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Announcements and Reminders

* Assignment 2 due Friday at 11:59pm
* |Gs with your SL on Assignment 1 this week

* Midterm next Monday from 7-9pm
* Talk more about this at the end of today’s class!
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Code it up

void permute4(string s) {
for (int i = 0; 1 < 4; i++) {
for (int j = 0; j < 4 ; j++) {

if (5 == 1) {
continue; // ignore

}

for (int k = 03 k < 4; k++) {
if (k == j or k == 1) {

continue; // ignore

}
for (intw = 0; w < 4; wt+) {
if (w == k or w == j or w == i) {
continue; // ignore
}
cout << s[i] << s[j] << s[k] << s[w] << endl;
}
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Code it up

void permute5(string s) {
for (int i = 0; 1 < 4; di++) {
for (int j = 03 j < 4 ; j++) {

if (J == 1) {
continue; // ignore

}

for (int k = 0; k < 4; k++) {
if (k == j or k == 1) {

continue; // ignore

}
for (intw = 0; w < 4; wt+) {
if (w == k or w == j or w == i) {
continue; // ignore
}
for (int x = 0; x < 5; x++) {
if (x ==k or x == jor x == 1 or x == w) {
continue;
}
cout << " " << s[i] << s[j] << s[k] << s[w] << s[x] << endl;
}
}
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Recursion
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What is recursion?

Wikipedia: “concept or process depends on a simpler version of itself”

GO gle recursion

Q All E) Images = News [ Books [»] Videos : More Tools

About 308,000,000 results (0.26 seconds)

Did you mean: recursion
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What is recursion?

RECURSION
RECURSION
RELLSSION
e
RECURSION

Here we go again
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What is recursion?

* A problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

* Powerful substitution for iteration (loops)

e Start by seeing the difference between iterative vs. recursive solutions
* Later will see problems that can only be solved by recursion

* Results in elegant, often shorter code
e Can be used to express patterns seen in nature
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Recursion in nature

/2 inch . .
- Stanford University
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Using recursion in real life

Solve puzzle:

1. Is the puzzle finished?

If yes, stop.

2. Find one correct piece
and place it

3. Solve the rest of the
puzzle
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Using recursion in real life

* | want to figure out how many students came to class today
* | want to recruit your help, but | also want to minimize each
individual’s amount of work
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Counting students

* Focus on counting a single row first
e | ask the person on the very left “How many people are to your right?”
e Student’s algorithm:
e If there is no one to your right, answer 0.
* |f someone is sitting to your right
* Ask that person, “How many people are to your right?”
*  When they respond with a value N, respond (N+1) to the
person who asked you
* Can generalize to the entire lecture hall

Stanford University
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Counting students

* Focus on counting a single row first

° | MMMM right?"

* S recursion

problem-solving technique in which tasks are completed
by reducing them into repeated, smaller tasks of the
same form ‘-

the

person who asked you
* Can generalize to the entire lecture hall
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What is recursion?

* In programming, it means that the function calls itself
* Every time the function is called, the problem becomes a little
smaller

void recurse() {

recurse() ;



https://cplayground.com/?p=crocodile-peafowl-quelea
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Two main components

e Base case

* The simplest version of your problem that all other cases reduce to
* An occurrence that can be answered directly

Is the puzzle finished? If yes, stop. If there is no one to your right, answer 0.

Stanford University




19

Two main components

e Base case

* The simplest version of your problem that all other cases reduce to
* An occurrence that can be answered directly

* Recursive case
 More complex version of the problem that cannot be directly answered
* Break down the task into smaller occurrences
* Take the “recursive leap of faith” and trust the smaller tasks will solve the
problem for you!

Place one piece and solve If someone is sitting to

rest of puzzle your right...

