Strings
Amrita Kaur
June 28, 2023

Contributions made from previous CS106B Instructors Stanford University

Announcements and Reminders

Sections start today!
* Should have already gotten section assignment in an email
* Change section on section signup page

Assignment O due Friday at 11:59pm

Please always email both Elyse and Amrita when reaching out
* You’ll get a faster response that way

OH: Today 3-5pm in Durand 303

Stanford University

https://cs198.stanford.edu/cs198/auth/default.aspx

CS106B Roadmap

Object-Oriented
Programming

Abstract Data
Structures

Core Algorithmic
C++ :
Tools Analysis

Memory
Management
Linked Advanced
Data Algorithms
Structures
Recursion

Stanford University

C++ Types

Numbers

 1int, long // 100
« float,double // 3.14

Text
* char,string // ‘a’, “apple”
Booleans

e bool // true, false

Stanford University

String

e Data type that represents a sequence of characters
 Marked by double quotes
 Ex:“apple”

Char

» Data type that represents a single character (letters, digits, symbols)
* Marked by single quotes

e Ex: ‘@

 Have numerical representation (ASCII codes)

Stanford University

ASCII TABLE

Decimal Hex Char Decimal Hex Char |Decimal Hex Char |Decimal Hex Char
0 0 [NULL] 32 20 [SPACE] | 64 40 @ 96 60 >
1 1 [START OF HEADING] 33 21 ! 65 41 A 97 61 a
2 2 [START OF TEXT] 34 22 " 66 42 B 98 62 b
3 3 [END OF TEXT] 35 23 # 67 43 C 99 63 c
4 4 [END OF TRANSMISSION] | 36 24 $ 68 44 D 100 64 d
5 5 [ENQUIRY] 37 25 % 69 45 E 101 65 e
6 6 [ACKNOWLEDGE] 38 26 & 70 46 F 102 66 f
7 7 [BELL] 39 27 ' 71 47 G 103 67 g
8 8 [BACKSPACE] 40 28 (72 48 H 104 68 h
9 9 [HORIZONTAL TAB] 41 29) 73 49 I 105 69 i
10 A [LINE FEED] 42 2A % 74 an) 106 6A j
11 B [VERTICAL TAB] 43 2B + 75 4B K 107 6B k
12 C [FORM FEED] 44 2c 76 ac L 108 6C 1
13 D [CARRIAGE RETURN] 45 2D - 77 4D M 109 60 m
14 E [SHIFT OUT] 46 2E . 78 4E N 110 6E n
15 F [SHIFT IN] 47 2F / 79 aF o 111 6F o
16 10 [DATA LINK ESCAPE] 48 30 0 80 50 P 112 70 p
17 11 [DEVICE CONTROL 1] 49 31 1 81 51 Q 113 71 q
18 12 [DEVICE CONTROL 2] 50 32 2 82 52 R 114 72 r
19 13 [DEVICE CONTROL 3] 51 33 3 83 53 s 115 73 s
20 14 [DEVICE CONTROL 4] 52 34 4 84 54 T 116 74 t
21 15 [NEGATIVE ACKNOWLEDGE] | 53 35 5 85 55 U 117 75 u
22 16 [SYNCHRONOUS IDLE] 54 36 6 86 56 Y 118 76 v
23 17 [END OF TRANS. BLOCK] 55 37 7 87 57 w 119 77 w
24 18 [CANCEL] 56 38 8 88 58 X 120 78 x
25 19 [END OF MEDIUM] 57 39 9 89 59 Y 121 79y
26 1A [SUBSTITUTE] 58 30 90 5A z 122 Az
27 1B [ESCAPE] 59 3B ; 91 5B [123 7B {
28 1C [FILE SEPARATOR] 60 3¢ < 92 5C \ 124 7C |
29 1D [GROUP SEPARATOR] 61 3D = 93 50] 125 7D}
30 1E [RECORD SEPARATOR] 62 3E > 94 5E ~ 126 7E ~
31 1F [UNIT SEPARATOR] 63 3F ? 95 5F ~ 127 7F [DEL]

Stanford University

Stanford University

Indexing into a String

void printLetter() {

string word = “apple”;
// TODO: print out the letter ‘1’ from string

// 1. How do we index into array?

// 2. Do you remember how to print in C++?

