Recursive Fractals

Amrita Kaur
July 11, 2023

Contributions made from previous CS106B Instructors Stanford University

Week 2 Feedback

Rate the pace of lecture

96 responses

@® Way too slow
@ A little too slow
O Perfect

@ A little too fast
@® Way too fast

Stanford University

Week 2 Feedback

Things you liked:
“Everything has been so fun so far! Keep up the same stuff”
“The live coding examples were extremely helpful”

“I like that you guys have started to do more recapping. That makes it
easier to catch up and is a good reminder to what we did last time.”

“I love the slides and | would love if you can keep doing it”
“increased opportunities to discuss with each other”

“Haven't ran into any issues that needed help but | feel like all the
resources are there.”

Stanford University

Week 2 Feedback

Places we can improve:

“occasional interactive larger pieces of code where the class can give
suggestions”

“It would be good if you could repeat the question that students asked
so that those watching the recording can hear the questions more
clearly.”

Stanford University

Week 2 Feedback

We hear you...
“Feedback form is really long :(”

“Not running too much over 2:30”

Stanford University

Week 2 Feedback

Assignment Feedback:

“Solving the first assignment was super fulfilling & | didn't require any
additional assistance or clarification. | think that goes to show the
effort that’s gone into setting up the assignment.”

“I loved how, almost immediately, | was able to use my C++ skills to
implement algorithms that are commonly used in the real world.”

“I wish there was more required coding than short answer”

Stanford University

Week 2 Feedback

Anything else you would like us to know:

“Keep up the good work, the course is super engaging and interesting
so far”

“You rock!”
“| ate pancakes this morning.”

“the fairlife protein shakes are the best I've ever had. They taste just
like the boxed horizon milk | used to drink.”

Stanford University

Announcements and Reminders

* Assignment 2 due Friday at 11:59pm

Use your help resources!

Stanford University

Roadmap

Abstract Data
Structures

Core

++
Tools €

Object-Oriented
Programming

Algorithmic
Analysis

Memory
Management

Linked
Data
Structures

Advanced
Algorithms

Stanford University

10

What is recursion?

* A problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

* Powerful substitution for iteration (loops)

e Start by seeing the difference between iterative vs. recursive solutions
* Later will see problems that can only be solved by recursion

* Results in elegant, often shorter code

* In programming, it means that the function calls itself
* Every time the function is called, the problem becomes a little smaller

Stanford University

11

Two main components

e Base case

The simplest version of your problem that all other cases reduce to
An occurrence that can be answered directly

e Recursive case

More complex version of the problem that cannot be directly answered
Break down the task into smaller occurrences

Take the “recursive leap of faith” and trust the smaller tasks will solve the
problem for you!

Stanford University

12

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.
2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance
of the same problem, and make progress towards the base case.

Stanford University

13

Computer Memory 8,000,000,000

 Computer’s memory is like a giant vector

* Like a vector, we can index memory starting
from O.

 We draw memory vertically with index O at
the bottom

* Typical laptop’s memory has billions of these
indexed slots (one byte each)

Stanford University

Computer Memory

Divide memory in a few main regions

Text: program’s own code

Heap: where dynamically allocated memory
resides

Stack: where local variables for each
function are stored

14

Stack

T

Heap

Text

Stanford University

Stack Frames

main()

weight: | 1.06

tripleWeight()

weight: | 3.18

}
f

Heap

Text

15

The “stack” part of memory
is a stack!

A function call pushes a
stack frame onto the stack
A function return pops a
stack frame from the stack

Stanford University

Recursive vs Iterative Methods

int factorial (int n) {

int factoriallterative (int n) {
it (n == 0) { int result = 1;
return 1; for (int i = 1; i <= n; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
}

n =5, time=5823ms n =5, time=5.485ms
n = 100,000, time=8.703 ms n = 100,000, time=5.589 ms

n = 1,000,000, “segmentation fault” n = 1,000,000, time=7.501ms

Stanford University

17

Approaching recursive problems

* Look for self-similarity.

* Try out an example.
* Work through a simple example and then increase the complexity.
* Think about what information needs to be “stored” at each step in the
recursive case
e Ask yourself:

 Whatis the base case? (What is the simplest case?)
* What is the recursive case? (What pattern of self-similarity do you see?)

