Constant Logarithmic Linear n log n Quadratic Polynomial Exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk)
k ≥ 1

O(an)
a > 1

56

Runtime of Binary Search

• Must be faster than O(n), since it’s faster than a linear search

• Must be slower than O(1), since it takes longer for larger input sizes

Constant Logarithmic Linear n log n Quadratic Polynomial Exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk)
k ≥ 1

O(an)
a > 1

What does a logarithmic runtime look like? 🪵
57

Runtime of Binary Search

• We’re searching through N elements and eliminating half until only

one element remains:
• 1000 pages → 500 pages → 250 pages → … → 1 page

• N → N/2 → N/4 → … → 2 → 1

58

Runtime of Binary Search

• We’re searching through N elements and eliminating half until only

one element remains:
• 1000 pages → 500 pages → 250 pages → … → 1 page

• N → N/2 → N/4 → … → 2 → 1

• How many steps does it take to get from N down to 1?
• Let’s think of it this way: 1 → 2 → … → N/4 → N/2 → N

• Number of times we multiply by 2 to get to N

59

Runtime of Binary Search

• We’re searching through N elements and eliminating half until only

one element remains:
• 1000 pages → 500 pages → 250 pages → … → 1 page

• N → N/2 → N/4 → … → 2 → 1

• How many steps does it take to get from N down to 1?
• Let’s think of it this way: 1 → 2 → … → N/4 → N/2 → N

• Number of times we multiply by 2 to get to N

If x is the number of times we multiply by 2 to get N…
2x = N

x = log2N

60

Runtime of Binary Search

• Binary search has runtime O(log n)
• Common runtime for algorithms that halve search space at every step

Input size (n)

Runtime

Constant O(1)

Logarithmic O(log n)

Linear O(n)
Quadratic O(n2)

61

DEMO: Binary Search Time Trials

🎟 Binary search is more efficient than linear

search, in terms of its Big-O runtime.

62

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

63

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - ???
• .remove() - ???
• .contains() ???
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - ???
• .contains() - ???
• traversal - O(n)

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

64

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

65

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() - O(1)
• .isEmpty() - O(1)
• .add() - O(log n)
• .remove() - O(log n)
• .contains() - O(log n)
• traversal - O(n)
 Maps

• .size() - O(1)
• .isEmpty() - O(1)
• m[key] - O(log n)
• .contains() - O(log n)
• traversal - O(n)

Behind the scenes, Sets and Maps use

binary search to find elements!

More on that later in the course…

Big-O of Recursive Functions

66

Big-O of Recursive Functions

Depends on:

• Big-O of each execution of the function

• Number of recursive calls

67

Factorial, Revisited

68

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

Factorial, Revisited

69

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

👥 What’s the runtime of
one call to factorial?

Factorial, Revisited

70

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

O(1)
All of these operations

(comparison, multiplication) are
constant time.

Factorial, Revisited

71

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

👥 How many times does
factorial get called?

Factorial, Revisited

72

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

O(n) times
We decrease n by 1 each recursive
call, so it takes n recursive calls to

get down to the base case.

Factorial, Revisited

73

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

What’s the runtime of factorial?
O(1) * O(n) = O(n)

Recap

• Tower of Hanoi: Elegant
• Recursive approach is much cleaner than the iterative one

• Binary search: Efficient
• Allows us to find elements from a sorted collection in O(log n) time

• Calculating Big-O of recursive functions
• Think about the function’s runtime and the number of recursive calls

74

See you tomorrow (optionally)!

📚💻🖨☕📖📓📚📝✍📜

75

