Big-O Analysis
Elyse Cornwall
July 6th, 2023

Contributions made from previous CS106B Instructors Stanford University

Week 1 Feedback

Rate the pace of lecture
113 responses

@ Way too slow
@ A little too slow
@ Perfect

@ A little too fast
@ Way too fast

2
Stanford University

Week 1 Feedback

Things you liked:

“I like the fact that you guys give time to answer specific questions that
the students might have.”

“I enjoy the modeling of things on the whiteboard, it makes it easy to
follow concepts.”

“Lots of worked examples!! Big fan of that.”

3
Stanford University

Week 1 Feedback

Places we can improve:

“some of the more complex questions and answers are more confusing
than helpful”

“I think the participation tickets are a little hard”

“Would like a stronger emphasis on a recap at the end of each session”

4
Stanford University

Week 1 Feedback

We hear you...

“It would also be really helpful if you could release the lecture slides a
day or two in advance”

“It's complicated having resources on so many different sites like ed,
cppreference.com, cs106b.stanford.edu, etc.”

“Plz use VScode for future students :(”

5
Stanford University

Announcements

 Week 2 feedback survey is out (.~ bonus participation points .)

* Tomorrow (Friday 7/7) 5pm is course add/drop deadline
* Assignment 1is due tomorrow at 11:59pm
* Help resources drop off over the weekend, go to LalR tonight!
* Assignment 2 will be released tomorrow afternoon
e Assignment 2 YEAH Hours on Friday from 3-4pm at this Zoom link

* Friday Review Session - NVIDIA 1:30pm tomorrow
 Recorded, but come in person for candy!

6
Stanford University

https://forms.gle/QaURFW2yu6vn4b7N9
https://stanford.zoom.us/j/5416618770?pwd=dC84V1VqbmRvQXMvN1FSOFNIU2dNdz09

ADT Highlight Reel

Stanford Universi8y

[[[]]

s

!

£ &

ENFEEEEEEEENEEEEEER II““““

3 ~ EEFEETEEE IETEEEEE TEE.

_

N~ [

Vectors (1D)
Grids (2D)

Recap of ADTs
Elements with indices

Ordered ADTs

Recap of ADTs

Ordered ADTs

Elements with indices

Vectors (1D)
Grids (2D)

Elements without indices

Stacks (LIFO)
Queues (FIFO)

Stanford Universify

Recap of ADTs

Ordered ADTs

Elements with indices

Vectors (1D)
Grids (2D)

Elements without indices

Stacks (LIFO)
Queues (FIFO)

Unordered ADTs

Sets (unique elements)
Maps (key, value pairs)

Keys Values

a D I+l
Nutella 0.29 m
Banana />< 7.99

A8 /

Stanford Universify

Nested ADTs

* We can “nest” ADTs (e.g. Map<string, Set<string>>)
* This allows us to represent more complex data

* Nested ADTs can be tricky to work with, especially because of
reference and copies

11
Stanford University

Assignment 2: Fun with Collections!

Grid<bool>
Each location is either:

e Corridor (true)
« Wall(false)

Stanford University

Assignment 2: Fun with Collections!

Map<string, Set<string>>
Keyword, URLs

g

Q. Search Google or type a URL

<

(=

13
Stanford University

Assignment 2: Fun with Collections!

{“learn”: {“desmos.com”, “stanford.edu”},
“code” : {“stanford.edu”, “cpp.com”}, ... }

Keyword, URLs
‘ ol ’ i'd-

Q. learn code $

<

I Q. learn code - Google Search

14
Stanford University

Roadmap

Using Abstractions

Object-Oriented
Programming

Abstract

Algorithmic
Analysis

C++

Memory
Management

Linked
Data
Structures

Recursion

Advanced
Algorithms

15
Stanford University

Roadmap

Using Abstractions

Object-Oriented Memory
Programming Management
Linked Advanced
Data Algorithms
Structures

C++ Recursion
16

Stanford University

@ Discuss with a Neighbor

What does it mean for a program to be
» “Faster”
 “More efficient”
 “Better”

than another program?

