
Big-O Analysis
Elyse Cornwall

July 6th, 2023

Contributions made from previous CS106B Instructors

Week 1 Feedback

2

Week 1 Feedback

Things you liked:

“I like the fact that you guys give time to answer specific questions that

the students might have.”

“I enjoy the modeling of things on the whiteboard, it makes it easy to

follow concepts.”

“Lots of worked examples!! Big fan of that.”

3

Week 1 Feedback

Places we can improve:

“some of the more complex questions and answers are more confusing

than helpful”

“I think the participation tickets are a little hard”

“Would like a stronger emphasis on a recap at the end of each session”

4

Week 1 Feedback

We hear you…

“It would also be really helpful if you could release the lecture slides a

day or two in advance”

“It's complicated having resources on so many different sites like ed,

cppreference.com, cs106b.stanford.edu, etc.”

“Plz use VScode for future students :(”

5

Announcements

• Week 2 feedback survey is out (✨ bonus participation points ✨)

• Tomorrow (Friday 7/7) 5pm is course add/drop deadline

• Assignment 1 is due tomorrow at 11:59pm
• Help resources drop off over the weekend, go to LaIR tonight!

• Assignment 2 will be released tomorrow afternoon
• Assignment 2 YEAH Hours on Friday from 3-4pm at this Zoom link

• Friday Review Session - NVIDIA 1:30pm tomorrow
• Recorded, but come in person for candy!

6

https://forms.gle/QaURFW2yu6vn4b7N9
https://stanford.zoom.us/j/5416618770?pwd=dC84V1VqbmRvQXMvN1FSOFNIU2dNdz09

ADT Highlight Reel

7

Recap of ADTs

Ordered ADTs

8

Elements with indices

• Vectors (1D)
• Grids (2D)

0 1 2 3

4 7 -3 6

Recap of ADTs

Ordered ADTs

9

Elements with indices

• Vectors (1D)
• Grids (2D)

Elements without indices

• Stacks (LIFO)
• Queues (FIFO)

Recap of ADTs

Ordered ADTs

10

Elements with indices

• Vectors (1D)
• Grids (2D)

Elements without indices

• Stacks (LIFO)
• Queues (FIFO)

Unordered ADTs

• Sets (unique elements)
• Maps (key, value pairs)

Keys Values

Nutella

7.99Banana

0.29

Nested ADTs

• We can “nest” ADTs (e.g. Map<string, Set<string>>)

• This allows us to represent more complex data

• Nested ADTs can be tricky to work with, especially because of

reference and copies

11

Assignment 2: Fun with Collections!

Grid<bool>

Each location is either:

• Corridor (true)

• Wall (false)

12

Assignment 2: Fun with Collections!

13

Map<string, Set<string>>
 Keyword, URLs

Assignment 2: Fun with Collections!

14

{“learn”: {“desmos.com”, “stanford.edu”},
 “code” : {“stanford.edu”, “cpp.com”}, ... }
 Keyword, URLs

Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

15

Roadmap

Core
Tools

C++ Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

16

Algorithmic
Analysis

👥 Discuss with a Neighbor

What does it mean for a program to be

• “Faster”
• “More efficient”
• “Better”

than another program?

17

Is it Fast?
Measuring the speed of our programs

18

• Measure how long a program takes to complete

• Example: timing the vectorMax function

One Idea: Runtime

19

Running on a
2012 MacBook

• Measure how long a program takes to complete

• Example: timing the vectorMax function

One Idea: Runtime

20

Running on a
2012 MacBook

Running on a
2020 MacBook

Why Runtime Isn’t Enough

Runtime depends on:

• The computer you’re using

• Other applications running on your computer

• Whether your computer is trying to conserve power

• And more!

21

Another Idea: Number of Operations

• We could count the number of operations, or steps it takes for a

program to complete

• This doesn’t change across computers, as long as the input to our

program is the same

22

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
23

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
24

Take in a Vector of ints and
return the maximum value

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
25

4 7 -3 6
0 1 2 3

v:

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
26

4 7 -3 6
0 1 2 3

v:

currentMax: 4

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
27

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 4

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
28

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 4

i: 1

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
29

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 4

i: 1

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
30

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 4

i: 1

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
31

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 1

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
32

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 2

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
33

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 2

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
34

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 2

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
35

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 3

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
36

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 3

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
37

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 3

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
38

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 4

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
39

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 4

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
40

4 7 -3 6
0 1 2 3

v:

n: 4

currentMax: 7

i: 3

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
41

What are the “operations”
in this function?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
42