Stanford University
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Two main components

e Base case

The simplest version of your problem that all other cases reduce to
An occurrence that can be answered directly

e Recursive case

More complex version of the problem that cannot be directly answered
Break down the task into smaller occurrences

Take the “recursive leap of faith” and trust the smaller tasks will solve the
problem for you!

Stanford University
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Three “Musts” of Recursion

1. Your code must have a case for all valid inputs.
2. You must have a base case that does not make recursive calls.

3. When you make a recursive call it should be to a simpler instance
of the same problem, and make progress towards the base case.

Stanford University
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Compute Factorial!

Stanford University
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Factorial Example

e The number ,denoted as n!,is

* For example,
« 3! =3 x 2 x 1 =26
e 4] = 4 x 3 x 2 x 1 = 24
« 51 =5 x4 x 3 x 2 x 1 =120
« O! = 1 (bydefinition)

* Let’simplement a function to compute factorials!

Stanford University
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Computing Factorials

5! =5 x4 x 3 x 2 x 1

Stanford University
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Computing Factorials

Bl = 5§ x 4 x 3 x 2 x 1

. J
Y

4!
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Computing Factorials

5! =5 x 4]
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Computing Factorials

5! =5 x 4!
4! 4 x 3 x 2 x 1
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Computing Factorials

51
4!
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Computing Factorials

5! = 5 x 4!
4! = 4 x
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Computing Factorials

= 5 x 4]
4 x 3!
3 x 2 x 1

5!
4!
3
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Computing Factorials

=5 x 4!
4 x 3!
3 X

5!
4!
3
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Computing Factorials

=5 x 4]
4 x 3!

3 X
N\ J

5!
4!
3
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Computing Factorials

=5 x 4!
4 x 3!
3 X

5!
4!
3
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Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 21
2! = 2 x 1
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Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x
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Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x
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Computing Factorials
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Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x

Stanford University
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Computing Factorials

5! = 5 x 4!
4! = 4 x 3!
3! = 3 x 2!
2! = 2 x 1!
1! = 1 x 0!
0! = 1
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More views of factorials

' | ifn =20
n! =
n x (n— 1) otherwise
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More views of factorials

' | ifn =20
n! =
n x (n— 1) otherwise

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1);

}

Stanford University
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Three “Musts” of Recursion

1.  Your code must have a case

for all valid inputs.
int factorial (int n) {

it (n == 0) {
return 1;
} else {
return n * factorial(n-1);

Stanford University




Three “Musts” of Recursion

int factorial (int n) {

it (n == 0) {
[ return 1; }
} else {
return n * factorial(n-1);

43

Your code must have a case
for all valid inputs.

You must have a base case
that does not make
recursive calls.

Stanford University



Three “Musts” of Recursion

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n * factorial(n-1);

44

Your code must have a case
for all valid inputs.

You must have a base case
that does not make
recursive calls.

When you make a recursive
call it should be to a simpler
instance of the same
problem, and make progress
towards the base case.
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Recursion in action

int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;
return 0;

int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n x factorial(n-1);

45
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Aside on Computer Memory
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Computer Memory 8,000,000,000

 Computer’s memory is like a giant vector

* Like a vector, we can index memory starting
from O.

 We draw memory vertically with index O at
the bottom

* Typical laptop’s memory has billions of these
indexed slots (one byte each)

Stanford University




Computer Memory

Divide memory in a few main regions

Text: program’s own code

Heap: where dynamically allocated memory
resides

Stack: where local variables for each
function are stored

48

Stack

T

Heap

Text
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Recall this program

tripleWeight
void tripleWeight(double weight) {
3.18
weight *x= 3;
weight
ks
: : main
int main() {
double weight = 1.06; 1.06
tripleWeight(weight); weight
cout << weight << endl;

Stanford University
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Stack Frames

tripleWeight
/\ 3.18
These are called “stack frames.” weight
One gets created each time a
function is called. ma-in
1.06
weight

Stanford University




Stack Frames

main()

weight:

1.