Stanford University

18

Palindromes

Stanford University

19

Is it a Palindrome?

* Write a function isPalindrome () that returns true or false
based on if a string is a palindrome or not.
* Astringis a palindrome if it reads the same forwards and

backwards.
« isPalindrome(“racecar”) = true
* disPalindrome(“noon”) = true
* dsPalindrome(“step on no pets”) = true

* 1dsPalindrome(“pindrop”) = false
 1dsPalindrome(“yo”) = false
« 1dsPalindrome(“palindrome”) = false

* jsPalindrome(“X”) = true
* disPalindrome(“”) = true

Stanford University

20

isPalindrome()

Look for self-similarity: “racecar”

Stanford University

21

isPalindrome()

Look for self-similarity: “racecar”

 Look at the first and last letters of “racecar” — both are ‘r’

Stanford University

22

isPalindrome()

Look for self-similarity: “racecar”

 Look at the first and last letters of “racecar” — both are ‘r’
* Check if “aceca” is a palindrome

Stanford University

23

isPalindrome()

Look for self-similarity: “racecar”

 Look at the first and last letters of “racecar” — both are ‘r’
* Check if “aceca” is a palindrome
 Look at the first and last letters of “aceca” — both are ‘@’

Stanford University

24

isPalindrome()

Look for self-similarity: “racecar”

* Look at the first and last letters of “racecar” — both are ‘r’

* Check if “aceca” is a palindrome
* Look at the first and last letters of “aceca” — both are ‘@’
* Check if “cec” is a palindrome

Stanford University

25

isPalindrome()

Look for self-similarity: “racecar”

* Look at the first and last letters of “racecar” — both are ‘r’
* Check if “aceca” is a palindrome
* Look at the first and last letters of “aceca” — both are ‘@’
* Check if “cec” is a palindrome
* Look at the first and last letters of “cec” — both are ‘c’

Stanford University

26

isPalindrome()

Look for self-similarity: “racecar”

* Look at the first and last letters of “racecar” — both are ‘r’
* Check if “aceca” is a palindrome
* Look at the first and last letters of “aceca” — both are ‘@’
* Check if “cec” is a palindrome
* Look at the first and last letters of “cec” — both are ‘c’
* Checkif “e” is a palindrome

Stanford University

27

isPalindrome()

Look for self-similarity: “racecar”

* Look at the first and last letters of “racecar” — both are ‘r’
* Check if “aceca” is a palindrome
* Look at the first and last letters of “aceca” — both are ‘@’
* Check if “cec” is a palindrome
* Look at the first and last letters of “cec” — both are ‘c’
* Checkif “e” is a palindrome

a_n

 “@”isapalindrome

Stanford University

28

isPalindrome()

Look for self-similarity: “racecar”

* Look at the first and last letters of “racecar” — both are ‘r’
* Check if “aceca” is a palindrome
* Look at the first and last letters of “aceca” — both are ‘@’
* Check if “cec” is a palindrome
* Look at the first and last letters of “cec” — both are ‘c’
* Checkif “e” is a palindrome

(PN

. e” is a palindrome

Stanford University

29

isPalindrome()

Look for self-similarity: “noon”

Stanford University

30

isPalindrome()

Look for self-similarity: “noon”

 Look at the first and last letters of “noon” — both are ‘n’

Stanford University

31

isPalindrome()

Look for self-similarity: “noon”

 Look at the first and last letters of “noon” — both are ‘n’
* Check if “00” is a palindrome

Stanford University

32

isPalindrome()

Look for self-similarity: “noon”

 Look at the first and last letters of “noon” — both are ‘n’
* Check if “00” is a palindrome
 Look at the first and last letters of “00” — both are ‘0’

Stanford University

33

isPalindrome()

Look for self-similarity: “noon”

* Look at the first and last letters of “noon” — both are ‘n’

* Check if “00” is a palindrome
* Look at the first and last letters of “00” — both are ‘0’
 Checkif “”is a palindrome

Stanford University

34

isPalindrome()

Look for self-similarity: “noon”

* Look at the first and last letters of “noon” — both are ‘n’

* Check if “00” is a palindrome
* Look at the first and last letters of “00” — both are ‘0’
 Checkif “”is a palindrome

an

. is a palindrome

Stanford University

35

isPalindrome()

