Introduction to Recursion

Amrita Kaur
July 10, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements and Reminders

* Assignment 2 due Friday at 11:59pm
* |Gs with your SL on Assignment 1 this week

* Midterm next Monday from 7-9pm
* Talk more about this at the end of today’s class!

Stanford University

Roadmap

Abstract Data
Structures

Core

++
Tools €

Object-Oriented
Programming

Memory
Management

Linked
Data
Structures

Recursion

Advanced
Algorithms

Stanford University

Roadmap

Abstract Data
Structures

Core

++
Tools €

Object-Oriented
Programming

Algorithmic
Analysis

Memory
Management

Linked
Data
Structures

Advanced
Algorithms

Stanford University

Jumble - July 10, 2023

TEYPT f o and 4t
Doyoudo __ Yrillion and =g zitch.,
It's ea/sy.

TOTOH

> 5
Q Q Q oL Not a trouble in
the world. ‘;—

No problems there.
S

(J)
(0
()
@

NINWOM
SAlEE0 WHEN ASKED IF BEING THE
NUMBER ZERO WAS EASY, THE
\ ZERO SAID THERE WAS ---

Stanford University

Code it up

void permute4(string s) {
for (int i = 0; 1 < 4; i++) {
for (int j = 0; j < 4 ; j++) {

if (5 == 1) {
continue; // ignore

}

for (int k = 03 k < 4; k++) {
if (k == j or k == 1) {

continue; // ignore

}
for (intw = 0; w < 4; wt+) {
if (w == k or w == j or w == i) {
continue; // ignore
}
cout << s[i] << s[j] << s[k] << s[w] << endl;
}

Stanford University

Code it up

void permute5(string s) {
for (int i = 0; 1 < 4; di++) {
for (int j = 03 j < 4 ; j++) {

if (J == 1) {
continue; // ignore

}

for (int k = 0; k < 4; k++) {
if (k == j or k == 1) {

continue; // ignore

}
for (intw = 0; w < 4; wt+) {
if (w == k or w == j or w == i) {
continue; // ignore
}
for (int x = 0; x < 5; x++) {
if (x ==k or x == jor x == 1 or x == w) {
continue;
}
cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;
}
}

Stanford University

Recursion

Stanford University

What is recursion?

Wikipedia: “concept or process depends on a simpler version of itself”

GO gle recursion

Q All E) Images = News [Books [»] Videos : More Tools

About 308,000,000 results (0.26 seconds)

Did you mean: recursion

Stanford University

10

What is recursion?

RECURSION
RECURSION
RELLSSION
e
RECURSION

Here we go again

Stanford University

11

What is recursion?

* A problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

* Powerful substitution for iteration (loops)

e Start by seeing the difference between iterative vs. recursive solutions
* Later will see problems that can only be solved by recursion

* Results in elegant, often shorter code
e Can be used to express patterns seen in nature

Stanford University

12

Recursion in nature

/2 inch . .
- Stanford University

13

Using recursion in real life

Solve puzzle:

1. Is the puzzle finished?

If yes, stop.

2. Find one correct piece
and place it

3. Solve the rest of the
puzzle

Stanford University

14

Using recursion in real life

* | want to figure out how many students came to class today
* | want to recruit your help, but | also want to minimize each
individual’s amount of work

Stanford University

15

Counting students

* Focus on counting a single row first
e | ask the person on the very left “How many people are to your right?”
e Student’s algorithm:
e If there is no one to your right, answer 0.
* |f someone is sitting to your right
* Ask that person, “How many people are to your right?”
* When they respond with a value N, respond (N+1) to the
person who asked you
* Can generalize to the entire lecture hall

Stanford University

16

Counting students

* Focus on counting a single row first

° | MMMM right?"

* S recursion

problem-solving technique in which tasks are completed
by reducing them into repeated, smaller tasks of the
same form ‘-

the

person who asked you
* Can generalize to the entire lecture hall

Stanford University

17

What is recursion?