Initialize

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
43

Initialize
Initialize

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
44

Initialize
Initialize
Initialize

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
45

Initialize
Initialize
Initialize
Compare

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
46

Initialize
Initialize
Initialize
Compare
Increment

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
47

Initialize
Initialize
Initialize
Compare
Increment
Compare

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
48

Initialize
Initialize
Initialize
Compare
Increment
Compare
Reassign

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
49

Initialize
Initialize
Initialize
Compare
Increment
Compare
Reassign
Return

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
50

Initialize
Initialize
Initialize
Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
51

1 Initialize
Initialize
Initialize
Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
52

1 Initialize
1 Initialize
Initialize
Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
53

1 Initialize
1 Initialize
1 Initialize
Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
54

1 Initialize
1 Initialize
1 Initialize
? Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
55

1 Initialize
1 Initialize
1 Initialize
? Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

👥 How many times did we
compare i < n?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
56

1 Initialize
1 Initialize
1 Initialize
? Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

1 < 4 // if n = 4,
2 < 4
3 < 4
4 < 4 // 4 times!

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
57

1 Initialize
1 Initialize
1 Initialize
? Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

1 < 2 // if n = 2,
2 < 2 // 2 times!

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
58

1 Initialize
1 Initialize
1 Initialize
? Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

1 < n
2 < n
3 < n
... // n times!

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
59

1 Initialize
1 Initialize
1 Initialize
n Compare
Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
60

1 Initialize
1 Initialize
1 Initialize
n Compare
n - 1 Increment
Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
61

1 Initialize
1 Initialize
1 Initialize
n Compare
n - 1 Increment
n - 1 Compare
Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
62

1 Initialize
1 Initialize
1 Initialize
n Compare
n - 1 Increment
n - 1 Compare
(up to) n - 1 Reassign
Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
63

1 Initialize
1 Initialize
1 Initialize
n Compare
n - 1 Increment
n - 1 Compare
(up to) n - 1 Reassign
1 Return

Now, how many times do
we repeat each operation?

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
64

1 + 1 + 1 + n + n - 1 + n - 1 +
n - 1 + 1 = 4n + 1

Now, let’s sum it up!

Analyzing vectorMax
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}
65

This program takes at most
4n + 1 operations.

… what does this tell us?

Another Idea: Number of Operations

• We could count the number of operations, or steps it takes for a

program to complete

• This doesn’t change across computers, as long as the input to our

program is the same

This is still too much detail

Some of those constant operations might depend on your computer

66

The Big Idea: Big-O

• General enough to compare across different computer systems

• Focuses on how the runtime will grow with the input size
• It’s all about growth rate

• This allows us to predict the runtime of future inputs

67

Calculating Big-O of vectorMax

68

4n + 1

Calculating Big-O of vectorMax

• Remove lower-order terms including constants

69

4n + 1

Calculating Big-O of vectorMax

• Remove lower-order terms including constants

• Get rid of leading coefficients

70

4n + 1

Calculating Big-O of vectorMax

• Remove lower-order terms including constants

• Get rid of leading coefficients

71

O(n)

The runtime grows linearly with size of input vector

Let’s Make a Prediction

72

🎟 How much longer will vectorMax
take for a Vector of size 8, compared to size
4?

4 7 -3 6
0 1 2 3

2 5 1 -10 8 3 14 2
0 1 2 3 4 5 6 7

O(n)

Let’s Make a Prediction

73

Twice as long: doubling the size of the input
doubles the runtime of vectorMax

4 7 -3 6
0 1 2 3

2 5 1 -10 8 3 14 2
0 1 2 3 4 5 6 7

O(n)

Other Growth Rates

• How does a circle’s area scale with its radius?

74

1.5 in

3 in

Other Growth Rates

• How does a circle’s area scale with its radius?

75

A=πr2

1.5 in

3 in

Other Growth Rates

• How does a circle’s area scale with its radius?

76

A=πr2

Drop leading coefficients

1.5 in

3 in

Other Growth Rates

• How does a circle’s area scale with its radius?

77

O(n2)

The circle’s area grows
quadratically with its radius

1.5 in

3 in

Other Growth Rates

• How does a sphere’s volume scale with its radius?

78

1 ft

2 ft

V=(4/3)πr3

Other Growth Rates

• How does a sphere’s volume scale with its radius?

79

1 ft

2 ft

V=(4/3)πr3

Drop leading coefficients

Other Growth Rates

• How does a sphere’s volume scale with its radius?

80

1 ft

2 ft

O(n3)

The sphere’s volume grows
cubically with its radius

Other Growth Rates

• How does the amount of effort needed to cut a piece of string

scale with its length?

81

20 cm

40 cm

Other Growth Rates

• How does the amount of effort needed to cut a piece of string

scale with its length?

82

It doesn’t!
It takes the same amount of work to
cut the string, no matter its length

20 cm

40 cm

Other Growth Rates

• How does the amount of effort needed to cut a piece of string

scale with its length?