Look for self-similarity: “noon”

* Look at the first and last letters of “noon” — both are ‘n’

* Check if “00” is a palindrome
* Look at the first and last letters of “00” — both are ‘0’
 Checkif “”is a palindrome

an

. is a palindrome

Stanford University

36

isPalindrome()

Base Case:
Odd number of letters:
isPalindrome(string of length 1) = true
Even number of letters:

isPalindrome(“”) = true

Stanford University

37

isPalindrome()

Base Case:
Odd number of letters:
isPalindrome(string of length 1) = true
Even number of letters:

isPalindrome(“”) = true

Recursive Case:

Stanford University

38

isPalindrome()

Base Case:
Odd number of letters:
isPalindrome(string of length 1) = true
Even number of letters:
isPalindrome(“”) = true
Recursive Case:
If the first and last letters are the same,

isPalindrome(string) = isPalindrome(string minus first and last letters)

Stanford University

39

isPalindrome()

Look for self-similarity: “pindrop”

Stanford University

40

isPalindrome()

Look for self-similarity: “pindrop”

* Look at the first and last letters of “pindrop” — both are “p’

Stanford University

41

isPalindrome()

Look for self-similarity: “pindrop”

* Look at the first and last letters of “pindrop” — both are “p’
* Checkif “indro” is a palindrome

Stanford University

42

isPalindrome()

Look for self-similarity: “pindrop”

* Look at the first and last letters of “pindrop” — both are “p’
* Checkif “indro” is a palindrome
* Look at the first and last letters of “indro” — not equal

Stanford University

43

isPalindrome()

Look for self-similarity: “pindrop”

* Look at the first and last letters of “pindrop” — both are “p’
* Checkif “indro” is a palindrome
* Look at the first and last letters of “indro” — not equal
 Return false

Stanford University

44

isPalindrome()

Look for self-similarity: “pindrop”

* Look at the first and last letters of “pindrop” — both are “p’
* Checkif “indro” is a palindrome
* Look at the first and last letters of “indro” — not equal
. Return false

Stanford University

45

isPalindrome()

Base Case:

isPalindrome(string of length 1) = true

isPalindrome(“”) = true

isPalindrome(string where first and last letters aren’t equal) = false
Recursive Case:

If the first and last letters are the same,

isPalindrome(string) = isPalindrome(string minus first and last letters)

Stanford University

46

isPalindrome()

bool isPalindrome(string s) {
1T (s.length() <= 1) {
return true;
} else {
it (s[0] !'= s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(1l, s.length() - 2));

code here Stanford University

https://cplayground.com/?p=dragon-caterpillar-okapi

47

isPalindrome() in action

int main () {
cout << boolalpha <X
isPalindrome(“racecar”) <<
noboolalpha << endl;
return 0;

0 Heap, Text

Stanford University

48

isPalindrome() in action

int main () {
cout << boolalpha <X
isPalindrome(“racecar”) <<
noboolalpha << endl;
return 0;

0 Heap, Text

Stanford University

isPalindrome() in action

49

main()

int main () {

cout << boolalpha <X
isPalindrome(“racecar”) <<
noboolalpha << endl;
return 0;

Heap, Text

Stanford University

isPalindrome() in action

50

main()

int main () {
cout << boolalpha <<

isPalindrome(“racecar”)

noboolalpha << endl;
return 0;

<<

Heap, Text

Stanford University

isPalindrome() in action

51

main()

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}

return disPalindrome(s.substr(l, s.length() - 2));

Heap, Text

Stanford University

52

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

53

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

bool isPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

54

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

55

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

56

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

ks
return disPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

57

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

W= PN L

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

58

main()
isPalindrome() in action PR
(s C s: | “racecar”
bool isPalindrome(string s) { indrome ()
if (s.length() <= 1) { S: “aceca”
return true;
} else {

if (s[0] !'= s[s.length() - 1]) {
return false;

}
return isPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

isPalindrome() in action

VARN C

59

main()

isPalindrome()

S.

W= PN L

“racecar”

bool isPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}

return isPalindrome(s.substr(l, s.length() - 2));

indrome ()

S.

