
Introduction to Recursion
Amrita Kaur

July 10, 2023

Contributions made from previous CS106B Instructors

Announcements and Reminders

• Assignment 2 due Friday at 11:59pm

• IGs with your SL on Assignment 1 this week

• Midterm next Monday from 7-9pm
• Talk more about this at the end of today’s class!

2

Roadmap

Core
Tools

C++ Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

3

Algorithmic
Analysis

Roadmap

Core
Tools

C++

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

4

Algorithmic
Analysis

Recursion

Jumble - July 10, 2023

5

Code it up
void permute4(string s) {

for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4 ; j++) {

if (j == i) {
continue; // ignore

}
for (int k = 0; k < 4; k++) {

if (k == j or k == i) {
continue; // ignore

}
for (int w = 0; w < 4; w++) {

if (w == k or w == j or w == i) {
continue; // ignore

}
cout << s[i] << s[j] << s[k] << s[w] << endl;

}
}

}
}

}

6

Code it up
void permute5(string s) {

for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4 ; j++) {

if (j == i) {
continue; // ignore

}
for (int k = 0; k < 4; k++) {

if (k == j or k == i) {
continue; // ignore

}
for (int w = 0; w < 4; w++) {

if (w == k or w == j or w == i) {
continue; // ignore

}
for (int x = 0; x < 5; x++) {

if (x == k or x == j or x == i or x == w) {
continue;

}
cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;

}
}

}
}

}
}

7

Recursion

8

What is recursion?

Wikipedia: “concept or process depends on a simpler version of itself”

9

What is recursion?

10

What is recursion?

• A problem-solving technique in which tasks are completed by

reducing them into repeated, smaller tasks of the same form.

• Powerful substitution for iteration (loops)
• Start by seeing the difference between iterative vs. recursive solutions

• Later will see problems that can only be solved by recursion

• Results in elegant, often shorter code

• Can be used to express patterns seen in nature

11

Recursion in nature

12

Using recursion in real life

Solve puzzle:

1. Is the puzzle finished?

If yes, stop.

2. Find one correct piece

and place it

3. Solve the rest of the

puzzle

13

Using recursion in real life

• I want to figure out how many students came to class today

• I want to recruit your help, but I also want to minimize each

individual’s amount of work

14

Counting students

• Focus on counting a single row first

• I ask the person on the very left “How many people are to your right?”

• Student’s algorithm:

• If there is no one to your right, answer 0.

• If someone is sitting to your right

• Ask that person, “How many people are to your right?”

• When they respond with a value N, respond (N+1) to the

person who asked you

• Can generalize to the entire lecture hall

15

Counting students

• Focus on counting a single row first

• I ask the person on the very left “How many people are to your right?”

• Student’s algorithm:

• If there is no one to your right, answer 0

• If someone is sitting to your right

• Ask that person, “How many people are to your right?”

• When they respond with a value N, respond (N+1) to the

person who asked you

• Can generalize to the entire lecture hall

16

recursion
problem-solving technique in which tasks are completed

by reducing them into repeated, smaller tasks of the
same form

What is recursion?

• In programming, it means that the function calls itself

• Every time the function is called, the problem becomes a little

smaller

17

void recurse() {

recurse();

}

*never ever write code like this

https://cplayground.com/?p=crocodile-peafowl-quelea

Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly

18

Is the puzzle finished? If yes, stop. If there is no one to your right, answer 0.

Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly

• Recursive case
• More complex version of the problem that cannot be directly answered

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the

problem for you!

19

Place one piece and solve

rest of puzzle

If someone is sitting to

your right…

Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly

• Recursive case
• More complex version of the problem that cannot be directly answered

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the

problem for you!

20

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.

2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance

of the same problem, and make progress towards the base case.

21

Compute Factorial!

22

Factorial Example

• The number n factorial, denoted as n!, is

n × (n-1) × … × 3 × 2 × 1

• For example,

• 3! = 3 × 2 × 1 = 6
• 4! = 4 × 3 × 2 × 1 = 24
• 5! = 5 × 4 × 3 × 2 × 1 = 120
• 0! = 1 (by definition)

• Let’s implement a function to compute factorials!

23

Computing Factorials

5! = 5 × 4 × 3 × 2 × 1

24

Computing Factorials

5! = 5 × 4 × 3 × 2 × 1

25

4!

Computing Factorials

5! = 5 × 4!

26

Computing Factorials

5! = 5 × 4!
4! = 4 × 3 × 2 × 1

27

Computing Factorials

5! = 5 × 4!
4! = 4 × 3 × 2 × 1

28

3!

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!

29

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2 × 1

30

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2 × 1

31

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2 × 1

32

2!

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!

33

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1

34

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1

35

1!

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!

36

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!
1! = 1 × 1

37

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!
1! = 1 × 1

38

0!

Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!
1! = 1 × 0!
0! = 1

39

More views of factorials

40

More views of factorials

41

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

Three “Musts” of Recursion

42

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

1. Your code must have a case

for all valid inputs.