* In programming, it means that the function calls itself
* Every time the function is called, the problem becomes a little
smaller

void recurse() {

recurse() ;

https://cplayground.com/?p=crocodile-peafowl-quelea

18

Two main components

e Base case

* The simplest version of your problem that all other cases reduce to
* An occurrence that can be answered directly

Is the puzzle finished? If yes, stop. If there is no one to your right, answer 0.

Stanford University

19

Two main components

e Base case

* The simplest version of your problem that all other cases reduce to
* An occurrence that can be answered directly

* Recursive case
 More complex version of the problem that cannot be directly answered
* Break down the task into smaller occurrences
* Take the “recursive leap of faith” and trust the smaller tasks will solve the
problem for you!

Place one piece and solve If someone is sitting to

rest of puzzle your right...

Stanford University

20

Two main components

e Base case

The simplest version of your problem that all other cases reduce to
An occurrence that can be answered directly

e Recursive case

More complex version of the problem that cannot be directly answered
Break down the task into smaller occurrences

Take the “recursive leap of faith” and trust the smaller tasks will solve the
problem for you!

Stanford University

21

Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.
2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance
of the same problem, and make progress towards the base case.

Stanford University

22

Compute Factorial!

Stanford University

23

Factorial Example

e The number ,denoted as n!,is

* For example,
« 3! =3 x 2 x 1 =26
e 4] = 4 x 3 x 2 x 1 = 24
« 51 =5 x4 x 3 x 2 x 1 =120
« O! = 1 (bydefinition)

* Let’simplement a function to compute factorials!

Stanford University

24

Computing Factorials

5! =5 x4 x 3 x 2 x 1

Stanford University

25

Computing Factorials

Bl = 5§ x 4 x 3 x 2 x 1

. J
Y

4!

Stanford University

26

Computing Factorials

5! =5 x 4]

Stanford University

27

Computing Factorials

5! =5 x 4!
4! 4 x 3 x 2 x 1

Stanford University

Computing Factorials

51
4!

il
H U
X X
w b
y o=
N

28

Stanford University

29

Computing Factorials

5! = 5 x 4!
4! = 4 x

Stanford University

30

Computing Factorials

= 5 x 4]
4 x 3!
3 x 2 x 1

5!
4!
3

Stanford University

31

Computing Factorials

=5 x 4!
4 x 3!
3 X

5!
4!
3

Stanford University

Computing Factorials

=5 x 4]
4 x 3!

3 X
N\ J

5!
4!
3

Stanford Univers

32

ity

33

Computing Factorials

=5 x 4!
4 x 3!
3 X

5!
4!
3

Stanford University

34

Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 21
2! = 2 x 1

Stanford University

35

Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x

Stanford University

36

Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x

Stanford University

37

Computing Factorials

= N W bH O
1

= N W S U0

X X X X X

= = N W S

Stanford University

38

Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x

Stanford University

39

Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x 0!
0! = 1

Stanford University

40

More views of factorials

' | ifn =20
n! =
n x (n— 1) otherwise

Stanford University

41

More views of factorials

' | ifn =20
n! =
n x (n— 1) otherwise

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1);

}

Stanford University

42

Three “Musts” of Recursion

1. Your code must have a case

for all valid inputs.
int factorial (int n) {

it (n == 0) {
return 1;
} else {
return n * factorial(n-1);

Stanford University

Three “Musts” of Recursion

int factorial (int n) {

it (n == 0) {
[return 1; }
} else {
return n * factorial(n-1);

43

Your code must have a case
for all valid inputs.

You must have a base case
that does not make
recursive calls.

Stanford University

Three “Musts” of Recursion

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n * factorial(n-1);

44

Your code must have a case
for all valid inputs.

You must have a base case
that does not make
recursive calls.

When you make a recursive
call it should be to a simpler
instance of the same
problem, and make progress
towards the base case.

Stanford University

Recursion in action

int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;
return 0;

int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n x factorial(n-1);

45

Stanford University

46

Aside on Computer Memory

Stanford University

47

Computer Memory 8,000,000,000

 Computer’s memory is like a giant vector

* Like a vector, we can index memory starting
from O.

