
Strings
Amrita Kaur

June 28, 2023

Contributions made from previous CS106B Instructors

Announcements and Reminders

• Sections start today!
• Should have already gotten section assignment in an email

• Change section on section signup page

• Assignment 0 due Friday at 11:59pm

• Please always email both Elyse and Amrita when reaching out
• You’ll get a faster response that way

• OH: Today 3-5pm in Durand 303

2

https://cs198.stanford.edu/cs198/auth/default.aspx

CS106B Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

3

C++ Types

Numbers

• int, long // 100
• float, double // 3.14

Text

• char, string // ‘a’, “apple”

Booleans

• bool // true, false

4

String

5

• Data type that represents a sequence of characters

• Marked by double quotes

• Ex: “apple”

Char
• Data type that represents a single character (letters, digits, symbols)
• Marked by single quotes
• Ex: ‘a’
• Have numerical representation (ASCII codes)

6

“apple”

7

‘a’ ‘p’ ‘p’ ‘l’ ‘e’

0 1 2 3 4

Indexing into a String

void printLetter() {

string word = “apple”;

// TODO: print out the letter ‘l’ from string

// 1. How do we index into array?

// 2. Do you remember how to print in C++?

}

8

Looping Through a String

string word = “apple”;

for (int i=0; i < word.length(); i++) {

cout << word[i] << endl;

}

9

// OR

for (char letter : word) {

cout << letter << endl;

}

Apple, Reimagined

10

// What is the output of this function?

void changeLetter() {

string word = “apple”;

word[1] = ‘q’;

cout << word << endl;

}

Key Characteristics of Strings

• Strings are mutable in C++

11

Apple, Reimagined (Take 2)

12

// What is the output of this function?

void changeLetter() {

string word = “apple”;

word[1] = “q”; // changed to string

cout << word << endl;

}

error: assigning to
'__gnu_cxx::__alloc_traits<std::allo
cator<char>, char>::value_type' (aka

'char') from incompatible type
'const char [2]'

Key Characteristics of Strings

• Mutable in C++

• Concatenated using + or +=

13

More Apples, Please

void addLetter() {

string word = “apple”;

string letterStr = “s”;

word = word + letterStr;

cout << word << endl;

}

14

apples

More Apples, Please

void addLetter() {

string word = “apple”;

string letterStr = “s”;

word += letterStr;

cout << word << endl;

}

15

apples

Even More Apples, Please

void addLetter() {

string word = “apple”;

string letterStr = “s”;

word += letterStr;

cout << word << endl;

}

16

??

void addLetterChr() {

string word = “apple”;

char letterChr = ‘s’;

word += letterChr;

cout << word << endl;

}

apples

Key Characteristics of Strings

• Mutable in C++

• Concatenated using + or +=
• Add strings and strings, output is a string

• Add strings with chars, output is a string

• Adding chars will NOT give a string output

17

Key Characteristics of Strings

• Mutable in C++

• Concatenated using + or +=
• Add strings and strings, output is a string

• Add strings with chars, output is a string

• Adding chars will NOT give a string output

• Compared using relational operators (<, >, ==, !=)

18

Apples and Operators

19

void compareStringsV1() {
string s1 = “apple”;
string s2 = “banana”;
if (s1 < s2) {

cout << s1 << “ < ” << s2 << endl;
} else {

cout << s1 << “ > ” << s2 << endl;
}

}

??apple < banana

Apples and Operators

20

void compareStringsV2() {
string s1 = “apple”;
string s2 = “Banana”;
if (s1 < s2) {

cout << s1 << “ < ” << s2 << endl;
} else {

cout << s1 << “ > ” << s2 << endl;
}

}

??Banana < apple

Apples and Operators

21

void compareStringsV3() {
string s1 = “apple”;
string s2 = “apples”;
if (s1 < s2) {

cout << s1 << “ < ” << s2 << endl;
} else {

cout << s1 << “ > ” << s2 << endl;
}

}

??apple < apples

Libraries

• Allow us to use code that was written elsewhere by someone else

• Standard C++ Libraries

#include <libraryname>

• Local Libraries

#include "libraryname.h"