17
Stanford University

Is it Fast?

Measuring the speed of our programs

18
Stanford University

One Idea: Runtime

* Measure how long a program takes to complete
 Example: timing the vectorMax function

[SimpleTest] =--- Tests from main.cpp
[SimpleTest] starting (PROVIDED TEST, line 36) timing vectorMax on 10,00...

- Correct Running on a

Line 42 Time vectorMax(v) (size =10000000) completed in 0.268 secs
Line 43 Time vectorMax(v) (size =10000000) completed in 0.264 secs 2012 MaCBOOk

Line 44 Time vectorMax(v) (size =10000000) completed in 0.269 secs

19

Stanford University

One Idea: Runtime

* Measure how long a program takes to complete
 Example: timing the vectorMax function

[SimpleTest] =--- Tests from main.cpp .
[SimpleTest] starting (PROVIDED TEST, line 36) timing vectorMax on 10,00... = Correct Runnlng on a
Line 42 Time vectorMax(v) (size =10000000) completed in 0.268 secs
Line 43 Time vectorMax(v) (size =10000000) completed in 0.264 secs 2012 MaCBOOk
Line 44 Time vectorMax(v) (size =10000000) completed in 0.269 secs

[SimpleTest] ---- Tests from PROVIDED_TEST -----
[SimpleTest] starting (PROVIDED_TEST, main.cpp:54) timing vectorMax on 10,000,000... = Correct Running on a
Line 62 TIME_OPERATION vectorMaxLinear(vec) (size = 10000000) completed in 0.073 secs

10000000) completed in 0.073 secs 2020 MacBook
10000000) completed in 0.074 secs

Line 62 TIME_OPERATION vectorMaxLinear(vec) (size
Line 62 TIME_OPERATION vectorMaxLinear(vec) (size

20
Stanford University

Why Runtime Isn’t Enough

Runtime depends on:

 The computer you’re using

* Other applications running on your computer
 Whether your computer is trying to conserve power
* And more!

21
Stanford University

Another Idea: Number of Operations

* We could count the number of operations, or steps it takes for a
program to complete

* This doesn’t change across computers, as long as the input to our
program is the same

22
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0];
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

23
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Take in a Vector of ints and
int currentMax = v[0]; return the maximum value
int n = v.size();
for (int i = 1; i < nj; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

24
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

25
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {
if (currentMax < v[i]) {
currentMax = v[i];

currentMax: 4

}

return currentMax;

26
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < nj; i++) {

if (currentMax < v[i]) { n: 4
currentMax = v[i];

currentMax: 4

}

return currentMax;

27
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (Aint 1 = 1; i < nj i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 1

currentMax: 4

n: 4

}

return currentMax;

28
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 1

currentMax: 4

n: 4

}

return currentMax;

29
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 -3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 1

currentMax: 4

n: 4

}

return currentMax;

30
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 -3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {

if (currentMax < v[i]) {
currentMax = v[i]}

} i: 1

currentMax: 7

n: 4

}

return currentMax;

31
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < nj; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 2

currentMax: 7

n: 4

}

return currentMax;

32
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 2

currentMax: 7

n: 4

}

return currentMax;

33
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 -3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < nj; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 2

currentMax: 7

n: 4

}

return currentMax;

34
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < nj; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 3

currentMax: 7

n: 4

}

return currentMax;

35
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 3

currentMax: 7

n: 4

}

return currentMax;

36
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < nj; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 3

currentMax: 7

n: 4

}

return currentMax;

37
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < nj; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

¥ i: 4

currentMax: 7

n: 4

}

return currentMax;

38
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

¥ i: 4

currentMax: 7

n: 4

}

return currentMax;

39
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) { Ve 4 7 3 6
int currentMax = v[0]; 0 1 2 3
int n = v.size();
for (int i = 1; i < nj; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

} i: 3

currentMax: 7

n: 4

}

return currentMax;

40
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0];
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {
if (currentMax < v[i]) {
currentMax = v[i];

What are the “operations”
in this function?