 We draw memory vertically with index O at
the bottom

* Typical laptop’s memory has billions of these
indexed slots (one byte each)

Stanford University

Computer Memory

Divide memory in a few main regions

Text: program’s own code

Heap: where dynamically allocated memory
resides

Stack: where local variables for each
function are stored

48

Stack

T

Heap

Text

Stanford University

49

Recall this program

tripleWeight
void tripleWeight(double weight) {
3.18
weight *x= 3;
weight
ks
: : main
int main() {
double weight = 1.06; 1.06
tripleWeight(weight); weight
cout << weight << endl;

Stanford University

50

Stack Frames

tripleWeight
/\ 3.18
These are called “stack frames.” weight
One gets created each time a
function is called. ma-in
1.06
weight

Stanford University

Stack Frames

main()

weight:

1.

06

main

51

Heap

1.06

weight

Text

Stanford University

Stack Frames

tripleWeight

52

3.18

weight

main()
weight: | 1.06
tripleWeight()
weight: | 3.18

}
f

main

Heap

1.06

weight

Text

Stanford University

Stack Frames

main()

weight:

1.06

tripleWeight()

weight:

3.18

}
f

main

53

Heap

1.06

weight

Text

Stanford University

Stack Frames

main()

weight:

1.

06

}

Heap

Text

54

Stanford University

Stack Frames

main()

weight: | 1.06

tripleWeight()

weight: | 3.18

}
f

Heap

Text

55

The “stack” part of memory
is a stack!

A function call pushes a
stack frame onto the stack
A function return pops a
stack from from the stack

Stanford University

56

Back to Factoriall

Stanford University

Recursion in action

57

int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;
return 0;

int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n x factorial(n-1);

Heap, Text

Stanford University

58

Recursion in action

int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;

return 0;

0 Heap, Text

Stanford University

59

Recursion in action

int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;

return 0;

0 Heap, Text

Stanford University

Recursion in action

60

main()

int main () {

int n = factorial(5);
cout << “5! = 7 << n << endl;

return 0;

Heap, Text

Stanford University

Recursion in action

61

main()

int main () {
int n = factorial(5);
cout << “51 = 7 << n << endl;

return 0;

Heap, Text

Stanford University

Recursion in action

62

main()

n:

int main () {
int n =|factorial(5)|;
cout << “51 = 7 << n << endl;

return 0;

Heap, Text

Stanford University

Recursion in action

63

main() e

A e e e A {\ I

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x factorial(n-1);

Heap, Text

Stanford University

Recursion in action

64

main() e

A e e e A {\ I

factorial() p: 5

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x factorial(n-1);

Heap, Text

Stanford University

65

main() n:
Recursion In action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1);
}
}
0 Heap, Text

Stanford University

66

main() n:
Recursion In action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1);
}
}
0 Heap, Text

Stanford University

67

main() n:
Recursion In action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n * factorial(n-1);
}
}
0 Heap, Text

Stanford University

Recursion in action

68

main() e

A e e e A {\ I

factorial() p: 5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

returnfn|x factorial(n-1);
} 5

Heap, Text

Stanford University

Recursion in action

69

main() e

A e e e A {\ I

factorial() p: 5

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x |factorial(n-1)§

A

¥ 5

Heap, Text

Stanford University

70

main() e
Recursion in action .
factorial() p: 5
O T NN AL W §
1nt fartonrial (1t n) [
int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n x factorial(n-1);
] }
}
0 Heap, Text

Stanford University

71

main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot) f factorial() n: | 4

int factorial (int n) {

it (n == 0) {
return 1;

} else {
return n * factorial(n-1);

0 Heap, Text

Stanford University

72

main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot) f factorial() n: | 4

int factorial (int n) {

it (n == 0) {
return 1;

} else {
return n * factorial(n-1);

0 Heap, Text

Stanford University

73

main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot) f factorial() n: | 4

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)

A X)

0 Heap, Text

Stanford University

74

main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::p::rja1 (ot) f factorial() n: | 4

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return|n|* factorial(n-1);

