
Recursive Fractals
Amrita Kaur

July 11, 2023

Contributions made from previous CS106B Instructors

Week 2 Feedback

2

Week 2 Feedback
Things you liked:

“Everything has been so fun so far! Keep up the same stuff.”

“The live coding examples were extremely helpful”

“I like that you guys have started to do more recapping. That makes it
easier to catch up and is a good reminder to what we did last time.”

“I love the slides and I would love if you can keep doing it”

“increased opportunities to discuss with each other”

“Haven't ran into any issues that needed help but I feel like all the
resources are there.”

3

Week 2 Feedback

Places we can improve:

“occasional interactive larger pieces of code where the class can give

suggestions”

“It would be good if you could repeat the question that students asked

so that those watching the recording can hear the questions more

clearly.”

4

Week 2 Feedback

We hear you…

“Feedback form is really long :(”

“Not running too much over 2:30”

5

Week 2 Feedback

Assignment Feedback:

“Solving the first assignment was super fulfilling & I didn't require any

additional assistance or clarification. I think that goes to show the

effort that’s gone into setting up the assignment.”

“I loved how, almost immediately, I was able to use my C++ skills to

implement algorithms that are commonly used in the real world.”

“I wish there was more required coding than short answer”

6

Week 2 Feedback

Anything else you would like us to know:

“Keep up the good work, the course is super engaging and interesting

so far”

“You rock!”

“I ate pancakes this morning.”

“the fairlife protein shakes are the best I've ever had. They taste just

like the boxed horizon milk I used to drink.”

7

Announcements and Reminders

• Assignment 2 due Friday at 11:59pm
• Use your help resources!

8

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

9

Algorithmic
Analysis

Recursion

What is recursion?

• A problem-solving technique in which tasks are completed by

reducing them into repeated, smaller tasks of the same form.

• Powerful substitution for iteration (loops)
• Start by seeing the difference between iterative vs. recursive solutions

• Later will see problems that can only be solved by recursion

• Results in elegant, often shorter code

• In programming, it means that the function calls itself
• Every time the function is called, the problem becomes a little smaller

10

Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly

• Recursive case
• More complex version of the problem that cannot be directly answered

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the

problem for you!

11

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.

2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance

of the same problem, and make progress towards the base case.

12

Computer Memory

• Computer’s memory is like a giant vector

• Like a vector, we can index memory starting

from 0.

• We draw memory vertically with index 0 at

the bottom

• Typical laptop’s memory has billions of these

indexed slots (one byte each)

13

0

8,000,000,000

…
…
…

Text

Computer Memory

Divide memory in a few main regions

• Text: program’s own code

• Heap: where dynamically allocated memory

resides

• Stack: where local variables for each

function are stored

14

0

Heap

Stack

Stack Frames

15

Text
0

Heap

main()
1.06weight:

tripleWeight()

3.18weight:

The “stack” part of memory

is a stack!

• A function call pushes a

stack frame onto the stack

• A function return pops a

stack frame from the stack

Recursive vs Iterative Methods

16

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5, time = 5.823 ms

n = 100,000, time = 8.703 ms

n = 1,000,000, “segmentation fault”

n = 5, time = 5.485 ms

n = 100,000, time = 5.589 ms

n = 1,000,000, time = 7.501 ms

Approaching recursive problems

• Look for self-similarity.

• Try out an example.
• Work through a simple example and then increase the complexity.

• Think about what information needs to be “stored” at each step in the

recursive case

• Ask yourself:
• What is the base case? (What is the simplest case?)

• What is the recursive case? (What pattern of self-similarity do you see?)

17

Palindromes

18

Is it a Palindrome?

• Write a function isPalindrome() that returns true or false
based on if a string is a palindrome or not.

• A string is a palindrome if it reads the same forwards and
backwards.

