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Announcements and Reminders

• Assignment 2 due Friday at 11:59pm

• IGs with your SL on Assignment 1 this week

• Midterm next Monday from 7-9pm
• Talk more about this at the end of today’s class!
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Code it up
void permute4(string s) {

for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4 ; j++) {

if (j == i) {
continue; // ignore

}
for (int k = 0; k < 4; k++) {

if (k == j or k == i) {
continue; // ignore

}
for (int w = 0; w < 4; w++) {

if (w == k or w == j or w == i) {
continue; // ignore

}
cout << s[i] << s[j] << s[k] << s[w] << endl;

}
}

}
}

}
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Code it up
void permute5(string s) {

for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4 ; j++) {

if (j == i) {
continue; // ignore

}
for (int k = 0; k < 4; k++) {

if (k == j or k == i) {
continue; // ignore

}
for (int w = 0; w < 4; w++) {

if (w == k or w == j or w == i) {
continue; // ignore

}
for (int x = 0; x < 5; x++) {

if (x == k or x == j or x == i or x == w) {
continue;

}
cout << "  " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;

}
}

}
}

}
}

7



Recursion
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What is recursion?

Wikipedia: “concept or process depends on a simpler version of itself”
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What is recursion?
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What is recursion?

• A problem-solving technique in which tasks are completed by 

reducing them into repeated, smaller tasks of the same form.

• Powerful substitution for iteration (loops)
• Start by seeing the difference between iterative vs. recursive solutions

• Later will see problems that can only be solved by recursion

• Results in elegant, often shorter code

• Can be used to express patterns seen in nature
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Recursion in nature
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Using recursion in real life

Solve puzzle:

1. Is the puzzle finished? 

If yes, stop.

2. Find one correct piece 

and place it

3. Solve the rest of the 

puzzle
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Using recursion in real life

• I want to figure out how many students came to class today

• I want to recruit your help, but I also want to minimize each 

individual’s amount of work
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Counting students

• Focus on counting a single row first

• I ask the person on the very left “How many people are to your right?”

• Student’s algorithm:

• If there is no one to your right, answer 0.

• If someone is sitting to your right

• Ask that person, “How many people are to your right?”

• When they respond with a value N, respond (N+1) to the 

person who asked you

• Can generalize to the entire lecture hall
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Counting students

• Focus on counting a single row first

• I ask the person on the very left “How many people are to your right?”

• Student’s algorithm:

• If there is no one to your right, answer 0

• If someone is sitting to your right

• Ask that person, “How many people are to your right?”
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person who asked you

• Can generalize to the entire lecture hall
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recursion
problem-solving technique in which tasks are completed 

by reducing them into repeated, smaller tasks of the 
same form



What is recursion?

• In programming, it means that the function calls itself

• Every time the function is called, the problem becomes a little 

smaller
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void recurse() {

recurse();

}

*never ever write code like this

https://cplayground.com/?p=crocodile-peafowl-quelea


Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly
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Is the puzzle finished? If yes, stop. If there is no one to your right, answer 0.



Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly

• Recursive case
• More complex version of the problem that cannot be directly answered 

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the 

problem for you!
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Place one piece and solve 

rest of puzzle

If someone is sitting to 

your right…



Two main components

• Base case
• The simplest version of your problem that all other cases reduce to

• An occurrence that can be answered directly

• Recursive case
• More complex version of the problem that cannot be directly answered 

• Break down the task into smaller occurrences

• Take the “recursive leap of faith” and trust the smaller tasks will solve the 

problem for you!
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Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.

2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance 

of the same problem, and make progress towards the base case.
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Compute Factorial!
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Factorial Example

• The number n factorial, denoted as n!, is

n × (n-1) × … × 3 × 2 × 1

• For example,

• 3! = 3 × 2 × 1 = 6
• 4! = 4 × 3 × 2 × 1 = 24
• 5! = 5 × 4 × 3 × 2 × 1 = 120
• 0! = 1 (by definition)

• Let’s implement a function to compute factorials!
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Computing Factorials

5! = 5 × 4 × 3 × 2 × 1
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Computing Factorials

5! = 5 × 4 × 3 × 2 × 1
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4!



Computing Factorials

5! = 5 × 4!
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3 × 2 × 1
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3 × 2 × 1
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3!



Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2 × 1
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Computing Factorials

5! = 5 × 4!
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2 × 1
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2!



Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1
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1!



Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!
1! = 1 × 1
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Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!
1! = 1 × 1
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0!



Computing Factorials

5! = 5 × 4!
4! = 4 × 3!
3! = 3 × 2!
2! = 2 × 1!
1! = 1 × 0!
0! = 1
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More views of factorials
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More views of factorials
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}



Three “Musts” of Recursion
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

1. Your code must have a case 

for all valid inputs.