22

Libraries for Strings and Chars

• <cctype> library
• Built-in C++ char methods

• <string> library
• Built-in C++ string methods

• “strlib.h” library
• Stanford string functions

23

<cctype> Library
• #include <cctype>
• This library provides functions that check a single char for a property (e..g, if it is a digit), or return a char

converted in some way (e.g., to uppercase)
• isalnum: checks if a character is alphanumeric
• isalpha: checks if a character is alphabetic
• islower: checks if a character is lowercase
• isupper: checks if a character is an uppercase character
• isdigit: checks if a character is a digit
• isxdigit: checks if a character is a hexadecimal character
• iscntrl: checks if a character is a control character
• isgraph: checks if a character is a graphical character
• isspace: checks if a character is a space character
• isblank: checks if a character is a blank character
• isprint: checks if a character is a printing character
• ispunct: checks if a character is a punctuation character
• tolower: converts a character to lowercase
• toupper: converts a character to uppercase

24

<string> Library
• #include <string>

• s.append(str): add text to the end of a string

• s.compare(str): return -1, 0, or 1 depending on relative ordering

• s.erase(index, length) : delete text from a string starting at given index

• s.find(str)

s.rfind(str): first or last index where the start of str appears in this string (returns string::npos if

not found)

• s.insert(index, str): add text into a string at a given index

• s.length() or s.size(): number of characters in this string

• s.replace(index, len, str): replaces len chars at given index with new text

• s.substr(start, length) or s.substr(start): the next length characters beginning at start

(inclusive); if length omitted, grabs till end of string

25

“strlib.h” Library
• #include “strlib.h”

• endsWith(str, suffix)

startsWith(str, prefix): returns true if the given string begins or ends with the given prefix/suffix text

• integerToString(int)

realToString(double)

stringToInteger(str)

stringToReal(str): returns a conversion between numbers and strings

• equalsIgnoreCase(s1, s2): true if s1 and s2 have same chars, ignoring casing

• toLowerCase(str)

toUpperCase(str): returns an upper/lowercase version of a string

• trim(str): returns string with surrounding whitespace removed

26

Review

void addLetter() {

string word = “apple” + “sauce”;

cout << word << endl;

}

27

??

Not a Review! This is new…

void addLetter() {

string word = “apple” + “sauce”;

cout << word << endl;

}

28

error: invalid operands to binary
expression ('const char [6]' and

'const char [2]')

void addLetter() {

string word = “apple”;

string letterStr = “s”;

word = word + letterStr;

cout << word << endl;

}

C++ vs. C strings

• C strings, also known as string literals
• Hard coded string values

• Ex: “hi there”

• Have no methods

• Deal with memory management on your own - dangerous!

• C++ strings, which are string objects
• Ex: string s1 = “hi there”;

• Lots of helpful methods!

• When possible, declare C++ strings for better usability

29

Conversion

• You can convert between string types:
• string s = “text”; converts a C string literal into a C++ string

• string("text"); converts C string literal into C++ string

• string.c_str() returns a C string out of a C++ string

30

C string examples

string word = “apple” + “sauce”;

• Concatenating C strings with +
• Not possible (does not compile)

string word1 = “apple”

string word = word1 + “sauce”;

• Concatenating C++ and C string with +
• Works perfectly! (autoconversion of C string)

31

C string examples

string hiQuestion = “hi” + ‘?’;

• Concatenating C string and char with +
• Not possible (produces garbage - particularly nefarious)

string hiQuestion = string(“hi”) + ‘?’;

• Concatenating C++ string and char with +
• Works perfectly! (autoconversion of char)

32

What is the output?

void mystery(string a, string &b) {
 a.erase(0, 1);
 b += a[0];
 b.insert(3, "FOO");
}

int main() {
 string a = "Stanford";
 string b = "Tree";
 mystery(a, b);
 cout << a << " " << b << endl;
 return 0;
}

33

Recap
• Strings - double quoted, sequences of chars
• Chars - single quoted, single-character ASCII numerical values
• Key characteristics of strings

• Mutable in C++
• Concatenate C++ strings with +

• Adding chars can get weird

• Compare with logical operators

• Standard and Stanford-specific libraries that provide helpful string functions
• C++ has both C strings and C++ strings

• under the hood, both are sequences of characters
• C++ strings handle details for you automatically, C-strings do not.
• C++ strings are much more functional and easier to use
• Many times (but not always), C-strings auto-convert to C++ strings when necessary

34