“aceca”

Heap, Text

Stanford University

isPalindrome() in action

VARN C

60

main()

isPalindrome()

S.

W= PN L

“racecar”

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

}

return isPalindrome(s.substr(l, s.length() - 2));

indrome ()

S.

“aceca”

Heap, Text

Stanford University

isPalindrome() in action

VARN C

61

main()

isPalindrome()

S.

W= PN L

“racecar”

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {

if (s[0] !'= s[s.length() - 1]) {

return false;

}

return isPalindrome(s.substr(l, s.length() - 2));

indrome ()

S.

“aceca”

Heap, Text

Stanford University

isPalindrome() in action

62

main()

Z

N\

P

isPalindrome()

S.

“racecar”

W= PN L

bool disPalindrome(string s) {
if (s.length() <= 1) {

return true;

} else {

if (s[0] !'= s[s.length() - 1]) {
return false;

}

indrome ()

S.

“aceca”

return disPalindrome(s.substr(l, s.length() - 2)):

Heap, Text

Stanford University

63

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
T~ L
ool Scobalindramalcteding oY [indrome ()
bool [dsPalindrome(string s) { S: “aceca”
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;
+
return disPalindrome(s.substr(l, s.length() - 2));
+
}
0 Heap, Text

Stanford University

64

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
3~ (. .
N1l 9cDAaladndromal(ctrainag)\ [-Indrome()
bool dsPalindrome(string s) { S: “aceca”
if (s.length() <= 1) {
return true; drome ()
} else { S: “cec?”
if (s[0] != s[s.length() - 1]) {
return false;
+
return disPalindrome(s.substr(l, s.length() - 2));
}
}
Heap, Text

Stanford University

65

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
3~ (. .
N1l 9cDAaladndromal(ctrainag)\ [-Indrome()
bool [dsPalindrome(string s) { S: “aceca”
if (s.length() <= 1) {
return true; drome ()
} else { S: “cec?”
if (s[0] != s[s.length() - 1]) {
return false;
+
return disPalindrome(s.substr(l, s.length() - 2));
}
}
Heap, Text

Stanford University

66

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
T~ L
ool Scobalindramalcteding oY [indrome ()
bool [dsPalindrome(string s) { S: “aceca”
if (s.length() <= 1) {
return true; drome()
} else { s: “cec”
if (s[0] != s[s.length() - 1]) {
return false;
+
return disPalindrome(s.substr(l, s.length() - 2));
+
}
0 Heap, Text

Stanford University

67

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
T~ L .
N1l 9cDAaladndromal(ctrainag)\ [-Indrome()
bool isPalindrome(string s) { S: “aceca”
if (s.length() <= 1) {
return true; drome()
} else { S: “cec”
if (s[0] != s[s.length() - 1]) {
return false;
+
return disPalindrome(s.substr(l, s.length() - 2))
+
}
Heap, Text

Stanford University

isPalindrome() in action isPalindrome()

68

main()

s: | “racecar”

I~ ~\ [
ool ScDalindromalctring o) [indrome ()
ool dcDalindromelctring o) L S.: “aceca”
bool disPalindrome(string s) {
if (s.length() <= 1) { rome ()
return true; 5 “cec”

} else {
if (s[0] != s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2));

0 | Heap, Text

Stanford University

69

main()

isPalindrome() in action isPalindrome()

. s: | “racecar”
I~ ~\ [
ool ScDalindromalctring o) [indrome ()
ool dcDalindromelctring o) L S.: “aceca”
bool disPalindrome(string s) {
if (s.length() <= 1) { rome ()
return true; 5 “cec”
} else {
if (s[0] != s[s.length() - 1]) { ~ome ()
return false; . g
}
return disPalindrome(s.substr(l, s.length() - 2));
}
}

0 | Heap, Text

Stanford University

70

main()

isPalindrome() in action isPalindrome()

. s: | “racecar”
I~ ~\ [
ool ScDalindromalctring o) [indrome ()
ool dcDalindromelctring o) L S.: “aceca”
bool isPalindrome(string s) {
if (s.length() <= 1) { rome ()
return true; 5 “cec”
} else {
if (s[0] != s[s.length() - 1]) { ~ome ()
return false; . g
}
return disPalindrome(s.substr(l, s.length() - 2));
}
}