}

return currentMax;

41
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0]; Initialize
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

42
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0]; Initialize
int n = v.size()} Initialize
for (int i = 1; 1 < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

43
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {

int currentMax = v[0]; Initialize
int n = v.size(); Initialize
for (dAnt i = 1; i < n; i++) { Initialize

if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

44
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0];
int n = v.size();
for (int i = 1; 1 < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

Initialize
Initialize
Initialize
Compare

45
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

Initialize
Initialize
Initialize
Compare
Increment

46
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0];
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

Initialize
Initialize
Initialize
Compare
Increment
Compare

47
Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {
int currentMax = v[0];
int n = v.size();
for (int 1 = 1; 1 < n; 1i++) {
if (currentMax < v[i]) {
currentMax = v[i]}

}

return currentMax;

Initialize
Initialize
Initialize
Compare
Increment
Compare
Reassign

48

Stanford University

Analyzing vectorMax

int vectorMax(Vector<int> &v) {

int currentMax = v[0]; Initialize
int n = v.size(); Initialize
for (int i = 1; i < n; i++) { Initialize
if (currentMax < v[i]) { Compare
currentMax = v[i]; Increment
} Compare
} Reassign
return currentMax; Return

49
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; Initialize
int n = v.size(); Initialize
for (int i = 1; i < n; i++) { Initialize
if (currentMax < v[i]) { Compare
currentMax = v[i]; Increment
} Compare
} Reassign
return currentMax; Return

50
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); Initialize
for (int i = 1; i < n; i++) { Initialize
if (currentMax < v[i]) { Compare
currentMax = v[i]; Increment
} Compare
} Reassign
return currentMax; Return

51
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size()} 1 Initialize
for (int i = 1; i < n; i++) { Initialize
if (currentMax < v[i]) { Compare
currentMax = v[i]; Increment
} Compare
} Reassign
return currentMax; Return

52
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (dAnt i = 1; i < n; i++) { 1 Initialize
if (currentMax < v[i]) { Compare
currentMax = v[i]; Increment
} Compare
} Reassign
return currentMax; Return

53
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; 1 < n; i++) { 1 Initialize
if (currentMax < v[i]) { ? Compare
currentMax = v[i]; Increment
} Compare
} Reassign
return currentMax; Return

54
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; 1 < n; i++) { 1 Initialize
if (currentMax < v[il) { ? Compare
@ How many times did we Increment
} comparei < n? Compare
} Reassign
return currentMax; Return

55
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; 1 < n; i++) { 1 Initialize
if (currentMax < v[il) { ? Compare
1<4 /) 4if n = 4, Increment

} 5 < 4 Compare

} 3 < 4 Reassign

} return 4 < 4 // 4 times! Return

56
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; 1 < n; i++) { 1 Initialize
if (currentMax < v[il) { ? Compare
1<2 /) 4ifn = 2, Increment
Yl 2 <2 /7 2 times! Compare
} Reassign
return currentMax; Return

57
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; 1 < n; i++) { 1 Initialize
if (currentMax < v[il) { ? Compare
1 < n Increment
} 5 < n Compare
} 3 < n Reassign
return // n times! Return
ks

58
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; 1 < n; i++) { 1 Initialize
if (currentMax < v[i]) { n Compare
currentMax = v[i]; Increment
} Compare
} Reassign
return currentMax; Return

59
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; i < n; di++) { 1 Initialize
if (currentMax < v[i]) { n Compare
currentMax = v[i]; n-1Increment
} Compare
} Reassign
return currentMax; Return

60
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; i < n; i++) { 1 Initialize
if (currentMax < v[i]) { n Compare
currentMax = v[i]; n-1Increment
} n -1 Compare
} Reassign
return currentMax; Return

61
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; i < n; i++) { 1 Initialize
if (currentMax < v[i]) { n Compare
currentMax = v[i]} n-1Increment
} n -1 Compare
} (up to) n - 1 Reassign
return currentMax; Return