Three “Musts” of Recursion

43

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

1. Your code must have a case

for all valid inputs.

2. You must have a base case

that does not make

recursive calls.

Three “Musts” of Recursion

44

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

1. Your code must have a case

for all valid inputs.

2. You must have a base case

that does not make

recursive calls.

3. When you make a recursive

call it should be to a simpler

instance of the same

problem, and make progress

towards the base case.

Recursion in action

45

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Aside on Computer Memory

46

Computer Memory

• Computer’s memory is like a giant vector

• Like a vector, we can index memory starting

from 0.

• We draw memory vertically with index 0 at

the bottom

• Typical laptop’s memory has billions of these

indexed slots (one byte each)

47

0

8,000,000,000

…
…
…

Text

Computer Memory

Divide memory in a few main regions

• Text: program’s own code

• Heap: where dynamically allocated memory

resides

• Stack: where local variables for each

function are stored

48

0

Heap

Stack

Recall this program

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl;

}

49

main

weight

1.06

tripleWeight

weight

3.18

Stack Frames

These are called “stack frames.”
One gets created each time a

function is called.

50

main

weight

1.06

tripleWeight

weight

3.18

Stack Frames

51

main

weight

1.06

Text
0

Heap

main()
1.06weight:

Stack Frames

52

main

weight

1.06

tripleWeight

weight

3.18

Text
0

Heap

main()
1.06weight:

tripleWeight()

3.18weight:

Stack Frames

53

main

weight

1.06

Text
0

Heap

main()
1.06weight:

tripleWeight()

3.18weight:

Stack Frames

54

Text
0

Heap

main()
1.06weight:

Stack Frames

55

Text
0

Heap

main()
1.06weight:

tripleWeight()

3.18weight:

The “stack” part of memory

is a stack!

• A function call pushes a

stack frame onto the stack

• A function return pops a

stack from from the stack

Back to Factorial!

56

Recursion in action

57

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

Recursion in action

58

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

Recursion in action

59

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

Recursion in action

60

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main()

Recursion in action

61

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main()

Recursion in action

62

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

Recursion in action

63

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

Recursion in action

64

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

Recursion in action

65

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

Recursion in action

66

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

Recursion in action

67

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

Recursion in action

68

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

Recursion in action

69

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

Recursion in action

70

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

Recursion in action

71

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

Recursion in action

72

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

Recursion in action

73

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

Recursion in action

74

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

Recursion in action

75

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

Recursion in action

76

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

Recursion in action

77

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

Recursion in action

78

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

Recursion in action

79

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

Recursion in action

80

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

Recursion in action

81

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

Recursion in action

82

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

Recursion in action

83

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

Recursion in action

84

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

Recursion in action

85

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

Recursion in action

86

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

Recursion in action

87

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

Recursion in action

88

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

Recursion in action

89

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

Recursion in action

90

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

Recursion in action

91

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

Recursion in action

92

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

Recursion in action

93

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

Recursion in action

94

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

Recursion in action

95

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

Recursion in action

96

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

Recursion in action

97

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

Recursion in action

98

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

Recursion in action

99

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

Recursion in action

100

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0

Recursion in action

101

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else {
return n * factorial(n-1);

}
}

n: 0
1

Recursion in action

102

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1
1

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

} 1

Recursion in action

103

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1
1

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

} 1 1

Recursion in action

104

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

} 1 x 1

Recursion in action

105

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

} 1

Recursion in action

106

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

} 1

1

Recursion in action

107

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

1

Recursion in action

108

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

1

1

Recursion in action

109

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2 x 1

Recursion in action

110

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

Recursion in action

111

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 2

2

2

Recursion in action

112

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

2

Recursion in action

113

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3

2

2

Recursion in action

114

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

3 x 2

Recursion in action

115

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

6

Recursion in action

116

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 3

6

6

Recursion in action

117

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

6

Recursion in action

118

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4

6

6

Recursion in action

119

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

4 x 6

Recursion in action

120

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

24

Recursion in action

121

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 4

24

24

Recursion in action

122

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

24

Recursion in action

123

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5

24

24

Recursion in action

124

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

5 x 24

Recursion in action

125

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

120

Recursion in action

126

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

factorial() n: 5

120

120

Recursion in action

127

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

120

Recursion in action

128

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() 120n:

Recursion in action

129

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() 120n:

Recursion in action

130

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() 120n:

5! = 120

Console:

Recursion in action

131

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() 120n:

5! = 120

Console:

Recursion in action

132

Heap, Text0

5! = 120

Console:

Recursive vs Iterative Methods

133

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

Recursive vs Iterative Methods

134

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5, time = 5.823 ms n = 5, time = 5.485 ms

Recursive vs Iterative Methods

135

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5, time = 5.823 ms

n = 100,000, time = 8.703 ms

n = 5, time = 5.485 ms

n = 100,000, time = 5.589 ms

Recursive vs Iterative Methods

136

int factorial (int n) {
if (n == 0) {

return 1;
} else {

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5, time = 5.823 ms

n = 100,000, time = 8.703 ms

n = 1,000,000, “segmentation fault”

n = 5, time = 5.485 ms

n = 100,000, time = 5.589 ms

n = 1,000,000, time = 7.501 ms

What is recursion?