0 Heap, Text

Stanford University

Recursion in action

A e e e A {\ I

75

main() e

factorial() p: 5

1nt fartnrial (111t n)

g

int factorial (int
if (n == 0) {
return 1;

} else {

n) {

return n *

factorial(n—l)}

4

factorial() p: 4

Heap, Text

Stanford University

76

main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot) f factorial() n: | 4

1nt facrtnrial (1int n) S

int factorial (int n) {
it (n == 0) {
return 1;
} else {
. return n * factorial(n-1);

0 Heap, Text

Stanford University

77

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1);
] }
}
0 Heap, Text

Stanford University

78

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1);
] }
}
0 Heap, Text

Stanford University

79

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1);
] }
}
0 Heap, Text

Stanford University

80

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1)|;
] }
}
0 Heap, Text

Stanford University

81

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
1nt fartonrial (1t n) [faCtor-la-L() n: 4
ant fartnraal (1t n) [factor-ial() n 3
int factorial (int n) {
it (n == 0) {
return 1;
} else {
) return|n|* factorial(n-1);
] }
3
}
0 Heap, Text

Stanford University

82

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
1nt fartonrial (1t n) [faCtor-la-L() n: 4
ant fartnraal (1t n) [factor-ial() n 3
int factorial (int n) {
it (n == 0) {
return 1;
} else {
) return n *|factorial(n-1)|;
] }
3
}
0 Heap, Text

Stanford University

83

main() e
Recursion in action)
factorial() n 5
O T NN AL W §)
ot factorial (int o) [raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (dint n) £
int factorial (int n) {
it (n == 0) {
] return 1;
i } else {
] return n x factorial(n-1);
}
}
0 Heap, Text

Stanford University

84

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return n * factorial(n-1);
}
}
0 Heap, Text

Stanford University

85

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return n * factorial(n-1);
}
}
0 Heap, Text

Stanford University

86

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return n * factorial(n-1);
}
}
0 Heap, Text

Stanford University

87

main() n:
Recursion In action factorial()
n 5
A e e e A £ L
f [3
nt foartnrial (1nt n) [aCtor-Ia-L() o -
ant fartnraal (1t n) [faCtor-ia-L() n 3
nt factordial (a0t n) [
. - . factorial() p 5
int factorial (int n) {
if (n == 0) {
return 1;
;
. } else {
;
J return n % factorial(n—l)}
}
}
0 Heap, Text

Stanford University

88

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
ant fartnraal (1t n) [factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return|n|* factorial(n-1);
} 2
}
0 Heap, Text

Stanford University

89

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
ant fartnraal (1t n) [factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x |factorial(n-1)§
} 2
}
0 Heap, Text

Stanford University

90

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
ot factordial (iot o) L racteriali) 4
St facteordial (Gt o) L factorial() i 2
int factorial (dint n) £ .
0t factardal (ot n) rEEHeriEat)l 2
int factorial (int n) {
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1);
j }
} Heap, Text

Stanford University

Recursion in action

91

A e e e A {\ I

1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] it (n == 0) {
; return 1;
i } else {
j }
}

return n x factorial(n-1);

main() n:
factorial() n 5
factorial() n 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text

Stanford University

92

main() e
Recursion In action .
factorial() p: 5
O T NN AL W §)
ot factordial (iot o) L ractorell me | 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat)l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1);
j }
} Heap, Text

Stanford University

93

main() e
Recursion In action .
factorial() p: 5
O T NN AL W §)
ot factordial (iot o) L ractorell me | 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat)l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1);
j }
} Heap, Text

Stanford University

94

main() e
Recursion In action .
factorial() p: 5
O T NN AL W §)
ot factordial (iot o) L ractorell me | 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat)l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
} Heap, Text

Stanford University

95

main() e
Recursion In action .
factorial() p: 5
O T NN AL W §)
ot factordial (iot o) L racteriali) 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat)l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return|n|x factorial(n-1);
j }
} 1 Heap, Text