62
Stanford University

Analyzing vectorMax

Now, how many times do

we repeat each operation?
int vectorMax(Vector<int> &v) {

int currentMax = v[0]; 1 Initialize
int n = v.size(); 1 Initialize
for (int i = 1; i < n; i++) { 1 Initialize
if (currentMax < v[i]) { n Compare
currentMax = v[i]; n-1Increment
} n -1 Compare
} (up to) n - 1 Reassign
return currentMax; 1 Return

63
Stanford University

Analyzing vectorMax

Now, let’s sum it up!
int vectorMax(Vector<int> &v) { 1+1+1+n+n-1+n-1+
int currentMax = v[0]; n-1+1=4n+1
int n = v.size();
for (int i = 1; i < nj; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

}

return currentMax;

64
Stanford University

Analyzing vectorMax

This program takes at most

4n + 1 operations.
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < nj; i++) {
if (currentMax < v[i]) {
currentMax = v[i];

... What does this tell us?

}

return currentMax;

65
Stanford University

Another Idea: Number of Operations

* We could count the number of operations, or steps it takes for a
program to complete

* This doesn’t change across computers, as long as the input to our
program is the same

This is still too much detail

Some of those constant operations might depend on your computer

66
Stanford University

The Big Idea: Big-O

* General enough to compare across different computer systems

* Focuses on how the runtime will grow with the input size
* It’s all about growth rate

* This allows us to predict the runtime of future inputs

67
Stanford University

Calculating Big-O of vectorMax

Idn + 1

68
Stanford University

Calculating Big-O of vectorMax

* Remove lower-order terms including constants

4n

69
Stanford University

Calculating Big-O of vectorMax

* Remove lower-order terms including constants
* Getrid of leading coefficients

70
Stanford University

Calculating Big-O of vectorMax

* Remove lower-order terms including constants
* Getrid of leading coefficients

O(n)

The runtime grows linearly with size of input vector

71
Stanford University

Let’s Make a Prediction

0(n)
4 I -3 6
0 1 2 3
2 5 1 (-10| 8 3 14 2
0 1 2 3 4 5 6 7

£ How much longer will vectorMax

take for a Vector of size 8, compared to size

4-2 72
Stanford University

Let’s Make a Prediction

0(n)
4 I -3 6
0 1 2 3
2 5 1 (-10| 8 3 14 2
0 1 2 3 4 5 6 7

Twice as long: doubling the size of the input
doubles the runtime of vectorMax

73
Stanford University

Other Growth Rates

e How does a circle’s area scale with its radius?

Stanford University

Other Growth Rates

e How does a circle’s area scale with its radius?

A=Trr?2

Stanford University

Other Growth Rates

e How does a circle’s area scale with its radius?

A=T1rr?2

Drop leading coefficients

Stanford University

Other Growth Rates /

e How does a circle’s area scale with its radius?

0(n?)

The circle’s area grows
quadratically with its radius

Stanford University

Other Growth Rates

* How does a sphere’s volume scale with its radius?

V=(4/3)nr3

78
Stanford University

Other Growth Rates

* How does a sphere’s volume scale with its radius?

V=(4/3)mr3

Drop leading coefficients

79
Stanford University

Other Growth Rates 8 /

* How does a sphere’s volume scale with its radius? /

0(n3) 2 /

The sphere’s volume grows
cubically with its radius

80
Stanford University

Other Growth Rates

* How does the amount of effort needed to cut a piece of string
scale with its length?

81
Stanford University

Other Growth Rates

* How does the amount of effort needed to cut a piece of string
scale with its length?

It doesn’t!
It takes the same amount of work to
cut the string, no matter its length

82
Stanford University

Other Growth Rates

* How does the amount of effort needed to cut a piece of string
scale with its length?