0 | Heap, Text

Stanford University

71

main()

isPalindrome() in action isPalindrome()

. s: | “racecar”
I~ ~\ [
ool ScDalindromalctring o) [indrome ()
ool dcDalindromelctring o) L S.: “aceca”
bool disPalindrome(string s) {
if (s.length() <= 1) { rome ()
return true; 5 “cec”
} else {
if (s[0] != s[s.length() - 1]) { ~ome ()
return false; . g
}
return disPalindrome(s.substr(l, s.length() - 2));
}
}

0 | Heap, Text

Stanford University

72

main()

isPalindrome() in action isPalindrome()

. s: | “racecar”
3~ (.
ool ScDalindromalctring o) [indrome ()
ool dcDalindromelctring o) L S.: “aceca”
bool disPalindrome(string s) {
if (s.length() <= 1) { rome ()
return true; 5 “cec”
} else { >
if (s[0] != s[s.length() - 1]) { ~ome ()
return false; . g T
}
return disPalindrome(s.substr(l, s.length() - 2));
}
}

0 | Heap, Text

Stanford University

73

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
T~ L .
N1l 9cDAaladndromal(ctrainag)\ [-Indrome()
bool [dsPalindrome(string s) { S: “aceca”
if (s.length() <= 1) {
return true; drome()
} else { s: “cec”
if (s[0] != s[s.length() - 1]) { t}
return false;
3 T
return disPalindrome(s.substr(l, s.length() - 2))
+
}
Heap, Text

Stanford University

74

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
T~ L .
N1l 9cDAaladndromal(ctrainag)\ [-Indrome()
bool isPalindrome(string s) { S: “aceca”
if (s.length() <= 1) {
return true; drome()
} else { S: “cec”
if (s[0] != s[s.length() - 1]) { t}
return false;
3 T
return disPalindrome(s.substr(l, s.length() - 2))
+
r
3 true
Heap, Text

Stanford University

75

main()
isPalindrome() in action ioPalindrome ()
. s: | “racecar”
T~ L .
N1l 9cDAaladndromal(ctrainag)\ [-Indrome()
bool isPalindrome(string s) { S: “aceca” >
if (s.length() <= 1) {
return true; drome () T
} else { S: “cec”
if (s[0] != s[s.length() - 1]) {
return false;
+
return disPalindrome(s.substr(l, s.length() - 2))
+
r
3 true
Heap, Text

Stanford University

76

main()
isPalindrome() in action PR
(s C s: | “racecar”
bool isPalindrome(string s) { indrome ()
if (s.length() <= 1) { S: “aceca” >
return true;
} else { T

if (s[0] !'= s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2)):

0 Heap, Text

Stanford University

77

main()
isPalindrome() in action PR
(s C s: | “racecar”
bool isPalindrome(string s) { indrome ()
if (s.length() <= 1) { S: “aceca” >
return true;
} else { T

if (s[0] !'= s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2)):

true

0 Heap, Text

Stanford University

78

main()
isPalindrome() in action PR
(s C s: | “racecar” >
bool isPalindrome(string s) { indrome () T
if (s.length() <= 1) { S: “aceca”
return true;
} else {

if (s[0] !'= s[s.length() - 1]) {
return false;

}
return disPalindrome(s.substr(l, s.length() - 2)):

true

0 Heap, Text

Stanford University

79

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

-\

ks
return disPalindrome(s.substr(l, s.length() - 2));

0 Heap, Text

Stanford University

80

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

-\

ks
return disPalindrome(s.substr(l, s.length() - 2));

1 true

0 Heap, Text

Stanford University

81

main()
isPalindrome() in action isPalindrome()

s: | “racecar”

-\

VARN C

bool disPalindrome(string s) {
if (s.length() <= 1) {
return true;
} else {
if (s[0] != s[s.length() - 1]) {
return false;

ks
return disPalindrome(s.substr(l, s.length() - 2));

1 true

0 Heap, Text

Stanford University

isPalindrome() in action

82

main()

int main () {
cout << boolalpha <<

isPalindrome(“racecar”)

noboolalpha << endl;
return 0;

<<

-\

Heap, Text

Stanford University

isPalindrome() in action

83

main()

int main () {

cout << boolalpha <X
isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;