06

main

51

Heap

1.06

weight

Text
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Stack Frames

tripleWeight

52

3.18

weight

main()
weight: | 1.06
tripleWeight()
weight: | 3.18

}
f

main

Heap

1.06

weight

Text
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Stack Frames

main()

weight:

1.06

tripleWeight()

weight:

3.18

}
f

main

53

Heap

1.06

weight

Text
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Stack Frames

main()

weight:

1.

06

}

Heap

Text
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Stack Frames

main()

weight: | 1.06

tripleWeight()

weight: | 3.18

}
f

Heap

Text
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The “stack” part of memory
is a stack!

A function call pushes a
stack frame onto the stack
A function return pops a
stack from from the stack

Stanford University
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Back to Factoriall
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Recursion in action
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int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;
return 0;

int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n x factorial(n-1);

Heap, Text

Stanford University
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Recursion in action

int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;

return 0;

0 Heap, Text

Stanford University
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Recursion in action

int main () {
int n = factorial(5);
cout << “5! = 7 << n << endl;

return 0;

0 Heap, Text

Stanford University




Recursion in action
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main()

int main () {

int n = factorial(5);
cout << “5! = 7 << n << endl;

return 0;

Heap, Text
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Recursion in action
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main()

int main () {
int n = factorial(5);
cout << “51 = 7 << n << endl;

return 0;

Heap, Text

Stanford University



Recursion in action
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main()

n:

int main () {
int n =|factorial(5)|;
cout << “51 = 7 << n << endl;

return 0;

Heap, Text
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Recursion in action
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main() e

A e e e A {\ I

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x factorial(n-1);

Heap, Text
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Recursion in action
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main() e

A e e e A {\ I

factorial() p: 5

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x factorial(n-1);

Heap, Text
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main() n:
Recursion In action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1);
}
}
0 Heap, Text

Stanford University
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main() n:
Recursion In action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1);
}
}
0 Heap, Text
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main() n:
Recursion In action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n * factorial(n-1);
}
}
0 Heap, Text

Stanford University




Recursion in action
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main() e

A e e e A {\ I

factorial() p: 5

int factorial (int n) {
if (n == 0) {

return 1;
} else {

returnfn|x factorial(n-1);
} 5

Heap, Text
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Recursion in action
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main() e

A e e e A {\ I

factorial() p: 5

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x |factorial(n-1)§

A

¥ 5

Heap, Text
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main() e
Recursion in action .
factorial() p: 5
O T NN AL W §
1nt fartonrial (1t n) [
int factorial (int n) {
if (n == 0) {
return 1;
} else {
return n x factorial(n-1);
] }
}
0 Heap, Text
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main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot ) f factorial() n: | 4

int factorial (int n) {

it (n == 0) {
return 1;

} else {
return n * factorial(n-1);

0 Heap, Text
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main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot ) f factorial() n: | 4

int factorial (int n) {

it (n == 0) {
return 1;

} else {
return n * factorial(n-1);

0 Heap, Text
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main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot ) f factorial() n: | 4

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)

A X )

0 Heap, Text
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main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::p::rja1 (ot ) f factorial() n: | 4

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return|n|* factorial(n-1);

0 Heap, Text
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Recursion in action

A e e e A {\ I
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main() e

factorial() p: 5

1nt fartnrial (111t n)

g

int factorial (int
if (n == 0) {
return 1;

} else {

n) {

return n *

factorial(n—l)}

4

factorial() p: 4

Heap, Text
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main() e
Recursion In action .

factorial() p: 5
.hfniﬁ::pl:rja1 (ot ) f factorial() n: | 4

1nt facrtnrial (1int n) S

int factorial (int n) {
it (n == 0) {
return 1;
} else {
. return n * factorial(n-1);