0(1)

Cutting a piece of string requires a
constant amount of work, relative to
the string’s length

83
Stanford University

Growth Rates We’ll Explore

Constant | Logarithmic Linear nlogn Quadratic | Polynomial | Exponential
0(n*) 0(a")
0(1) 0(log n) o(n) O(n log n) 0(n?) K> 1 2> 1
84

Stanford University

Big-O of ADT Operations

Vectors Queues Sets

.size() - 0(1) .size() - 0(1)
.add() - 0(1) .peek() - 0(1)
Terdt o+ e ™o
- .dequeue() -
remove () - 0(n) LisEmpty () - 0(1)

.sublist() - 0(n)
traversal - 0(n) traversal - 0(n)

Grids Stacks Maps

.size() -0(1)
isEmpty() -0(1)
.add() -?2?27?
.remove() -227?
.contains() -727?
traversal -0(n)

. -num§0¥5<> B 8(1> e .size() - 0(1) .+ .size() -0(1)
DonumcotsO T 88« Lpeek() - 0(1) + .isEmpty() -0(1)
. g1nBoundg() _ e .push() - 0(1) e m[key] -227?
0(1) e .pop() - 0(1) e .contains() -?2727?
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal -0(n)
e traversal - 0(n) 85

Stanford University

Big-O of ADT Operations

Vectors Queues Sets

.size() - 0(1) .size() - 0(1)
.add() - 0(1) .peek() - 0(1)
oo o 1 0™ o
_ .dequeue() -
remove () - 0(n) LisEmpty () - 0(1)

.sublist() - 0(n)
traversal - 0(n) traversal - 0(n)

Grids Stacks Maps

.size() -0(1)
isEmpty() -0(1)
.add() -?2?27?
.remove() -227?
.contains() -727?
traversal -0(n)

. -num§0¥5<> B 8(1> e .size() - 0(1) .+ .size() -0(1)
DonumcotsO T 88« Lpeek() - 0(1) + .isEmpty() -0(1)
. g1nBoundg() _ e .push() - 0(1) e m[key] -227?
0(1) e .pop() - 0(1) e .contains() -?2727?
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal -0(n)
e traversal - 0(n) 86

Stanford University

Big-O of ADT Operations

Vectors Queues Sets

.size() - 0(1) .size() - 0(1)
.add() - 0(1) .peek() - 0(1)
T
- .dequeue() -
.remove () 0(n) isEmpty () - 0(1)
traversal - 0(n)

.size() -0(1)
isEmpty() -0(1)
.add() -227?
.remove() -227?
.contains() -727?

.sublist() - O0(n) traversal -0(n)

traversal - 0(n)
Grids Stacks Maps

. -num§0¥5<> B 8(1> e .size() - 0(1) .+ .size() -0(1)
DonumcotsO T 88« Lpeek() - 0(1) + .isEmpty() -0(1)
. g1nBoundg() _ e .push() - 0(1) e m[key] -227?
0(1) e .pop() - 0(1) e .contains() -?2727?
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal -0(n)
e traversal - 0(n) 87

Stanford University

Big-O of ADT Operations

Vectors Queues Sets
. .sgée()_—00§l) e .size() - 0(1) . .size() -0(1)
: \'/?1.](2 O(l)() e .peek() - 0(1) e .isEmpty() -0(1)
e .insert() - 0(n) e .enqueue() - 0(1) e .add() -?727?
e .remove() - O(n) . .qlequeue() - 0(1) . .removg() -7?27?
e .sublist() - 0(n) e .isEmpty() - 0(1) e .contains() -?2??
e trav al -0(n)
Grids @ Why does inserting into a Vector have linear time
« .numl complexity? Think of the “worst case” scenario.)y —0(1)
. .nqg[.][.] 57D — o=y () —0(1)
: E.gg:\Boandg() _ e .push() - 0(1) . m[key].—???

0(1) e .pop() - 0(1) e .contains() -22?7?
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal -0(n)

e traversal - 0(n) 88

Stanford University

Big-O of ADT Operations

Vectors Queues Sets
e .size() - 0(1) e .size() - 0(1) e .size() -0(1)
: 9?2?(2 6(?§l) e .peek() - 0(1) e .isEmpty() -0(1)
e .insert() - 0(n) e .enqueue() - 0(1) e .add() -727?
e .remove() - 0(n) . .qlequeue() - 0(1) . .removg() -7?27?
e .sublist() - 0(n) e .isEmpty() - 0(1) e .contains() -?777
e trav al -0(n)
Grids In the worst case, we’re inserting at the front, shifting
. .numl the other n elements over by one position.) -0(1)
° num \
° ° . . . _ - nPCCY\\/ \J\-I-/ - 0 IJLIIIPL)/() _O(l)
. Binboundi() -+ -push() - 0(1) « mlkey] 222

0(1) . .pop() - 0(1) e .contains() -?2727?
e traversal - 0(n?) e .isEmpty() - 0(1) e traversal -0(n)

e traversal - 0(n) 89

Stanford University

Is it Efficient?