83

Cutting a piece of string requires a
constant amount of work, relative to
the string’s length

O(1)

20 cm

40 cm

Growth Rates We’ll Explore

84

Constant Logarithmic Linear n log n Quadratic Polynomial Exponential

O(1) O(log n) O(n) O(n log n) O(n2) O(nk)
k ≥ 1

O(an)
a > 1

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

85

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() -O(1)
• .isEmpty() -O(1)
• .add() -???
• .remove() -???
• .contains() -???
• traversal -O(n)
 Maps

• .size() -O(1)
• .isEmpty() -O(1)
• m[key] -???
• .contains() -???
• traversal -O(n)

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

86

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() -O(1)
• .isEmpty() -O(1)
• .add() -???
• .remove() -???
• .contains() -???
• traversal -O(n)
 Maps

• .size() -O(1)
• .isEmpty() -O(1)
• m[key] -???
• .contains() -???
• traversal -O(n)

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

87

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() -O(1)
• .isEmpty() -O(1)
• .add() -???
• .remove() -???
• .contains() -???
• traversal -O(n)
 Maps

• .size() -O(1)
• .isEmpty() -O(1)
• m[key] -???
• .contains() -???
• traversal -O(n)

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

88

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() -O(1)
• .isEmpty() -O(1)
• .add() -???
• .remove() -???
• .contains() -???
• traversal -O(n)
 Maps

• .size() -O(1)
• .isEmpty() -O(1)
• m[key] -???
• .contains() -???
• traversal -O(n)

👥 Why does inserting into a Vector have linear time
complexity? Think of the “worst case” scenario.

Big-O of ADT Operations

Vectors

• .size() - O(1)
• .add() - O(1)
• v[i] - O(1)
• .insert() - O(n)
• .remove() - O(n)
• .sublist() - O(n)
• traversal - O(n)
 Grids

• .numRows() - O(1)
• .numCols() - O(1)
• grid[i][j] - O(1)
• .inBounds() -

O(1)
• traversal - O(n2)

89

Queues

• .size() - O(1)
• .peek() - O(1)
• .enqueue() - O(1)
• .dequeue() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)
 Stacks

• .size() - O(1)
• .peek() - O(1)
• .push() - O(1)
• .pop() - O(1)
• .isEmpty() - O(1)
• traversal - O(n)

Sets

• .size() -O(1)
• .isEmpty() -O(1)
• .add() -???
• .remove() -???
• .contains() -???
• traversal -O(n)
 Maps

• .size() -O(1)
• .isEmpty() -O(1)
• m[key] -???
• .contains() -???
• traversal -O(n)

In the worst case, we’re inserting at the front, shifting
the other n elements over by one position.

Is it Efficient?
Comparing Big-O runtimes

90

We’ll Use Big-O to Categorize Efficiency

Constant Time - O(1)
• The best we can do!
• Euclid's Algorithm for Perfect Numbers

Linear Time - O(n)
• This is okay, we can live with this

Quadratic Time - O(n2) and beyond

• This can start to slow down really quickly
• Exhaustive Search for Perfect Numbers

91

O(1)

O(n)

O(n2)
O(n3)

We’ll Use Big-O to Categorize Efficiency

• Spoiler alert: not every problem is

solvable in O(1) time

• We can use Big-O to compare different

solutions to the same problem

• The “more efficient” solution gets the

job done with a smaller Big-O

92

O(1)

O(n)

O(n2)
O(n3)

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

93

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

94

4 7 -3 6
0 1 2 3

v:

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

95

4 7 -3 6
0 1 2 3

v:

num: 4

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

96

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: false

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

97

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: false

compareNum: 4

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

98

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: false

compareNum: 4

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

99

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: false

compareNum: 7

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

100

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: false

compareNum: 7

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

101

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: true

compareNum: 7

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

102

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: true

compareNum: -3

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

103

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: true

compareNum: -3

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

104

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: true

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

105

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: true

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

106

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: true

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

107

4 7 -3 6
0 1 2 3

v:

num: 4

seenLarger: true

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

108

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: true

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

109

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

110

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 4

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

111

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 4

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

112

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 7

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

113

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 7

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

114

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: -3

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

115

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: -3

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

116

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

117

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

118

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

119

4 7 -3 6
0 1 2 3

v:

num: 7

seenLarger: false

compareNum: 6

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

120

4 7 -3 6
0 1 2 3

v:

👥 Does this algorithm seem more
or less efficient than the other one?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

121

Big-O considers worst case
runtime. What if our Vector
looked like this instead?

Consider what happens if
we have to loop the max
number of times.

4 -3 6 7
0 1 2 3

v:

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

122

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

123

n Initialize

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

124

n Initialize
n Initialize

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

125

n Initialize
n Initialize
? Initialize

How many operations?