0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1);
] }
}
0 Heap, Text

Stanford University




78

main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1);
] }
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1);
] }
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1)|;
] }
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
1nt fartonrial (1t n) [ faCtor-la-L() n: 4
ant fartnraal (1t n) [ factor-ial() n 3
int factorial (int n) {
it (n == 0) {
return 1;
} else {
) return|n|* factorial(n-1);
] }
3
}
0 Heap, Text

Stanford University




82

main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
1nt fartonrial (1t n) [ faCtor-la-L() n: 4
ant fartnraal (1t n) [ factor-ial() n 3
int factorial (int n) {
it (n == 0) {
return 1;
} else {
) return n *|factorial(n-1)|;
] }
3
}
0 Heap, Text
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main() e
Recursion in action )
factorial() n 5
O T NN AL W § )
ot factorial (int o) [ raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (dint n) £
int factorial (int n) {
it (n == 0) {
] return 1;
i } else {
] return n x factorial(n-1);
}
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return n * factorial(n-1);
}
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return n * factorial(n-1);
}
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return n * factorial(n-1);
}
}
0 Heap, Text
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main() n:
Recursion In action factorial()
n 5
A e e e A £ L
f [ 3
nt foartnrial (1nt n) [ aCtor-Ia-L() o -
ant fartnraal (1t n) [ faCtor-ia-L() n 3
nt factordial (a0t n) [
. - . factorial() p 5
int factorial (int n) {
if (n == 0) {
return 1;
;
. } else {
;
J return n % factorial(n—l)}
}
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
ant fartnraal (1t n) [ factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
] return|n|* factorial(n-1);
} 2
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
ant fartnraal (1t n) [ factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x |factorial(n-1)§
} 2
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
ot factordial (iot o) L racteriali) 4
St facteordial (Gt o) L factorial() i 2
int factorial (dint n) £ .
0t factardal (ot n) rEEHeriEat )l 2
int factorial (int n) {
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1);
j }
} Heap, Text
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Recursion in action
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A e e e A {\ I

1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] it (n == 0) {
; return 1;
i } else {
j }
}

return n x factorial(n-1);

main() n:
factorial() n 5
factorial() n 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text
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main() e
Recursion In action .
factorial() p: 5
O T NN AL W § )
ot factordial (iot o) L ractorell me | 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat )l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1);
j }
} Heap, Text
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main() e
Recursion In action .
factorial() p: 5
O T NN AL W § )
ot factordial (iot o) L ractorell me | 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat )l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1);
j }
} Heap, Text
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main() e
Recursion In action .
factorial() p: 5
O T NN AL W § )
ot factordial (iot o) L ractorell me | 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat )l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
} Heap, Text
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main() e
Recursion In action .
factorial() p: 5
O T NN AL W § )
ot factordial (iot o) L racteriali) 4
Gt Factordial (Got n) S factorial() 2
int factorial (int n) £ :
0t factardal (ot n) rEEHeriEat )l 2
int factorial (int n) { fFactorial() n 1
] if (n == 0) {
] return 1;
i } else {
return|n|x factorial(n-1);
j }
} 1 Heap, Text
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Recursion in action
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A e e e A {\ I

1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x| factorial(n-1)
1 1 .
}

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text
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main() e