• In programming, it means that the function calls itself

• Every time the function is called, the problem becomes a little

smaller

137

void recurse() {

recurse();

}

*never ever write code like this

https://cplayground.com/?p=crocodile-peafowl-quelea

What is recursion?

138

void recurse() {

recurse();

}

1. Your code must have a case

for all valid inputs.

2. You must have a base case

that does not make

recursive calls.

3. When you make a recursive

call it should be to a simpler

instance of the same

problem, and make progress

towards the base case.

What is recursion?

139

void recurse() {

recurse();

}

Heap, Text0

main()

What is recursion?

140

void recurse() {

recurse();

}

Heap, Text0

main()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()

What is recursion?

141

void recurse() {

recurse();

}

Heap, Text0

main()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()Stack Overflow!

Reverse a String

142

Reversing strings

Suppose we want to reverse strings like in the following examples:

“dog” → “god”

“stressed” → “desserts”

“racecar” → “racecar”

“yo” → “oy”

“a” → “a”

143

Approaching recursive problems

• Look for self-similarity.

• Try out an example.
• Work through a simple example and then increase the complexity.

• Think about what information needs to be “stored” at each step in the

recursive case (like the current value of n in each factorial stack

frame).

• Ask yourself:
• What is the base case? (What is the simplest case?)

• What is the recursive case? (What pattern of self-similarity do you see?)

144

Reversing strings

Look for self-similarity: “stressed” → “desserts”

145

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• What’s the first step you would take to reverse “stressed”?

146

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

147

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

148

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

149

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

150

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Then reverse “” → get “”

151

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

152

Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

153

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

154

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

155

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

156

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

157

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

158

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

159

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

160

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

161

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• reverseString(“d”) = reverseString(“”) + ‘d’

• Base Case: reverse “” → get “”

162

Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• reverseString(“d”) = reverseString(“”) + ‘d’

• Base Case: reverse “” → get “”

163

Reversing strings

• Recursive Case:

reverseString(str) = reverseString(str w/o first letter) + first letter

• Base Case:

reverseString(“”) = “”

164

Reversing strings

• Recursive Case:

reverseString(str) = reverseString(str w/o first letter) + first letter

or

reverseString(str) = last letter + reverseString(str w/o last letter)

• Base Case:

reverseString(“”) = “”

165

Let’s Code it Up!

166

Recap

• Recursion is a problem-solving technique in which tasks are

completed by reducing them into repeated, smaller tasks of the

same form
• A recursive operation (function) is defined in terms of itself (i.e. it calls

itself)

167

Recap

• Recursion is a problem-solving technique in which tasks are

completed by reducing them into repeated, smaller tasks of the

same form

• Recursion has two main parts: base case and recursive case
• Base case: Simplest form of the problem that has a direct answer

• Recursive case: The step where you break the problem into a smaller,

self-similar task

168

Recap

• Recursion is a problem-solving technique in which tasks are

completed by reducing them into repeated, smaller tasks of the

same form

• Recursion has two main parts: base case and recursive case

• The solution will get built up as you come back up the call stack.
• The base case will define the “base” of the solution you’re building up.

• Each previous recursive call contributes a little bit to the final solution.

• The initial call to your recursive function is what will return the

completely constructed answer.

169

Recap

• Recursion is a problem-solving technique in which tasks are

completed by reducing them into repeated, smaller tasks of the

same form

• Recursion has two main parts: base case and recursive case

• The solution will get built up as you come back up the call stack.

• When solving problems recursively, look for self-similarity and

think about what information is getting stored in each stack frame.

170

Midterm Logistics

• Monday, July 17 from 7-9pm in Hewlett Teaching Center, Room 200
• Students with exam accommodations will get an email from us

• This exam is on paper, using pen/pencil.

• The exam is closed-book and closed-device.
• Provide you with a reference sheet on Stanford library functions.

• Allow you to bring your own notes sheet (one page, front and back,

8-1/2" x 11", where you have written/printed/drawn whatever

information you would like to have handy during the exam)

• All information is here

171

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/refsheet.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/

Midterm Logistics

• Coverage: Material up to and including Lecture 10, Assignment 2,

and Section 3 (not testing stuff only in the textbook)

• Format:
• Write a function or a few lines of code

• Trace through code and analyze its behavior

• Write response to a short answer question

• Practice:
• 2 full length practice exams with solutions

• Section problems

• Review session on Thursday and Friday

172

Midterm

• Evaluate your problem-solving skills and conceptual understanding

of the material, not your ability to use perfect syntax

• Most points awarded for valid approach to solving the problem,

fewer points for the minute details of executing your plan

• Not taking off points for
• Missing braces around clearly indented blocks of code

• Missing semicolons

• Missing #include
• Give partial credit for meaningful pseudocode

173