• isPalindrome(“racecar”) = true
• isPalindrome(“noon”) = true
• isPalindrome(“step on no pets”) = true
• isPalindrome(“pindrop”) = false
• isPalindrome(“yo”) = false
• isPalindrome(“palindrome”) = false
• isPalindrome(“X”) = true
• isPalindrome(“”) = true

19

isPalindrome()

Look for self-similarity: “racecar”

20

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

21

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

• Check if “aceca” is a palindrome

22

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

• Check if “aceca” is a palindrome

• Look at the first and last letters of “aceca” → both are ‘a’

23

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

• Check if “aceca” is a palindrome

• Look at the first and last letters of “aceca” → both are ‘a’

• Check if “cec” is a palindrome

24

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

• Check if “aceca” is a palindrome

• Look at the first and last letters of “aceca” → both are ‘a’

• Check if “cec” is a palindrome

• Look at the first and last letters of “cec” → both are ‘c’

25

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

• Check if “aceca” is a palindrome

• Look at the first and last letters of “aceca” → both are ‘a’

• Check if “cec” is a palindrome

• Look at the first and last letters of “cec” → both are ‘c’

• Check if “e” is a palindrome

26

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

• Check if “aceca” is a palindrome

• Look at the first and last letters of “aceca” → both are ‘a’

• Check if “cec” is a palindrome

• Look at the first and last letters of “cec” → both are ‘c’

• Check if “e” is a palindrome

• “e” is a palindrome

27

isPalindrome()

Look for self-similarity: “racecar”

• Look at the first and last letters of “racecar” → both are ‘r’

• Check if “aceca” is a palindrome

• Look at the first and last letters of “aceca” → both are ‘a’

• Check if “cec” is a palindrome

• Look at the first and last letters of “cec” → both are ‘c’

• Check if “e” is a palindrome

• Base Case: “e” is a palindrome

28

isPalindrome()

Look for self-similarity: “noon”

29

isPalindrome()

Look for self-similarity: “noon”

• Look at the first and last letters of “noon” → both are ‘n’

30

isPalindrome()

Look for self-similarity: “noon”

• Look at the first and last letters of “noon” → both are ‘n’

• Check if “oo” is a palindrome

31

isPalindrome()

Look for self-similarity: “noon”

• Look at the first and last letters of “noon” → both are ‘n’

• Check if “oo” is a palindrome

• Look at the first and last letters of “oo” → both are ‘o’

32

isPalindrome()

Look for self-similarity: “noon”

• Look at the first and last letters of “noon” → both are ‘n’

• Check if “oo” is a palindrome

• Look at the first and last letters of “oo” → both are ‘o’

• Check if “” is a palindrome

33

isPalindrome()

Look for self-similarity: “noon”

• Look at the first and last letters of “noon” → both are ‘n’

• Check if “oo” is a palindrome

• Look at the first and last letters of “oo” → both are ‘o’

• Check if “” is a palindrome

• “” is a palindrome

34

isPalindrome()

Look for self-similarity: “noon”

• Look at the first and last letters of “noon” → both are ‘n’

• Check if “oo” is a palindrome

• Look at the first and last letters of “oo” → both are ‘o’

• Check if “” is a palindrome

• Base Case: “” is a palindrome

35

isPalindrome()

Base Case:

Odd number of letters:

isPalindrome(string of length 1) = true

Even number of letters:

isPalindrome(“”) = true

36

isPalindrome()

Base Case:

Odd number of letters:

isPalindrome(string of length 1) = true

Even number of letters:

isPalindrome(“”) = true

Recursive Case:

37

isPalindrome()

Base Case:

Odd number of letters:

isPalindrome(string of length 1) = true

Even number of letters:

isPalindrome(“”) = true

Recursive Case:

If the first and last letters are the same,

isPalindrome(string) = isPalindrome(string minus first and last letters)

38

isPalindrome()

Look for self-similarity: “pindrop”

39

isPalindrome()

Look for self-similarity: “pindrop”

• Look at the first and last letters of “pindrop” → both are ‘p’

40

isPalindrome()

Look for self-similarity: “pindrop”

• Look at the first and last letters of “pindrop” → both are ‘p’

• Check if “indro” is a palindrome

41

isPalindrome()