Recursion in action

factorial() p: 5

A e e e A {\ I

factorial .
1nt fartonrial (1t n) [ () n: 4
Aot foctoraal (St Y T factor-ia-l_() n 3
nt factordial (a0t n) [
factorial() n 5
ot _factordal (dnt n) [
S ctorial() n 1
] int factorial (int n) {
] if (n == 0) {
! return 1;
} else {
1 return n * factorial(n-1);
1 Heap, Text
} p
} Stanford University
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main() ne
Recursion in action )
factorial() n 5
O T NN AL W § .
it factordial (et on) L factorial() n: | 4
ot faorctaoraal (St ) L factor-ia'[_() n 3
int factorial (dint n) £ .
‘0t factarial (diot n) factorial() n: | »
N ctorial() n 1
; int factorial (int n) {
. 1 if (n == 0) { torial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University
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main() ne
Recursion in action )
factorial() n 5
O T NN AL W § .
it factordial (et on) L factorial() n: | 4
ot faorctaoraal (St ) L factor-ia'[_() n 3
int factorial (dint n) £ .
‘0t factarial (diot n) factorial() n: | »
N ctorial() n 1
; int factorial (int n) {
. 1 if (n == 0) { torial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University
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main() ne
Recursion in action )
factorial() n 5
O T NN AL W § .
it factordial (et on) L factorial() n 4
ot faorctaoraal (St ) L factor-ia'[_() n 3
int factorial (dint n) £ .
‘0t factarial (diot n) factorial() n: | »
N ctorial() n 1
; int factorial (int n) {
. 1 if (n == 0) { torial() n 0
! return 1;
} else {
1 return n * factorial(n-1);
} Heap, Text
} Stanford University
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main() n:
Recursion In action .
factorial() p 5
it maan (N [ .
snt Foctordial (40t nY) L factorial() n: | 4
Gt Feartoraial (Gedt o) S factorial() p 3
int factorial (int n) £ :
int factorial (int n) £ factorial() n 2
e ctorial() n: |
; int factorial (int n) { : ‘>1
] 1 if (n == 0) { ctorial() n: | ¢
] return 1;
} else {
A return n * factorial(n-1);
1 Heap, Text
} Stanford University
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1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x| factorial(n-1)
1 1 .
}

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
M1
Heap, Text
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ot _factordal (dnt n) [

int factorial (int n) {

factorial(n-1)

] if (n == 0) {
] return 1;
i } else {
return n %
1 1 .
}

1

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
M1
Heap, Text
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1nt fartonrial (1t n) [

(1int n) S

1nt facrtnrial

nt factordial (a0t n) [
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ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
} 1 X 1

main() n:
factorial() p: 5
factorial() p: 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text

Stanford University
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1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
1 1

main() n:
factorial() n 5
factorial() n 4
factorial() n 3
factorial() n 5
fFactorial() n 1
Heap, Text
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1nt fartonrial (1t n) [

1nt facrtnrial (1int n) S

nt factordial (a0t n) [

ot _factordal (dnt n) [

int factorial (int n) {

] if (n == 0) {
] return 1;
i } else {
return n x factorial(n-1)
j }
1 1

main() n:

factorial() n 5

factorial() n 4

factorial() n 3

factorial() n 5

fFactorial() n 1 >1
Heap, Text
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main() e
Recursion In action ;
factorial() n 5
Tt mAaan (\ |
f i .
1ant foartnraial (-t n) [ aCtor-Ia-L() ak 4
Tnt Fartanraal (1t ) I factor-ial() n 3
nt factordial (a0t n) [
. _ . factorial()
int factorial (int n) {

)
N
T
H

it (n == 0) {
return 1;
i } else {
. return n *x |factorial(n-1)

A\~ ]

2

0 Heap, Text
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factorial(n-1)

1

ot factoraal (Sod )
int factordial (G0t n) £
int factorial (int n) {
it (n == 0) {
] return 1;
i } else {
] return n x*
} 2
}

A\~ ]

main() n:
factorial() n 5
factorial() n 4
factorial() n 3
factorial() n 5
M1
Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x factorial(n-1)§
} 2 X 1
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
ant fartnraal (1t n) [ factor-ial() n 3
nt factordial (a0t n) [
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x factorial(n-1)§
} 2
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
Tt MmN (\ s
f i .
1nt fartonrial (1t n) [ aCtor-Ia-L() n: 4
Tnt fFfartnAnraal (1t n) I factor-ial() n 3
nt factordial (a0t n) [ >2
, _ , factorial() n 5
int factorial (int n) {
it (n == 0) {
return 1;
;
i } else {
;
. return n x factorial(n-1)§
} 2
}
0 Heap, Text
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main() e