Three “Musts” of Recursion
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

1. Your code must have a case 

for all valid inputs.

2. You must have a base case 

that does not make 

recursive calls.



Three “Musts” of Recursion
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

1. Your code must have a case 

for all valid inputs.

2. You must have a base case 

that does not make 

recursive calls.

3. When you make a recursive 

call it should be to a simpler 

instance of the same 

problem, and make progress 

towards the base case.



Recursion in action
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}



Aside on Computer Memory
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Computer Memory

• Computer’s memory is like a giant vector

• Like a vector, we can index memory starting 

from 0.

• We draw memory vertically with index 0 at 

the bottom

• Typical laptop’s memory has billions of these 

indexed slots (one byte each)
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0

8,000,000,000

…
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…



Text

Computer Memory

Divide memory in a few main regions

• Text: program’s own code

• Heap: where dynamically allocated memory 

resides 

• Stack: where local variables for each 

function are stored
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0

Heap

Stack



Recall this program

void tripleWeight(double weight) {
weight *= 3;

}

int main() {
double weight = 1.06;
tripleWeight(weight);
cout << weight << endl; 

}
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Stack Frames

These are called “stack frames.” 
One gets created each time a 

function is called.
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Stack Frames
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Stack Frames
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Stack Frames
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Stack Frames
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Stack Frames

55

Text
0

Heap

main()
1.06weight:

tripleWeight()

3.18weight:

The “stack” part of memory 

is a stack!

• A function call pushes a 

stack frame onto the stack

• A function return pops a 

stack from from the stack



Back to Factorial!
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Recursion in action
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0



Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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Recursion in action
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if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2



Recursion in action

89

int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}

Heap, Text0

main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1

1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1

1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1

1

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else { 
return n * factorial(n-1);

}
}

n: 0
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else { 
return n * factorial(n-1);

}
}

n: 0
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else { 
return n * factorial(n-1);

}
}

n: 0
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial()int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

n: 1

1

factorial()
int factorial (int n) {

if (n == 0) {
return 1;

} else { 
return n * factorial(n-1);

}
}

n: 0
1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1
1

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

} 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1
1

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

} 1 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

} 1          x 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

} 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

factorial() n: 1int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

} 1

1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

1

1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2          x 1
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2
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int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 2

2

2
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

2
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int main () {
int n = factorial(5);
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3

2

2
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int main () {
int n = factorial(5);
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return 0;
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

3          x 2
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

6
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 3

6
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4

6
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

4           x 6
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 4

24
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

5

int factorial (int n) {
if (n == 0) {

return 1;
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return n * factorial(n-1);
}

}

factorial() n: 4

24
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int factorial (int n) {
if (n == 0) {

return 1;
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factorial() n: 5

5
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
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}

}

factorial() n: 5

5          x 24
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
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return n * factorial(n-1);
}

}

factorial() n: 5
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main() n:

int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

factorial() n: 5

120
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int main () {
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int main () {
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int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}
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5! = 120

Console:
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int main () {
int n = factorial(5);
cout << “5! = ” << n << endl;
return 0;

}
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main() 120n:

5! = 120

Console:
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Console:



Recursive vs Iterative Methods
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5,    time = 5.823 ms n = 5,    time = 5.485 ms
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5,    time = 5.823 ms

n = 100,000,    time = 8.703 ms

n = 5,    time = 5.485 ms

n = 100,000,    time = 5.589 ms
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int factorial (int n) {
if (n == 0) {

return 1;
} else { 

return n * factorial(n-1);
}

}

int factorialIterative (int n) {
int result = 1;
for (int i = 1; i <= n; i++) {

result = result * i;
}
return result;

}

n = 5,    time = 5.823 ms

n = 100,000,    time = 8.703 ms

n = 1,000,000,    “segmentation fault”

n = 5,    time = 5.485 ms

n = 100,000,    time = 5.589 ms

n = 1,000,000,    time = 7.501 ms



What is recursion?

• In programming, it means that the function calls itself

• Every time the function is called, the problem becomes a little 

smaller

137

void recurse() {

recurse();

}

*never ever write code like this

https://cplayground.com/?p=crocodile-peafowl-quelea


What is recursion?
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void recurse() {

recurse();

}

1. Your code must have a case 

for all valid inputs.

2. You must have a base case 

that does not make 

recursive calls.