Look for self-similarity: “pindrop”

• Look at the first and last letters of “pindrop” → both are ‘p’

• Check if “indro” is a palindrome

• Look at the first and last letters of “indro” → not equal

42

isPalindrome()

Look for self-similarity: “pindrop”

• Look at the first and last letters of “pindrop” → both are ‘p’

• Check if “indro” is a palindrome

• Look at the first and last letters of “indro” → not equal

• Return false

43

isPalindrome()

Look for self-similarity: “pindrop”

• Look at the first and last letters of “pindrop” → both are ‘p’

• Check if “indro” is a palindrome

• Look at the first and last letters of “indro” → not equal

• Base Case: Return false

44

isPalindrome()

Base Case:

isPalindrome(string of length 1) = true

isPalindrome(“”) = true

isPalindrome(string where first and last letters aren’t equal) = false

Recursive Case:

If the first and last letters are the same,

isPalindrome(string) = isPalindrome(string minus first and last letters)

45

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

46

code here

https://cplayground.com/?p=dragon-caterpillar-okapi

isPalindrome() in action

47

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

isPalindrome() in action

48

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

isPalindrome() in action

49

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome() in action

50

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome() in action

51

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

52

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

isPalindrome() in action

53

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

isPalindrome() in action

54

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

isPalindrome() in action

55

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

isPalindrome() in action

56

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

isPalindrome() in action

57

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

58

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

59

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

60

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

61

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

62

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

63

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

64

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

65

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

66

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

67

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

68

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

69

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “e”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

70

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “e”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

71

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “e”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome() in action

72

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “e”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

T

isPalindrome() in action

73

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

T

isPalindrome() in action

74

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

T

true

isPalindrome() in action

75

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

isPalindrome()
s: “cec”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

T

true

isPalindrome() in action

76

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

T

isPalindrome() in action

77

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

T

true

isPalindrome() in action

78

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

isPalindrome()
s: “aceca”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

T

true

isPalindrome() in action

79

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

T

isPalindrome() in action

80

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”

T

true

isPalindrome() in action

81

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

isPalindrome()

bool isPalindrome(string s) {
if (s.length() <= 1) {

return true;
} else {

if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1, s.length() - 2));

}
}

s: “racecar”
T

true

isPalindrome() in action

82

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

T

isPalindrome() in action

83

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

T

true

Console:

isPalindrome() in action

84

int main () {
cout << boolalpha <<

isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;
}

Heap, Text0

main()

true

Console:

isPalindrome() in action

85

Heap, Text0

true

Console:

Visual Representations
of Recursion

86

Self-Similarity

• Solving problems recursively and analyzing recursive phenomena

involves identifying self-similarity

• An object is self-similar if it contains a smaller copy of itself

• Shows up in many real-world objects and phenomena

87

Recursion in nature

88

Fractal

• Any repeated, graphical pattern

• Composed of repeated instances of the same shape or pattern,

arranged in a structured way

89

Fractal

• Any repeated, graphical pattern

• Composed of repeated instances of the same shape or pattern,

arranged in a structured way

90

The set is defined in the complex
plane as complex numbers c for
which the function f_c(z) = z^2 + c
does not diverge to infinity when
iterated starting at z=0

Understanding Fractal Structure

91

92

93

94

95

96

What differentiates the smaller
tree from the bigger one?

97

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position

98

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position

99

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size

100

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size

101

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size
3. It has a different orientation

102

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size
3. It has a different orientation

103

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size
3. It has a different orientation
4. It has a different order

104

What differentiates the smaller
tree from the bigger one?
1. It’s at a different position
2. It has a different size
3. It has a different orientation
4. It has a different order

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

105

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

Order-0 tree

An order-0 tree is nothing.

106

Order-1 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

107

Order-2 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

108

Order-3 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

109

Order-4 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

110

Order-11 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

111

Order-3 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the order, which
indicates the complexity of the
overall structure.

An order-0 tree is nothing.

An order-n tree is a line with two
smaller order-(n-1) trees starting at
the end of the line.