Stanford University

Recursion in action

96

A e e e A {\ I

1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x| factorial(n-1)
1 1 .
}

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text

Stanford University

97

main() e

Recursion in action

factorial() p: 5

A e e e A {\ I

factorial .
1nt fartonrial (1t n) [() n: 4
Aot foctoraal (St Y T factor-ia-l_() n 3
nt factordial (a0t n) [
factorial() n 5
ot _factordal (dnt n) [
S ctorial() n 1
] int factorial (int n) {
] if (n == 0) {
! return 1;
} else {
1 return n * factorial(n-1);
1 Heap, Text
} p
} Stanford University

98

main() ne
Recursion in action)
factorial() n 5
O T NN AL W § .
it factordial (et on) L factorial() n: | 4
ot faorctaoraal (St) L factor-ia'[_() n 3
int factorial (dint n) £ .
‘0t factarial (diot n) factorial() n: | »
N ctorial() n 1
; int factorial (int n) {
. 1 if (n == 0) { torial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

99

main() ne
Recursion in action)
factorial() n 5
O T NN AL W § .
it factordial (et on) L factorial() n: | 4
ot faorctaoraal (St) L factor-ia'[_() n 3
int factorial (dint n) £ .
‘0t factarial (diot n) factorial() n: | »
N ctorial() n 1
; int factorial (int n) {
. 1 if (n == 0) { torial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

100

main() ne
Recursion in action)
factorial() n 5
O T NN AL W § .
it factordial (et on) L factorial() n 4
ot faorctaoraal (St) L factor-ia'[_() n 3
int factorial (dint n) £ .
‘0t factarial (diot n) factorial() n: | »
N ctorial() n 1
; int factorial (int n) {
. 1 if (n == 0) { torial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University

101

main() n:
Recursion In action .
factorial() p 5
it maan (N [.
snt Foctordial (40t nY) L factorial() n: | 4
Gt Feartoraial (Gedt o) S factorial() p 3
int factorial (int n) £ :
int factorial (int n) £ factorial() n 2
e ctorial() n: |
; int factorial (int n) { : ‘>1
] 1 if (n == 0) { ctorial() n: | ¢
] return 1;
} else {
A return n * factorial(n-1);
1 Heap, Text
} Stanford University

Recursion in action

102

A e e e A {\ I

1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x| factorial(n-1)
1 1 .
}

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
M1
Heap, Text

Stanford University

Recursion in action

A e e e A {\ I

1nt fartonrial (1t n) [

(1int n) S

1nt facrtnrial

nt factordial (a0t n) [

103

ot _factordal (dnt n) [

int factorial (int n) {

factorial(n-1)

] if (n == 0) {
] return 1;
i } else {
return n %
1 1 .
}

1

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
M1
Heap, Text

Stanford University

Recursion in action

A e e e A {\ I

1nt fartonrial (1t n) [

(1int n) S

1nt facrtnrial

nt factordial (a0t n) [

104

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
} 1 X 1

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text

Stanford University

Recursion in action

105

A e e e A {\ I

1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
1 1

main() n:
factorial() n 5
factorial() n 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text

Stanford University

Recursion in action

106

A e e e A {\ I

1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
1 1

main() n:

factorial() n 5

factorial() n 4

factorial() n 3

factorial() n 5

fFactorial() n 1 >1
Heap, Text

Stanford University

107

main() e
Recursion In action ;
factorial() n 5
Tt mAaan (\ |
f i .
1ant foartnraial (-t n) [aCtor-Ia-L() ak 4
Tnt Fartanraal (1t) I factor-ial() n 3
nt factordial (a0t n) [
. _ . factorial()
int factorial (int n) {

)
N
T
H

it (n == 0) {
return 1;
i } else {
. return n *x |factorial(n-1)

A\~]

2

0 Heap, Text

Stanford University

Recursion in action

A e e e A {\ I

1nt fartonrial (1t n) [

S

108

factorial(n-1)

1

ot factoraal (Sod)
int factordial (G0t n) £
int factorial (int n) {
it (n == 0) {
] return 1;
i } else {
] return n x*
} 2
}