Recursion In action .
factorial() n 5

Tt maan ([ )
1ant fartnrial (nt n) S faCtor-la-L() ak 4
ant fartnraal (1t n) [ factor-ial() n 3

int factorial (int n) { '>2
it (n == 0) {

return 1;
} else {
. return n *|factorial(n-1)|;

3

0 Heap, Text
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main() e

Recursion In action .
factorial() n 5

Tt maan ([ )
1ant fartnrial (nt n) S faCtor-la-L() ak 4
ant fartnraal (1t n) [ factor-ial() n 3

int factorial (int n) { '>2
it (n == 0) {

return 1;
} else {
. return n *|factorial(n-1)|;

3 2

0 Heap, Text

Stanford University




114

main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
1nt fartonrial (1t n) [ faCtor-la-L() n: 4
Tnt fartanraal (2t ) [ factor-ial() n 3
int factorial (int n) {
it (n == 0) {
return 1;
} else {
) return n * factorial(n-1)|;
] }
3 X 2
}
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
ot factordial (iot o) L raceoralll me | 4
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1)|;
] }
1 6
0 Heap, Text
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main() e
Recursion In action .
factorial() n 5
O T NN AL W § )
ot factordial (iot o) L raceoralll me | 4 ‘>6
St facteordial (Gt o) L factorial() i 2
int factorial (int n) {
it (n == 0) {
return 1;
} else {
] return n x factorial(n-1)|;
] }
1 6
0 Heap, Text
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main() e

factorial() p: 5

1nt fartnrial (111t n)

g

int factorial (int
if (n == 0) {
return 1;

} else {

n) {

return n *

factorial(n—l)}

4

factorial() p: 4

Heap, Text
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main() e

Recursion in action

factorial() p: 5

A e e e A {\ I

factorial() p: 4
1nt fartonrial (1t n) [ >6

int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n—l)}

4 6

0 Heap, Text
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main() o

factorial() p: 5

1nt fartonrial (1t n) [

int factorial (int n) {
if (n == 0) {
return 1;

} else {
return n x factorial(n—l)}

4 X 6

factorial() p: 4

Heap, Text
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factorial() p: 5

1nt fartonrial (1t n) [

int factorial (int n) {
if (n == 0) {

return 1;

} else {

return n x factorial(n—l)}
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factorial() p: 4

Heap, Text
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main() e

factorial() p: 5

1nt fartonrial (1t n) [

int factorial (int n) {
if (n == 0) {

return 1;

} else {

return n x factorial(n—l)}

24

factorial() p: 4

Heap, Text
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A e e e A {\ I

int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x |factorial(n-1)§

A

¥ 5

main() e
factorial() p: 5 >
24

Heap, Text
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int factorial (int n) {
it (n == 0) {
return 1;
} else {

return n x |factorial(n-1)§

A

¥ 5 24

main() e
factorial() p: 5 >
24

Heap, Text
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main() e
Recursion in action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)§
¥ 5 x 24
}
0 Heap, Text
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main() e
Recursion in action .
factorial() p: 5
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)§
}
120
}
0 Heap, Text
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main() e
Recursion in action . )
factorial() p: 5 120
O T NN AL W §
int factorial (int n) {
it (n == 0) {
return 1;
} else {
return n x factorial(n-1)§
}
120
}
0 Heap, Text
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main()

int main () {
int n =|factorial(5)|;
cout << “51 = 7 << n << endl;

return 0;

—

120

Heap, Text
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main()

n: | 120

int main () {
int n =|factorial(5)|;
cout << “51 = 7 << n << endl;

return 0;

Heap, Text
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main()

n: | 120

int main () {
int n = factorial(5);

cout << “5! = 7 << n << endl;

return 0;