112

Order-11 tree

We drew this tree recursively!

Each recursive call just draws
one branch. The sum total of all
the recursive calls draws the
whole tree.

Aside on Graphics

113

Graphics in CS106B

• Creating graphical programs is not one of our main focuses in this

class, but we need to know how to work with graphical programs

to code up some fractals of our own

• Stanford C++ libraries provide extensive capabilities to create

custom graphical programs
• Full documentation can be found here

• We will abstract away almost all of the complexity for you via

provided helper functions
• Main components you need to know: GWindow and GPoint

114

https://cs.stanford.edu/people/eroberts/StanfordCPPLib/doc/

GWindow
115

• An abstraction for the graphical

window upon which we will do all of

our drawing.

GWindow
116

• An abstraction for the graphical

window upon which we will do all of

our drawing.

• The window defines a coordinate

system of x-y values

GWindow
117

(0, 0)

• An abstraction for the graphical

window upon which we will do all of

our drawing.

• The window defines a coordinate

system of x-y values
• Top left corner is (0, 0)

GWindow
118

(0, 0)
Increasing x

In
cr

ea
si

n
g
y

• An abstraction for the graphical

window upon which we will do all of

our drawing.

• The window defines a coordinate

system of x-y values
• Top left corner is (0, 0)

• Bottom right corner is
(windowWidth-1, windowHeight-1)

GWindow
• An abstraction for the graphical

window upon which we will do all of

our drawing.

• The window defines a coordinate

system of x-y values
• Top left corner is (0, 0)

• Bottom right corner is
(windowWidth-1, windowHeight-1)

• All lines and shapes drawn on the

window are defined by their (x,y)

coordinates

119

(0, 0)
Increasing x

In
cr

ea
si

n
g
y

GWindow
• An abstraction for the graphical

window upon which we will do all of

our drawing.

• The window defines a coordinate

system of x-y values
• Top left corner is (0, 0)

• Bottom right corner is
(windowWidth-1, windowHeight-1)

• All lines and shapes drawn on the

window are defined by their (x,y)

coordinates

120

(0, 0)
Increasing x

In
cr

ea
si

n
g
y

(200,100)

(400,250)

GPoint
• Handy way to bundle up the (x,y)

coordinates for a specific point in

the window

121

(0, 0)
Increasing x

In
cr

ea
si

n
g
y

GPoint (x,y)

GPoint
• Handy way to bundle up the (x,y)

coordinates for a specific point in

the window

122

(0, 0)
Increasing x

In
cr

ea
si

n
g
y

GPoint topLeft(200, 100);
GPoint bottomRight(400, 250);
drawFilledRect(topLeft, bottomRight);

GPoint midpoint = {
(topLeft.x + bottomRight.x)/ 2,
(topLeft.y + bottomRight.y)/ 2 };

topLeft
(200,100)

midpoint

bottomRight
(400, 250)

Cantor Set

123

Cantor Set

• Set of lines where there is one main line, and

below that there are two other lines: each ⅓ of

the width of the original line, with one on the left

and one on the right (with a ⅓ separation of

whitespace between them)

• Below each of the other lines is an identical

situation: two ⅓ lines.

• This repeats until the lines are no longer visible.

124

Order-0 Cantor Set

125

Order-1 Cantor Set

126

Order-2 Cantor Set

127

Order-3 Cantor Set

128

Order-6 Cantor Set

129

Order-6 Cantor Set

130

Another Cantor Set! Another Cantor Set!

Approaching recursive problems

• Look for self-similarity.

• Try out an example.
• Work through a simple example and then increase the complexity.

• Think about what information needs to be “stored” at each step in the

recursive case

• Ask yourself:
• What is the base case? (What is the simplest case?)

• What is the recursive case? (What pattern of self-similarity do you see?)