Console:

true

-\

Heap, Text

Stanford University

isPalindrome() in action

84

main()

int main () {

cout << boolalpha <X
isPalindrome(“racecar”) <<
noboolalpha << endl;

return 0;

Console:

true

Heap, Text

Stanford University

85

isPalindrome() in action

Console:

[true }

0 Heap, Text

Stanford University

86

Visual Representations
of Recursion

Stanford University

Self-Similarity

* Solving problems recursively and analyzing recursive phenomena
involves identifying self-similarity

* An object is self-similar if it contains a smaller copy of itself

 Shows up in many real-world objects and phenomena

Stanford University

88

Recursion in nature

/2 inch . .
- Stanford University

89

Fractal

* Any repeated, graphical pattern
 Composed of repeated instances of the same shape or pattern,
arranged in a structured way

>pbH
< R
CHAIEI

o S ()
IR

Stanford University

90

Fractal

* Any repeated, graphical pattern

 Composed of repeated instances of the same shape or pattern,
arranged in a structured way

The set is defined in the complex
plane as complex numbers ¢ for
which the function f_c(z) =z"2 + ¢
does not diverge to infinity when
iterated starting at z=0

Stanford University

91

Understanding Fractal Structure

Stanford University

92

Stanford University

93

Stanford University

94

Stanford University

95

Stanford University

96

Stanford University

S
9
©

E A

v

v C
L O
Al

v
O w
o 2
..mb

o 2

| -

e..L
£ E
© 0
._..la.r.l
< 9
Wr

)

97

What differentiates the smaller
tree from the bigger one?
1. It’s at a different

Stanford University

98

What differentiates the smaller
tree from the bigger one?
1. It’s at a different

Stanford University

99

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position
2. It has a different

Stanford University

100

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position
2. It has a different

Stanford University

101

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position
2. It has a different size

3. It has a different

Stanford University

102

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position
2. It has a different size

3. It has a different

Stanford University

What differentiates the smaller
tree from the bigger one?

1.

2.
3.
4

It’s at a different position

It has a different size

It has a different orientation
It has a different

103

Stanford University

104

What differentiates the smaller
tree from the bigger one?

1. It’s at a different position

2. It has a different size

3. It has a different orientation
4. It has a different

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

Stanford University

Order-0 tree

An order-0 tree is nothing.

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

105

Stanford University

Order-1 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

106

Stanford University

107

Order-2 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

Stanford University

108

Order-3 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

Stanford University

Order-4 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

109

Stanford University

Order-11 tree

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

110

Stanford University

Order-3 tree

An order-0 tree is nothing.

An order-n tree is a line with two
smaller order-(n-1) trees starting at
the end of the line.

Fractals and self-similar structures
are often defined in terms of some
parameter called the , Which
indicates the complexity of the
overall structure.

111

Stanford University

112

Order-11 tree

Each recursive call just draws
one branch. The sum total of all
the recursive calls draws the
whole tree.

Stanford University

113

Aside on Graphics

Stanford University

114

Graphics in CS1068B

* Creating graphical programs is not one of our main focuses in this
class, but we need to know how to work with graphical programs
to code up some fractals of our own

e Stanford C++ libraries provide extensive capabilities to create

custom graphical programs
 Full documentation can be found here

 We will abstract away almost all of the complexity for you via

provided helper functions
* Main components you need to know: GWindow and GPoint

Stanford University

https://cs.stanford.edu/people/eroberts/StanfordCPPLib/doc/

GWindow

e An abstraction for the graphical
window upon which we will do all of
our drawing.

115

Stanford University

116

GWindow

e An abstraction for the graphical
window upon which we will do all of
our drawing.

 The window defines a coordinate
system of x-y values

Stanford University

117

GWi1ndow (0, ©)

e An abstraction for the graphical
window upon which we will do all of
our drawing.

 The window defines a coordinate

system of x-y values
 Top left corneris (0, 0)

Stanford University

118

Increasing x

GWi1ndow (0, ©) >

e An abstraction for the graphical
window upon which we will do all of
our drawing.