Comparing Big-O runtimes

90
Stanford University

We'll Use Big-O to Categorize Efficiency

Jo(n3)] |

Constant Time-0(1) / 0(n?)

* The best we can do! ; |

* Euclid's Algorithm for Perfect Numbers // 0(n)
Linear Time - 0(n) 4 |

* This is okay, we can live with this HFENY/E HEE

i 0(1)

Quadratic Time - 0 (n?) and beyond NS |

* This can start to slow down really quickly

* Exhaustive Search for Perfect Numbers
91
Stanford University

We'll Use Big-O to Categorize Efficiency

Jlo(n3) |
e Spoiler alert: not every problem is / 0(n?)
solvablein 0 (1) time : | |
* We can use Big-O to compare different // 0(n)

solutions to the same problem
* The “more efficient” solution gets the
job done with a smaller Big-O

92

Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1; 93

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) { © 1 2 3
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1; 94

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (dint num: v) { © 1 2 3
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) { num: 4
seenLarger = true;
}
}
if (!seenLarger) {
return num;
}
}
return -1; 95

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) { © 1 2 3
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) { num: 4
seenLarger = true;
} } seenlLarger: false
if (!seenLarger) {
return num;
}
}
return -1; 9

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 4

97
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 4

98
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 7

99
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 7

100
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenLarger: true

compareNum: 7

101
Stanford University

vectorMax, revisited

, , Vv 4 7 -3 6
int vectorMax(Vector<int> &v) {
for (int num: v) { © 1 2 3
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) { num: 4
seenLarger = true;
: } seenLarger: true
1 |
if (!seenLarger) { compareNum: -3

return num;

}
}

return -1;

102
Stanford University

vectorMax, revisited

, , Vv 4 7 -3 6
int vectorMax(Vector<int> &v) {
for (int num: v) { © 1 2 3
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) { num: 4
seenLarger = true;
: } seenLarger: true
1 |
if (!seenLarger) { compareNum: -3

return num;

}
}

return -1;

103
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenLarger: true

compareNum: 6

104
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenLarger: true

compareNum: 6

105
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenLarger: true

compareNum: 6

106
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenLarger: true

compareNum: 6

107
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenLarger: true

compareNum: 6

108
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 6

109
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 4

110
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 4

111
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 7

112
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 7

113
Stanford University

vectorMax, revisited

, , Vv 4 7 -3 6
int vectorMax(Vector<int> &v) {
for (int num: v) { © 1 2 3
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) { num: 7
seenLarger = true;
} } seenlLarger: false
1 |
if (!seenLarger) { compareNum: -3

return num;

}
}

return -1;

114
Stanford University

vectorMax, revisited

, , Vv 4 7 -3 6
int vectorMax(Vector<int> &v) {
for (int num: v) { © 1 2 3
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) { num: 7
seenLarger = true;
} } seenlLarger: false
1 |
if (!seenLarger) { compareNum: -3

return num;

}
}

return -1;

115
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 6

116
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 6

117
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 6

118
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

seenlLarger: false

compareNum: 6

119
Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenlarger = false:

for (1
1-(1: @ Does this algorithm seem more

or less efficient than the other one?

}
}
if (!seenLarger) {
return num;
}
}

return -1; 120

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1;

4 | -3 6 7
0 1 2 3

Big-O considers worst case
runtime. What if our Vector
looked like this instead?

Consider what happens if
we have to loop the max
number of times.