👥 How many times do we initialize
compareNum in this function?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

126

n Initialize
n Initialize
n2 Initialize

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

127

n Initialize
n Initialize
n2 Initialize
n2 Compare

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

128

n Initialize
n Initialize
n2 Initialize
n2 Compare
n2 Reassign

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

129

n Initialize
n Initialize
n2 Initialize
n2 Compare
n2 Reassign

n Evaluate

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

130

n Initialize
n Initialize
n2 Initialize
n2 Compare
n2 Reassign

n Evaluate
1 Return

How many operations?

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

131

3n + 3n2 + 1 operations

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

132

3n + 3n2 + 1

Remove lower order terms

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

133

3n + 3n2 + 1

Remove leading coefficients

vectorMax, revisited

int vectorMax(Vector<int> &v) {
for (int num: v) {

bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

134

O(n2)

What’s the Big-O?

O(n)
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}

O(n2)
int vectorMax(Vector<int> &v) {

for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

135

n n

runtimeruntime

O(n)
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}

O(n2)
int vectorMax(Vector<int> &v) {

for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

136

n n

runtimeruntime

Let’s try it! 💻

O(n)
int vectorMax(Vector<int> &v) {

int currentMax = v[0];
int n = v.size();
for (int i = 1; i < n; i++) {

if (currentMax < v[i]) {
currentMax = v[i];

}
}
return currentMax;

}

O(n2)
int vectorMax(Vector<int> &v) {

for (int num: v) {
bool seenLarger = false;
for (int compareNum: v) {

if (compareNum > num) {
seenLarger = true;

}
}
if (!seenLarger) {

return num;
}

}
 return -1;
}

137

n n

runtimeruntime

MORE EFFICIENT 😎

Is it Better?
It depends…

138

“Better” is Subjective

Do you care about:

• Runtime?

• Memory usage?

• Code readability?

139

Beyond Algorithmic Analysis
Based on slides by Katie Creel

140

Big-O Efficiency Matters

• Consider an algorithm that runs in O(log n) time

• If it takes 10 milliseconds to process an input of size 1000…

141

Constant Logarithmic Linear n log n Quadratic Polynomial Exponential

1 ms 10 ms 1 s 10 s 17 minutes 277 hours Heat death of
the universe

Algorithmic efficiency can be the difference between a program that runs in a few
seconds and one that won’t finish before the heat death of the universe

Green Computing

• Computation requires energy

142

Green Computing

• Computation requires energy

• “Green computing”: a commitment to decreasing the

environmental impact of computing
• Decreasing carbon footprint of data centers

• Recycling and reducing use of raw materials during manufacturing

• Reducing energy consumption of computation itself, including by

increasing algorithmic efficiency!

143

But Efficiency Isn’t Everything…

Case Study: Indiana Welfare Modernization

• In 2006, State of Indiana pays IBM $1b to
modernize welfare management system

• 19 months later, the system is failing:
• Welfare applicants waited 20-30 minutes on

hold, only to be denied benefits after their
limited cell phone minutes were used up

• Households receiving food stamps in some
counties went down by 7%, while requests for
food assistance in Indiana had increased by 4%

144

But Efficiency Isn’t Everything…

Case Study: Indiana Welfare Modernization

• The State of Indiana canceled its contract

with IBM and sued IBM for breach of

contract

• IBM argued that it was not responsible; the

contract only stated that a successful system

would increase efficiency and reduce costs
• IBM’s system did reduce costs, but it denied

Indiana residents the benefits they needed
145

But Efficiency Isn’t Everything…

Case Study: Indiana Welfare Modernization

• The State of Indiana canceled its contract

with IBM and sued IBM for breach of

contract

• IBM argued that it was not responsible; the

contract only stated that a successful system

would increase efficiency and reduce costs
• IBM’s system did reduce costs, but it denied

Indiana residents the benefits they needed
146

👥 Were the engineers at IBM responsible for considering
the social impacts of the system they designed?

But Efficiency Isn’t Everything…

Case Study: Password Encryption

• What prevents a hacker from guessing passwords
randomly, perhaps millions of times per minute,
until they guess correctly?

~ Algorithmic Inefficiency ~

• bcrypt and other popular encryption functions
are intentionally designed to be slow, memory
intensive, or both, making guessing more costly

147

Beyond Algorithmic Analysis

• As programmers, we make choices about what to optimize for

• Efficiency can be incredibly important, but it’s not everything

• Carefully consider what you want to prioritize when you design a

system; in real life, there’s rarely a right answer

148

Recap

• ADTs and Assignment 2 preview

• Attempting to measure program speed
• Runtime → # operations → big-O

• Introducing big-O
• How to calculate big-O

• Common big-O classes

• Beyond algorithmic efficiency
• Why efficiency is important

• Why efficiency isn’t everything

149

Have a great weekend! ☀

150