 The window defines a coordinate

system of x-y values
 Top left corneris (0, 0)

Increasing y

* Bottom right corner is
(windowWidth-1, windowHeight-1)

Stanford University

119

Increasing x

GWi1ndow (0, 0) >

e An abstraction for the graphical
window upon which we will do all of
our drawing. -
* The window defines a coordinate 2
system of x-y values §
 Top left corneris (0, 0))=
* Bottom right corner is
(windowWidth-1, windowHeight-1)
* Alllines and shapes drawn on the \ 4

window are defined by their (x,y)

coordinates
Stanford University

120

Increasing x

GWi1ndow (0, ©) >

e An abstraction for the graphical
_ _ , (200,100)
window upon which we will do all of
our drawing. >
* The window defines a coordinate 5
)
system of x-y values o (400,250)
 Top left corneris (0, 0) £
* Bottom right corner is
(windowWidth-1, windowHeight-1)
* Alllines and shapes drawn on the Y

window are defined by their (x,y)

coordinates
Stanford University

121

Increasing x

GPoint (©, ©) >

« Handy way to bundle up the (x,y)

coordinates for a specific point in GPoint (x,y)

) o
the window

Increasing y

Stanford University

122

Increasing x

GPoint (0, ©) -

* Handy way to bundle up the (x,y) topLeft

. . C . (200,100)
coordinates for a specific point in

the window

bottomRight
(400, 250)

Increasing y

GPoint topLeft(200, 100);
GPoint bottomRight (400, 250);
drawFilledRect(topLeft, bottomRight);

GPoint midpoint = { /
(topLeft.x + bottomRight.x)/ 2,
(topLeft.y + bottomRight.y)/ 2 };

Stanford University

123

Cantor Set

Stanford University

Cantor Set

Set of lines where there is one main line, and
below that there are two other lines: each 73 of
the width of the original line, with one on the left
and one on the right (with a %3 separation of
whitespace between them)

Below each of the other lines is an identical
situation: two % lines.

This repeats until the lines are no longer visible.

124

Stanford University

125

Order-0 Cantor Set

Stanford University

126

Order-1 Cantor Set
e,

Stanford University

127

Order-2 Cantor Set

Stanford University

128

Order-3 Cantor Set

Stanford University

129

Order-6 Cantor Set
e,

Stanford University

Order-6 Cantor Set

Another Cantor Set!

Another Cantor Set!

130

Stanford University

131

Approaching recursive problems

* Look for self-similarity.

* Try out an example.
* Work through a simple example and then increase the complexity.
* Think about what information needs to be “stored” at each step in the
recursive case
e Ask yourself:

 Whatis the base case? (What is the simplest case?)
* What is the recursive case? (What pattern of self-similarity do you see?)

Stanford University

132

Drawing an order-n Cantor Set

Stanford University

133

Drawing an order-n Cantor Set

1. Draw aline from leftto right

Stanford University

134

Drawing an order-n Cantor Set

1. Draw aline from leftto right

GPoint left GPoint right

.

Stanford University

135

Drawing an order-n Cantor Set

1. Draw aline from leftto right

GPoint left GPoint right

.

2. Underneath the
left third, draw a
Cantor set of
Order-(n-l) Stanford University

136

Drawing an order-n Cantor Set

1. Draw aline from leftto right

GPoint left GPoint right

2. Underneath the 3. Underneath the
left third, draw a right third, draw
Cantor set of a Cantor set of

O rd S r'(n-1) 0 rd € r_(n-1) Stanford University

137

drawCantor()

drawCantor (GWindow &w, 1int level, GPoint left, GPoint right)
Base Case:

drawCantor(order is 0) — draw nothing
Recursive Case:

drawCantor(order) — draw a line on top, and then drawCantor(order-1)
on left and right

Stanford University

138

Let’s Code It Up!

Stanford University

139

Real-world applications

Stanford University

140

oA g 424

n=6, narrowed stars, radial repeating, mosaic w/color by level n=8, scaled rosettes, radial inward, interlace w/equal band width n=10, scaled rosettes, radial combined, outline w/variable band width n=12, scaled extended rosettes, radial outward, mosaic 2-color

Source: Fractal Islamic Geometric Patterns Based on Arrangements of { n /2} Stars Stanford University

https://www.semanticscholar.org/paper/Fractal-Islamic-Geometric-Patterns-Based-on-of-%7B-n-Webster/290bfbe1dcf919ac037c63ddc46b954413a54200

N /\ \ //\ .
VMY L
— J 2 —
NS 4 { a- Fractal Stare shape
1. U~ with one iteration.
\/:_/ r X
J
Initial shape 1** iteration

b-Sierpinsky triangle with
. : ; one iteration.
Initial shape 1+t iteration

e \ »’4\\\ c- Hybrid fractal shape with
Y o one iteration.