A\~]

main() n:
factorial() n 5
factorial() n 4
factorial() n 3
factorial() n 5
M1
Heap, Text

Stanford University

109

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x factorial(n-1)§
} 2 X 1
}
0 Heap, Text

Stanford University

110

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
ant fartnraal (1t n) [factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x factorial(n-1)§
} 2
}
0 Heap, Text

Stanford University

111

main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [>2
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x factorial(n-1)§
} 2
}
0 Heap, Text

Stanford University

112

main() e

Recursion In action .
factorial() n 5

Tt maan ([)
1ant fartnrial (nt n) S faCtor-la-L() ak 4
ant fartnraal (1t n) [factor-ial() n 3

int factorial (int n) { '>2
it (n == 0) {

return 1;
} else {
. return n *|factorial(n-1)|;

3

0 Heap, Text

Stanford University

113

main() e

Recursion In action .
factorial() n 5

Tt maan ([)
1ant fartnrial (nt n) S faCtor-la-L() ak 4
ant fartnraal (1t n) [factor-ial() n 3

int factorial (int n) { '>2
it (n == 0) {

return 1;
} else {
. return n *|factorial(n-1)|;

3 2

0 Heap, Text

Stanford University

114

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
1nt fartonrial (1t n) [faCtor-la-L() n: 4
Tnt fartanraal (2t) [factor-ial() n 3
int factorial (int n) {
it (n == 0) {
return 1;
} else {
) return n * factorial(n-1)|;
] }
3 X 2
}
0 Heap, Text

Stanford University

115

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1)|;
] }
1 6
0 Heap, Text

Stanford University

116

main() e
Recursion In action .
factorial() n 5
O T NN AL W §)
ot factordial (iot o) L raceoralll me | 4 ‘>6
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1)|;
] }
1 6
0 Heap, Text

Stanford University

Recursion in action

A e e e A {\ I

117

main() e

factorial() p: 5

1nt fartnrial (111t n)

g

int factorial (int
if (n == 0) {
return 1;

} else {

n) {

return n *

factorial(n—l)}

4

factorial() p: 4

Heap, Text

Stanford University

118

main() e

Recursion in action

factorial() p: 5

A e e e A {\ I

factorial() p: 4
1nt fartonrial (1t n) [>6

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n—l)}

4 6

0 Heap, Text

Stanford University

Recursion in action

A e e e A {\ I

119

main() o

factorial() p: 5

1nt fartonrial (1t n) [

int factorial (int n) {
if (n == 0) {
return 1;

} else {
return n x factorial(n—l)}

4 X 6

factorial() p: 4

Heap, Text

Stanford University

Recursion in action

A e e e A {\

L

120

main() e

factorial() p: 5

1nt fartonrial (1t n) [

int factorial (int n) {
if (n == 0) {

return 1;

} else {

return n x factorial(n—l)}

24

factorial() p: 4

Heap, Text

Stanford University

Recursion in action

A e e e A {\

L

121

main() e

factorial() p: 5

1nt fartonrial (1t n) [

int factorial (int n) {
if (n == 0) {

return 1;

} else {

return n x factorial(n—l)}

24

factorial() p: 4

Heap, Text

Stanford University

Recursion in action

122

A e e e A {\ I

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x |factorial(n-1)§

A

¥ 5

main() e
factorial() p: 5 >
24

Heap, Text

Stanford University

Recursion in action

123

A e e e A {\ I

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x |factorial(n-1)§

A

¥ 5 24

main() e
factorial() p: 5 >
24

Heap, Text

Stanford University

124

main() e
Recursion in action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)§
¥ 5 x 24
}
0 Heap, Text

Stanford University

125

main() e
Recursion in action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)§
}
120
}
0 Heap, Text

Stanford University

126

main() e
Recursion in action .)
factorial() p: 5 120
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)§
}
120
}
0 Heap, Text

Stanford University

Recursion in action

127

main()

int main () {
int n =|factorial(5)|;
cout << “51 = 7 << n << endl;

return 0;