Heap, Text
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main()

n: | 120

int main () {
int n = factorial(5);

cout << “5! = 7 << n << endl;
return 0;
}
Console:
5! = 120

Heap, Text
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main()

n: | 120

int main () {
int n = factorial(5);

cout << “5! = 7 << n << endl;
return 0;
}
Console:
5! = 120

Heap, Text
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Recursion in action

Console:

R

0 Heap, Text
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Recursive vs Iterative Methods

int factorial (int n) {
if (n == 0) {
return 1;
} else {

return n * factorial(n-1);

int factoriallterative (int n) {
int result = 1;
for (int i = 15 1 <= n; i++) {
result = result x 1;

}

return result;

Stanford University
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Recursive vs Iterative Methods

int factorial (int n) { int factoriallterative (int n) {
it (n == 0) { int result = 1;
return 1; for (int i = 1; 1 <= nj; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
} }
n =5, time=5823ms n =5, time=5.485ms

Stanford University
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Recursive vs Iterative Methods

int factorial (int n) { int factoriallterative (int n) {
it (n == 0) { int result 1;

return 1;

for (int i = 15 1 <= n; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
} }

n =5, time=5823ms n =5, time=5.485ms
n = 100,000, time=8.703 ms n = 100,000, time=5.589 ms

Stanford University
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Recursive vs Iterative Methods

int factorial (int n) {

int factoriallterative (int n) {
it (n == 0) { int result = 1;
return 1; for (int i = 1; i <= n; i++) {
} else { result = result x 1;
return n * factorial(n-1); }
} return result;
}

n =5, time=5823ms n =5, time=5.485ms
n = 100,000, time=8.703 ms n = 100,000, time=5.589 ms

n = 1,000,000, “segmentation fault” n = 1,000,000, time=7.501ms

Stanford University
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What is recursion?

* In programming, it means that the function calls itself
* Every time the function is called, the problem becomes a little
smaller

void recurse() {

recurse() ;



https://cplayground.com/?p=crocodile-peafowl-quelea

What is recursion?

void recurse() {

recurse() ;

138

Your code must have a case
for all valid inputs.

You must have a base case
that does not make
recursive calls.

When you make a recursive
call it should be to a simpler
instance of the same
problem, and make progress
towards the base case.

Stanford University
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main()

void recurse() {

recurse() ;

Heap, Text
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main()

What is recursion?

recurse()

recurse()

recurse()
void recurse() {

recurse()
recurse() ;

recurse()

recurse()

recurse()

0 Heap, Text
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main()

What is recursion?

recurse()

recurse()

recurse()
void recurse() {

recurse()
recurse() ;

recurse()

recurse()

///"\\~‘ recurse()

Stack Overflow! recurse()

Heap, Text
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Reverse a String
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Reversing strings

Suppose we want to reverse strings like in the following examples:
lld ” o ”
og” — “god
“stressed” — “desserts”
“racecar” — “racecar”

yo - Iloy”

ou_7” ow_7”

d — d

Stanford University
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Approaching recursive problems

* Look for self-similarity.

* Try out an example.
*  Work through a simple example and then increase the complexity.
* Think about what information needs to be “stored” at each step in the
recursive case (like the current value of nin each factorial stack
frame).

e Askyourself:

 What is the base case? (What is the simplest case?)
* Whatis the recursive case? (What pattern of self-similarity do you see?)

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

 What’s the first step you would take to reverse “stressed”?