Hybrid Initial 1 iteration

shape e- Fractal geometric shape with two iterations

d- Fractal square shape with two iterations /\ /\

- : : ") S8 K : s ;
Initial T T R W . Initial shape 1%t iteration 214 jteration

shape

Source: Fractal Shapes in Islamic Design

141

Stanford University

https://mjaf.journals.ekb.eg/article_117382_49463ddcefb3d6db1f531c0c26c8af12.pdf

Source: Rashaad Newsome, Ron Eglash Stanford University

https://www.nytimes.com/2022/02/24/arts/rashaad-newsome-assembly-exhibit.html

143

Stanford Universit
Source: Rashaad Newsome, Ron Eglash y

https://www.nytimes.com/2022/02/24/arts/rashaad-newsome-assembly-exhibit.html

144

-

traditional cracked-ice single-lines transformation 1st order segments 2nd order segments 3rd order segments
lattice

Source: Chinese lattice geometry Stanford University

145

N
)

Al N Ao TARE0D A0
. _ a :
T : L]
REGE L ! 2
= B
| \ I‘ \ ; i ! s
g ﬁf z ‘
! I =1 =4 !i: amies .y 2iz
“_ J_L- _Ha_:LE_. a ...}. H.{q

Source: Indian Hindu Temple Architecture Stanford University

https://www.semanticscholar.org/paper/Role-of-Fractal-Geometry-in-Indian-Hindu-Temple-Sardar-Kulkarni/c9bea523f9d52343d65cc5305a0ccd1f2657879c

146

Fun Generative Art to Try!

e http://recursivedrawing.com/

* https://csdt.org/culture/africanfractals/science.html

e https://p5js.org/ / https://processing.org/

e The Coding Train youtube tutorials

Stanford University

http://recursivedrawing.com/
https://csdt.org/culture/africanfractals/science.html
https://p5js.org/
https://processing.org/
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA

147

Sierpinski Carpet

Stanford University

148

Sierpinski Carpet

* First described by Wactaw
Sierpinski in 1916

* A generalization of the Cantor Set
to two dimensions!

* Defined by the subdivision of a
shape (a square in this case) into

smaller copies of itself
 The same pattern applied to a
triangle yields a Sierpinski triangle,
which you will code up on the next
assignment!

Stanford University

149

Order-0 Sierpinski Carpet

Stanford University

150

Order-1 Sierpinski Carpet

An order-1 carpet is
subdivided into eight
order-0 carpets arranged
in this grid pattern

Stanford University

151

Order-2 Sierpinski Carpet

Stanford University

152

Order-2 Sierpinski Carpet

Stanford University

153

Sierpinski Carpet

Base Case: Order-0

 Draw a filled square at the
appropriate location

Recursive Case: Order-n, n is not O

* Draw 8 order-(n-1) Sierpinski
carpets, arranged in a 3x3 grid,
omitting the center location

Stanford University

Sierpinski Carpet

Base Case: Order-0

 Draw a filled square at the
appropriate location

Recursive Case: Order-n, n is not O

* Draw 8 order-(n-1) Sierpinski
carpets, arranged in a 3x3 grid,
omitting the center location

* Use loops!

Stanford University

155

lteration + Recursion

* It’s completely reasonable to mix iteration and recursion in the
same function.

* Here, we'’re firing off eight recursive calls, and the easiest way to do
that is with loops.

* Recursion doesn’t mean “the absence of iteration.” It just means
“solving a problem by solving smaller copies of that same
problem.”

* Iteration and recursion can be very powerful in combination!

Stanford University

156

Recap

e Fractal - any repeated, graphical pattern
 Composed of repeated instances of the same shape or pattern, arranged
in a structured way
* Used almost universally across the world and across history
* More advanced recursion
 Multiple base cases
* Multiple recursive cases
* Use iteration

Stanford University