121
Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1; 122

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) {

for (int num: v) n Initialize
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;
}
}
if (!seenLarger) {
return num;
}
}
return -1; 123

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) {
for (int num: v) { e
bool seenLarger = false; n Initialize
for (int compareNum: v) {
if (compareNum > num) {
seenlLarger = true;

n Initialize

}
}
if (!seenLarger) {
return num;
}
}

return -1; 124

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<1nt> &v) { n Initialize
for (int num: v) { o
bool seenLarger = false; n Initialize
for (int compareNum: v) { ? Initialize
if (compareNum > num) {
seenlarger = true:

@ How many times do we initialize
compareNum in this function?

7

}
}

return -1; 125

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) { n Initialize
for (int num: v) { o
bool seenLarger = false; n Initialize
for (int compareNum: v) { n? Initialize
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1; 126

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) {

for (int num: v) { nlruqa”ze
bool seenLarger = false; n Initialize
for (int compareNum: v) { n? Initialize
if (compareNum > num) { n? Compare
seenLarger = true;
}
}
if (!seenLarger) {
return num;
}
}
return -1; 127

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) {

for (int num: v) { nlruqa”ze
bool seenLarger = false; n Initialize
for (int compareNum: v) { n? Initialize
if (compareNum > num) { n? Compare
} seenLarger = true; nZReasﬂgn
}
if (!seenLarger) {
return num;
}
}
return -1; 178

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) {

for (int num: v) { nIruga”ze
bool seenLarger = false; n Initialize
for (int compareNum: v) { n? Initialize
if (compareNum > num) { n? Compare
} seenLarger = true; nZReasﬂgn
}
if (!seenLarger) {
return num; n Evaluate
}
}
return -1; 129

} Stanford University

vectorMax, revisited

How many operations?

int vectorMax(Vector<int> &v) {

. n Initialize
for (int num: v) { o
bool seenLarger = false; n;rnUahze
for (int compareNum: v) { n< Initialize
if (compareNum > num) { n? Compare
seenLarger = true; nZReasﬂgn
}
}
if (!seenLarger) {
return num; n Evaluate
! } 1 Return
return -1; 130

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

3n + 3n% + 1 operations

}
}
if (!seenLarger) {
return num;
}
}

return -1; 131

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) { 3n2
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) { Remove lower order terms
seenLarger = true;
}

}
if (!seenLarger) {
return num;

}
}

return -1; 132

} Stanford University

vectorMax, revisited

int vectorMax(Vector<int> &v) { 2
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) { Remove leading coefficients
seenLarger = true;
}

}
if (!seenLarger) {
return num;

}
}

return -1; 133

} Stanford University

vectorMax, revisited
What’s the Big-O?

int vectorMax(Vector<int> &v) { anz)
for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {
if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {
return num;
}
}

return -1; 134

} Stanford University

runtime : runtime

O(n) 0(n?)

int vectorMax(Vector<int> &v) { int vectorMax(Vector<int> &v) {
for (int num: v) {

int currentMax = v[0];
[0]; bool seenLarger = false;

int n = v.size(); for (int compareNum: v) {
for (int i = 1; i < n; i++) { if (compareNum > num) {

. . seenlLarger = true;

if (currentMax < v[i]) { 1

currentMax = v[i]; ks
if (!seenLarger) {

} return num;

} }

}

return currentMax; return -1:
b

Stanford Univeisiby

runtime : runtime

O(n) 0(n?)

int vectorMax(Vector<int> &v) { int vectorMax(Vector<int> &v) {
for (int num: v) {

int currentMax = v[0];
[0]; pbol seenlLarger = false;

int n = v.size(); , . or (int compareNum: v) {
for (int i = 1; i < n; Let’s try it] . if (compareNum > num) {

) seenlLarger = true;

if (currentMax < vl 1

currentMax = v[i]; }
if (!seenLarger) {

} return num;

1 }

}

return currentMax; return -1:
b

Stanford Univeisify

runtime : runtime

n | n
0(n) 0(n?)
int vectorMax(Vector<int> &v) { int vectorMax(Vector<int> &v) {
> b v Lol 'FOI" (-int num: V) {

bool seenLarger = false;
for (int compareNum: v) {

MORE EFFICIENT ™= if (compareNum > num) {

seenlLarger = true;

}
currentMax = v[i]; }
if (!seenLarger) {
¥ return num;
} }

}

return currentMax; return -1:
b

Stanford Univeisitdy

Is it Better?