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string

* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

own aun

 Then reverse “” — get

Stanford University
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Reversing strings

Look for self-similarity: “stressed” — “desserts”

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun

* . reverse — get

own

Stanford University
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Reversing strings

Look for self-similarity:

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University
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Reversing strings

Look for self-similarity:

* Take the ‘s’ and put it at the end of the string
* Then reverse “tressed”
* Take the ‘t’ and put it at the end of the string
* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* Take the ‘t’ and put it at the end of the string

* Then reverse “ressed”
* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

e Take the ‘t” and put it at the end of the string

* Then reverse “ressed”
e Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

* Take the ‘d" and put it at the end of the string

owyr$ ay$

* Base Case: reverse ©" — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

e Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

* Take the ‘d" and put it at the end of the string

owyr$ ay$

* Base Case: reverse ©" — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’

* Take the ‘r’ and put it at the end of the string
* Then reverse “essed”

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

e Take the ‘d’ and put it at the end of the string

aun own

* Base Case: reverse " — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’

* Take the ‘d’ and put it at the end of the string

owyr$ ay$

* Base Case: reverse " — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’
* reverseString(“ressed”) = reverseString(“essed”) + ‘r’

owyr$ ay$

* Base Case: reverse " — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’
* reverseString(“ressed”) = reverseString(“essed”) + ‘r’

owyr$ ay$

* Base Case: reverse ™" — get

Stanford University
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Reversing strings

Look for self-similarity: reverseString(“stressed”) — “desserts”

* reverseString(“stressed”) = reverseString(“tressed”) + ‘s’
e reverseString(“tressed”) = reverseString(“ressed”) + ‘t’
* reverseString(“ressed”) = reverseString(“essed”) + ‘r’

* reverseString(“d”) = reverseString(“”) + ‘d’

owyr$ ay$

* Base Case: reverse ™" — get

Stanford University
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Reversing strings

e Recursive Case:

reverseString(str) = reverseString(str w/o first letter) + first letter

e Base Case:

an

reverseString(“”) =

Stanford University
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Reversing strings

* Recursive Case:
reverseString(str) = reverseString(str w/o first letter) + first letter
or

reverseString(str) = last letter + reverseString(str w/o last letter)

e Base Case:

an

reverseString(“”’) =

Stanford University
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Let’s Code it Up!
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Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the

same form

* Arecursive operation (function) is defined in terms of itself (i.e. it calls
itself)

Stanford University
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Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the

same form
* Recursion has two main parts: base case and recursive case
* Base case: Simplest form of the problem that has a direct answer
* Recursive case: The step where you break the problem into a smaller,

self-similar task

Stanford University
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Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the

same form
* Recursion has two main parts: base case and recursive case

* The solution will get built up as you come back up the call stack.
* The base case will define the “base” of the solution you’re building up.
* Each previous recursive call contributes a little bit to the final solution.
* The initial call to your recursive function is what will return the
completely constructed answer.
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Recap

* Recursion is a problem-solving technique in which tasks are
completed by reducing them into repeated, smaller tasks of the
same form

* Recursion has two main parts: base case and recursive case

* The solution will get built up as you come back up the call stack.

* When solving problems recursively, look for self-similarity and
think about what information is getting stored in each stack frame.
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Midterm Logistics

Monday, July 17 from 7-9pm in Hewlett Teaching Center, Room 200

e Students with exam accommodations will get an email from us
This exam is on paper, using pen/pencil.

The exam is closed-book and closed-device.
* Provide you with a reference sheet on Stanford library functions.

* Allow you to bring your own notes sheet (one page, front and back,
8-1/2" x 11", where you have written/printed/drawn whatever
information you would like to have handy during the exam)

All information is here

Stanford University
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Midterm Logistics

* Coverage: Material up to and including Lecture 10, Assignment 2,
and Section 3 (not testing stuff only in the textbook)

* Format:

* Write a function or a few lines of code

* Trace through code and analyze its behavior

* Write response to a short answer question
* Practice:

« 2 full length practice exams with solutions

e Section problems

* Review session on Thursday and Friday
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Midterm

e Evaluate your problem-solving skills and conceptual understanding
of the material, not your ability to use perfect syntax

* Most points awarded for valid approach to solving the problem,
fewer points for the minute details of executing your plan

* Not taking off points for
* Missing braces around clearly indented blocks of code
* Missing semicolons
* Missing #include

e Give partial credit for meaningful pseudocode
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