—

120

Heap, Text

Stanford University

Recursion in action

128

main()

n: | 120

int main () {
int n =|factorial(5)|;
cout << “51 = 7 << n << endl;

return 0;

Heap, Text

Stanford University

Recursion in action

129

main()

n: | 120

int main () {
int n = factorial(5);

cout << “5! = 7 << n << endl;

return 0;

Heap, Text

Stanford University

Recursion in action

130

main()

n: | 120

int main () {
int n = factorial(5);

cout << “5! = 7 << n << endl;
return 0;
}
Console:
5! = 120

Heap, Text

Stanford University

Recursion in action

131

main()

n: | 120

int main () {
int n = factorial(5);

cout << “5! = 7 << n << endl;
return 0;
}
Console:
5! = 120

Heap, Text

Stanford University

132

Recursion in action

Console:

R

0 Heap, Text

Stanford University

133

Recursive vs Iterative Methods

int factorial (int n) {
if (n == 0) {
return 1;
} else {

return n * factorial(n-1);

int factoriallterative (int n) {
int result = 1;
for (int i = 15 1 <= n; i++) {
result = result x 1;

}

return result;

Stanford University

134

Recursive vs Iterative Methods

int factorial (int n) { int factoriallterative (int n) {
it (n == 0) { int result = 1;
return 1; for (int i = 1; 1 <= nj; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
} }
n =5, time=5823ms n =5, time=5.485ms

Stanford University

135

Recursive vs Iterative Methods

int factorial (int n) { int factoriallterative (int n) {
it (n == 0) { int result 1;

return 1;

for (int i = 15 1 <= n; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
} }

n =5, time=5823ms n =5, time=5.485ms
n = 100,000, time=8.703 ms n = 100,000, time=5.589 ms

Stanford University

136

Recursive vs Iterative Methods

int factorial (int n) {

int factoriallterative (int n) {
it (n == 0) { int result = 1;
return 1; for (int i = 1; i <= n; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
}

n =5, time=5823ms n =5, time=5.485ms
n = 100,000, time=8.703 ms n = 100,000, time=5.589 ms

n = 1,000,000, “segmentation fault” n = 1,000,000, time=7.501ms

Stanford University

137

What is recursion?

* In programming, it means that the function calls itself
* Every time the function is called, the problem becomes a little
smaller

void recurse() {

recurse() ;

https://cplayground.com/?p=crocodile-peafowl-quelea

What is recursion?

void recurse() {

recurse() ;

138

Your code must have a case
for all valid inputs.

You must have a base case
that does not make
recursive calls.

When you make a recursive
call it should be to a simpler
instance of the same
problem, and make progress
towards the base case.

Stanford University

What is recursion?

139

main()

void recurse() {

recurse() ;

Heap, Text

Stanford University

140

main()

What is recursion?

recurse()

recurse()

recurse()
void recurse() {

recurse()
recurse() ;

recurse()

recurse()

recurse()

0 Heap, Text

Stanford University

141

main()

What is recursion?

recurse()

recurse()

recurse()
void recurse() {

recurse()
recurse() ;

recurse()

recurse()

///"\\~‘ recurse()

Stack Overflow! recurse()

Heap, Text

Stanford University

142

Reverse a String

Stanford University

143

Reversing strings

Suppose we want to reverse strings like in the following examples:
lld ” o ”
og” — “god
“stressed” — “desserts”
“racecar” — “racecar”

yo - Iloy”

ou_7” ow_7”

d — d

Stanford University

144

Approaching recursive problems

* Look for self-similarity.

* Try out an example.
* Work through a simple example and then increase the complexity.
* Think about what information needs to be “stored” at each step in the
recursive case (like the current value of nin each factorial stack
frame).

e Askyourself:

 What is the base case? (What is the simplest case?)
* Whatis the recursive case? (What pattern of self-similarity do you see?)

Stanford University

145

Reversing strings

Look for self-similarity: “stressed” — “desserts”

Stanford University

146

Reversing strings

Look for self-similarity: “stressed” — “desserts”

 What’s the first step you would take to reverse “stressed”?