131

Drawing an order-n Cantor Set

132

Drawing an order-n Cantor Set

1. Draw a line from left to right

133

Drawing an order-n Cantor Set

1. Draw a line from left to right

134

GPoint left GPoint right

Drawing an order-n Cantor Set

1. Draw a line from left to right

135

GPoint left GPoint right

2. Underneath the
left third, draw a
Cantor set of
order-(n-1)

Drawing an order-n Cantor Set

1. Draw a line from left to right

136

2. Underneath the
left third, draw a
Cantor set of
order-(n-1)

GPoint left GPoint right

3. Underneath the
right third, draw
a Cantor set of
order-(n-1)

drawCantor()

drawCantor(GWindow &w, int level, GPoint left, GPoint right)

Base Case:

drawCantor(order is 0) → draw nothing

Recursive Case:

drawCantor(order) → draw a line on top, and then drawCantor(order-1)

on left and right

137

Let’s Code It Up!

138

Real-world applications

139

140

Source: Fractal Islamic Geometric Patterns Based on Arrangements of { n /2} Stars

https://www.semanticscholar.org/paper/Fractal-Islamic-Geometric-Patterns-Based-on-of-%7B-n-Webster/290bfbe1dcf919ac037c63ddc46b954413a54200

141

Source: Fractal Shapes in Islamic Design

https://mjaf.journals.ekb.eg/article_117382_49463ddcefb3d6db1f531c0c26c8af12.pdf

142

Source: Rashaad Newsome, Ron Eglash

https://www.nytimes.com/2022/02/24/arts/rashaad-newsome-assembly-exhibit.html

143

Source: Rashaad Newsome, Ron Eglash

https://www.nytimes.com/2022/02/24/arts/rashaad-newsome-assembly-exhibit.html

144

Source: Chinese lattice geometry

145

Source: Indian Hindu Temple Architecture

https://www.semanticscholar.org/paper/Role-of-Fractal-Geometry-in-Indian-Hindu-Temple-Sardar-Kulkarni/c9bea523f9d52343d65cc5305a0ccd1f2657879c

146

Fun Generative Art to Try!

• http://recursivedrawing.com/

• https://csdt.org/culture/africanfractals/science.html

• https://p5js.org/ / https://processing.org/

• The Coding Train youtube tutorials

http://recursivedrawing.com/
https://csdt.org/culture/africanfractals/science.html
https://p5js.org/
https://processing.org/
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA

Sierpinski Carpet

147

Sierpinski Carpet

• First described by Wacław
Sierpiński in 1916

• A generalization of the Cantor Set
to two dimensions!

• Defined by the subdivision of a
shape (a square in this case) into
smaller copies of itself

• The same pattern applied to a
triangle yields a Sierpinski triangle,
which you will code up on the next
assignment!

148

Order-0 Sierpinski Carpet

149

Order-1 Sierpinski Carpet

An order-1 carpet is

subdivided into eight

order-0 carpets arranged

in this grid pattern

150

Order-2 Sierpinski Carpet

151

Order-2 Sierpinski Carpet

152

Sierpinski Carpet

153

Base Case: Order-0

• Draw a filled square at the

appropriate location

Recursive Case: Order-n, n is not 0

• Draw 8 order-(n-1) Sierpinski

carpets, arranged in a 3x3 grid,

omitting the center location

Sierpinski Carpet

154

Base Case: Order-0

• Draw a filled square at the

appropriate location

Recursive Case: Order-n, n is not 0

• Draw 8 order-(n-1) Sierpinski

carpets, arranged in a 3x3 grid,

omitting the center location

• Use loops!

Iteration + Recursion

• It’s completely reasonable to mix iteration and recursion in the

same function.

• Here, we’re firing off eight recursive calls, and the easiest way to do

that is with loops.

• Recursion doesn’t mean “the absence of iteration.” It just means

“solving a problem by solving smaller copies of that same

problem.”

• Iteration and recursion can be very powerful in combination!

155

Recap

• Fractal - any repeated, graphical pattern
• Composed of repeated instances of the same shape or pattern, arranged

in a structured way

• Used almost universally across the world and across history

• More advanced recursion
• Multiple base cases

• Multiple recursive cases

• Use iteration

156