It depends...

138
Stanford University

“Better” is Subjective

Do you care about:
* Runtime?
* Memory usage?
* Code readability?

139
Stanford University

Beyond Algorithmic Analysis

Based on slides by Katie Creel

140
Stanford University

Big-O Efficiency Matters

* Consider an algorithm that runs in O(log n) time

e Ifit takes 10 milliseconds to process an input of size 1000...

Constant

Logarithmic

Linear

nlogn

Quadratic

Polynomial

Exponential

10 ms

10 s

17 minutes

277 hours

Heat death of
the universe

Algorithmic efficiency can be the difference between a program that runs in a few
seconds and one that won'’t finish before the heat death of the universe

141
Stanford University

Green Computing

* Computation requires energy

BAY AREA

Stanford power outage: University preparing for a
restoration that could ‘take days’

Annie Vainshtein
une 22, 2022 | Updated: June 22, 2022 6:36 p.m,

The Secret Cost of Google's Data Centers:
Billions of Gallons of Water to Cool Servers

Bitcoin consumes 'more electricity
than Argentina’

Cristina Criddle
hnology reporter

10 February 2021

142
Stanford University

Green Computing

* Computation requires energy
 “Green computing”: a commitment to decreasing the

environmental impact of computing
* Decreasing carbon footprint of data centers
* Recycling and reducing use of raw materials during manufacturing
* Reducing energy consumption of computation itself, including by
increasing algorithmic efficiency!

143
Stanford University

But Efficiency Isn’t Everything...

Case Study: Indiana Welfare Modernization

* In 2006, State of Indiana pays IBM S1b to
modernize welfare management system

* 19 months later, the system is failing:

* Welfare applicants waited 20-30 minutes on
hold, only to be denied benefits after their
limited cell phone minutes were used up

* Households receiving food stamps in some
counties went down by 7%, while requests for
food assistance in Indiana had increased by 4%

144
Stanford University

But Efficiency Isn’t Everything...

Case Study: Indiana Welfare Modernization

* The State of Indiana canceled its contract
with IBM and sued IBM for breach of
contract

* |IBM argued that it was not responsible; the
contract only stated that a successful system

would increase efficiency and reduce costs
* IBM'’s system did reduce costs, but it denied
Indiana residents the benefits they needed

145
Stanford University

But Efficiency Isn’t Everything...

Case Study: Indiana Welfare Modernization e o ek

| 3
< | 2(: 5
I

) -]

° ha Stata nflondinna cancaolad itc cantract

| @ Were the engineers at IBM responsible for considering |7
{ the social impacts of the system they designed?

e [BIVIargued that It was not responsible; the

contract only stated that a successful system

would increase efficiency and reduce costs

* IBM'’s system did reduce costs, but it denied
Indiana residents the benefits they needed

146
Stanford University

But Efficiency Isn’t Everything...

Case Study: Password Encryption

 What prevents a hacker from guessing passwords
randomly, perhaps millions of times per minute,
until they guess correctly?

~ Algorithmic Inefficiency ~

 bcrypt and other popular encryption functions
are intentionally designed to be slow, memory
intensive, or both, making guessing more costly

147
Stanford University

Beyond Algorithmic Analysis

* As programmers, we make choices about what to optimize for

e Efficiency can be incredibly important, but it’s not everything

* Carefully consider what you want to prioritize when you design a
system; in real life, there’s rarely a right answer

148
Stanford University

Recap

ADTs and Assignment 2 preview

Attempting to measure program speed
* Runtime — # operations — big-O
Introducing big-O

 How to calculate big-O

« Common big-O classes

Beyond algorithmic efficiency
* Why efficiency is important

* Why efficiency isn’t everything

149
Stanford University

Have a great weekend!

150
Stanford University