Stanford University

147

Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string

Stanford University

148

Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”

Stanford University

149

Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string

* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”

Stanford University

150

Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

Stanford University

151

Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

own aun

 Then reverse “” — get

Stanford University

152

Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun

* . reverse — get

own

Stanford University

153

Reversing strings

Look for self-similarity:

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University

154

Reversing strings

Look for self-similarity:

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University

155

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* Take the ‘t’ and put it at the end of the string

* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University

156

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

e Take the ‘t” and put it at the end of the string

* Then reverse “ressed”
e Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

* Take the ‘d" and put it at the end of the string

owyr$ ay$

* Base Case: reverse ©" — get

Stanford University

157

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

e Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

* Take the ‘d" and put it at the end of the string

owyr$ ay$

* Base Case: reverse ©" — get

Stanford University

158

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University

159

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University

160

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

* Take the ‘d’ and put it at the end of the string

owyr$ ay$

* Base Case: reverse " — get

Stanford University

161

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’
* reverseString(“ressed”) = reverseString(“essed”) + ‘r’

owyr$ ay$

* Base Case: reverse " — get

Stanford University

162

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’
* reverseString(“ressed”) = reverseString(“essed”) + ‘r’

owyr$ ay$

* Base Case: reverse ™" — get

Stanford University

163

Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’
* reverseString(“ressed”) = reverseString(“essed”) + ‘r’

* reverseString(“d”) = reverseString(“”) + ‘d’

owyr$ ay$

* Base Case: reverse ™" — get

Stanford University

164

Reversing strings

e Recursive Case:

reverseString(str) = reverseString(str w/o first letter) + first letter

e Base Case:

an

reverseString(“”) =

Stanford University

165

Reversing strings

* Recursive Case:
reverseString(str) = reverseString(str w/o first letter) + first letter
or

reverseString(str) = last letter + reverseString(str w/o last letter)

e Base Case:

an

reverseString(“”’) =

Stanford University

166

Let’s Code it Up!

Stanford University

167

Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the

same form

* Arecursive operation (function) is defined in terms of itself (i.e. it calls
itself)

Stanford University

168

Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the

same form
* Recursion has two main parts: base case and recursive case
* Base case: Simplest form of the problem that has a direct answer
* Recursive case: The step where you break the problem into a smaller,

self-similar task

Stanford University

169
Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the

same form
* Recursion has two main parts: base case and recursive case

* The solution will get built up as you come back up the call stack.
* The base case will define the “base” of the solution you’re building up.
* Each previous recursive call contributes a little bit to the final solution.
* The initial call to your recursive function is what will return the
completely constructed answer.

Stanford University

170

Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the
same form

* Recursion has two main parts: base case and recursive case

* The solution will get built up as you come back up the call stack.

* When solving problems recursively, look for self-similarity and
think about what information is getting stored in each stack frame.

Stanford University

171

Midterm Logistics

Monday, July 17 from 7-9pm in Hewlett Teaching Center, Room 200

e Students with exam accommodations will get an email from us
This exam is on paper, using pen/pencil.

The exam is closed-book and closed-device.
* Provide you with a reference sheet on Stanford library functions.

* Allow you to bring your own notes sheet (one page, front and back,
8-1/2" x 11", where you have written/printed/drawn whatever
information you would like to have handy during the exam)

All information is here

Stanford University

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/refsheet.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/

172

Midterm Logistics

* Coverage: Material up to and including Lecture 10, Assignment 2,
and Section 3 (not testing stuff only in the textbook)

* Format:

* Write a function or a few lines of code

* Trace through code and analyze its behavior

* Write response to a short answer question
* Practice:

« 2 full length practice exams with solutions

e Section problems

* Review session on Thursday and Friday

Stanford University

173

Midterm

e Evaluate your problem-solving skills and conceptual understanding
of the material, not your ability to use perfect syntax

* Most points awarded for valid approach to solving the problem,
fewer points for the minute details of executing your plan

* Not taking off points for
* Missing braces around clearly indented blocks of code
* Missing semicolons
* Missing #include

e Give partial credit for meaningful pseudocode

Stanford University