3. When you make a recursive 

call it should be to a simpler 

instance of the same 

problem, and make progress 

towards the base case.
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void recurse() {

recurse();

}

Heap, Text0

main()
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void recurse() {

recurse();

}

Heap, Text0

main()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()



What is recursion?
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void recurse() {

recurse();

}
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main()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()

recurse()Stack Overflow!



Reverse a String
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Reversing strings

Suppose we want to reverse strings like in the following examples:

“dog” → “god”

“stressed” → “desserts”

“racecar” → “racecar”

“yo” → “oy”

“a” → “a”
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Approaching recursive problems

• Look for self-similarity.

• Try out an example.
• Work through a simple example and then increase the complexity.

• Think about what information needs to be “stored” at each step in the 

recursive case (like the current value of n in each factorial stack 

frame).

• Ask yourself:
• What is the base case? (What is the simplest case?)

• What is the recursive case? (What pattern of self-similarity do you see?)
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Reversing strings

Look for self-similarity: “stressed” → “desserts”
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• What’s the first step you would take to reverse “stressed”?
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Then reverse “” → get “”
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: “stressed” → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• Take the ‘s’ and put it at the end of the string

• Then reverse “tressed”

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• Take the ‘t’ and put it at the end of the string

• Then reverse “ressed”

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”

157



Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• Take the ‘r’ and put it at the end of the string

• Then reverse “essed”

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• Take the ‘d’ and put it at the end of the string

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• reverseString(“d”) = reverseString(“”) + ‘d’

• Base Case: reverse “” → get “”
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Reversing strings

Look for self-similarity: reverseString(“stressed”) → “desserts”

• reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

• reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

• reverseString(“ressed”) = reverseString(“essed”) + ‘r’

• …
• reverseString(“d”) = reverseString(“”) + ‘d’

• Base Case: reverse “” → get “”
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Reversing strings

• Recursive Case: 

reverseString(str) = reverseString(str w/o first letter) + first letter

• Base Case:

reverseString(“”) = “”
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Reversing strings

• Recursive Case: 

reverseString(str) = reverseString(str w/o first letter) + first letter

or

reverseString(str) = last letter + reverseString(str w/o last letter)

• Base Case:

reverseString(“”) = “”
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Let’s Code it Up!
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Recap

• Recursion is a problem-solving technique in which tasks are 

completed by reducing them into repeated, smaller tasks of the 

same form
• A recursive operation (function) is defined in terms of itself (i.e. it calls 

itself)
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Recap

• Recursion is a problem-solving technique in which tasks are 

completed by reducing them into repeated, smaller tasks of the 

same form

• Recursion has two main parts: base case and recursive case
• Base case: Simplest form of the problem that has a direct answer

• Recursive case: The step where you break the problem into a smaller, 

self-similar task
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Recap

• Recursion is a problem-solving technique in which tasks are 

completed by reducing them into repeated, smaller tasks of the 

same form

• Recursion has two main parts: base case and recursive case

• The solution will get built up as you come back up the call stack.
• The base case will define the “base” of the solution you’re building up.

• Each previous recursive call contributes a little bit to the final solution.

• The initial call to your recursive function is what will return the 

completely constructed answer.
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Recap

• Recursion is a problem-solving technique in which tasks are 

completed by reducing them into repeated, smaller tasks of the 

same form

• Recursion has two main parts: base case and recursive case

• The solution will get built up as you come back up the call stack.

• When solving problems recursively, look for self-similarity and 

think about what information is getting stored in each stack frame.
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Midterm Logistics

• Monday, July 17 from 7-9pm in Hewlett Teaching Center, Room 200
• Students with exam accommodations will get an email from us

• This exam is on paper, using pen/pencil.

• The exam is closed-book and closed-device.
• Provide you with a reference sheet on Stanford library functions.

• Allow you to bring your own notes sheet (one page, front and back, 

8-1/2" x 11", where you have written/printed/drawn whatever 

information you would like to have handy during the exam)

• All information is here
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https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/refsheet.pdf
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1238/assessments/1-midterm/


Midterm Logistics

• Coverage: Material up to and including Lecture 10, Assignment 2, 

and Section 3 (not testing stuff only in the textbook)

• Format:
• Write a function or a few lines of code

• Trace through code and analyze its behavior

• Write response to a short answer question

• Practice:
• 2 full length practice exams with solutions

• Section problems

• Review session on Thursday and Friday
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Midterm

• Evaluate your problem-solving skills and conceptual understanding 

of the material, not your ability to use perfect syntax

• Most points awarded for valid approach to solving the problem, 

fewer points for the minute details of executing your plan

• Not taking off points for
• Missing braces around clearly indented blocks of code

• Missing semicolons 

• Missing #include
• Give partial credit for meaningful pseudocode
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