Stanford University

Looping Through a String

string word = “apple”;

for (int 1=0; 1 < word.length(); 1++) {
cout << word[i1] << endl;

}

// OR
for (char letter : word) {

cout << letter << endl;

} Stanford University

Apple, Reimagined

// What 1is the output of this function?

void changeletter() {
string word = “apple”;
word[1l] = ‘q’;

cout << word << endl;

10

Stanford University

11

Key Characteristics of Strings

e Strings are mutable in C++

Stanford University

12

Apple, Reimagined (Take 2)

// What 1is the output of this function?

void change
string w

word|[1] o string

cout <K<

Stanford University

13

Key Characteristics of Strings

* Mutable in C++
* Concatenated using + or +=

Stanford University

14

More Apples, Please

void addLetter () {
string word = “apple”;

string letterStr = “s”;

word = word + letterStr;

cout << word << endl;

[apples J

Stanford University

15

More Apples, Please

void addLetter () {
string word = “apple”;

string letterStr = “s”;

word += letterStr;

cout << word << endl;

[apples J

Stanford University

16

Even More Apples, Please

void addLetter () {
string word = “apple”

string letterStr = “s

word += letterStr;

cout << word << endl;

b

2 .
)

void addLetterChr() {
string word = “apple”;

char letterChr = ‘s’;

word += letterChr;

cout << word << endl;

[apples

Stanford University

17

Key Characteristics of Strings

e Mutable in C++

* Concatenated using + or +=
e Add strings and strings, output is a string
e Add strings with chars, output is a string
e Adding chars will NOT give a string output

Stanford University

18

Key Characteristics of Strings

e Mutable in C++

* Concatenated using + or +=
e Add strings and strings, output is a string
e Add strings with chars, output is a string
e Adding chars will NOT give a string output

* Compared using relational operators (<, >, ==, I=)

Stanford University

Apples and Operators

19

void compareStringsV1() {
string sl = “apple”; apple < banana

string s2 = “banana”;
if (sl < s2) {

cout << sl << % < ” << s2 << endl;
} else {

cout << sl << “ > ” << 52 << endl;

Stanford University

Apples and Operators

20

void compareStringsV2() {
string sl = “apple”; Bananal < apple

string s2 = “Banana”;
if (sl < s2) {

cout << sl << % < ” << s2 << endl;
} else {

cout << sl << “ > ” << 52 << endl;

Stanford University

Apples and Operators

21

void compareStringsV3() {
string sl = “apple”; apple < apples

string s2 = “apples”;
if (sl < s2) {

cout << sl << % < ” << s2 << endl;
} else {

cout << sl << “ > ” << 52 << endl;

Stanford University

22

Libraries

* Allow us to use code that was written elsewhere by someone else
e Standard C++ Libraries

#include <libraryname>
* Local Libraries

#include "libraryname.h"

Stanford University

23

Libraries for Strings and Chars

e <cctype> library

* Built-in C++ char methods
« <string> library

* Built-in C++ string methods
« “strlib.h” library

« Stanford string functions

Stanford University

24

<cctype> Library

e #include <cctype>
e Thislibrary provides functions that check a single char for a property (e..g, if it is a digit), or return a char

converted in some way (e.g., to uppercase)

e isalnum:checks if a character is alphanumeric

isalpha: checks if a character is alphabetic
islower: checks if a character is lowercase
isupper: checks if a character is an uppercase character
isdigit: checks if a character is a digit
isxdigit: checks if a character is a hexadecimal character
iscntrl: checks if a character is a control character
isgraph: checks if a character is a graphical character
isspace: checks if a character is a space character
isblank: checks if a character is a blank character
isprint: checks if a character is a printing character
ispunct: checks if a character is a punctuation character
tolower: converts a character to lowercase
toupper: converts a character to uppercase

Stanford University

25

<string> Library

e #include <string>

.append(str): add text to the end of a string

.compare(str):return -1,0, or 1 depending on relative ordering

.erase(index, length) :delete text from astring starting at given index

.find(str)

.rfind(str):first or last index where the start of str appears in this string (returns string: : npos if
not found)

.insert(index, str):addtextintoastringatagivenindex

.length() or s.size():number of characters in this string

.replace(index, len, str):replaces len chars atgivenindex with new text

.substr(start, length) or s.substr(start):the nextlength characters beginningat start
inclusive); if length omitted, grabs till end of string

nwn nu nun nu n

n nu n n

—

Stanford University

26

“strlib.h” Library

e #include “strlib.h”
e endsWith(str, suffix)
startsWith(str, prefix):returnstrue if the given string begins or ends with the given prefix/suffix text
e integerToString(int)
realToString(double)
stringToInteger(str)
stringToReal(str):returns a conversion between numbers and strings
e equalsIgnoreCase(sl, s2):trueifslands2havesame chars,ignoringcasing
e toLowerCase(str)
toUppercCase(str): returns an upper/lowercase version of a string
e trim(str):returnsstring with surrounding whitespace removed

Stanford University

27

Review

void addLetter () {
string word = “apple” + “sauce”;

cout << word << endl;

- |

Stanford University

28

. . . void addLetter () {
Not a Review! This is new...
string word = “apple”;
4 add () { string letterStr = “s”;
void addLetter
string word = “apple” + “sauce”; word = word + letterStr;

cout << word << end'L; cout << word << endl;

Stanford University

29

C++ vs. C strings

e Cstrings, also known as string literals

* Hard coded string values

* Ex: “hi there”

* Have no methods

* Deal with memory management on your own - dangerous!
e C++ strings, which are string objects

* Ex:string s1 = “hi there”,;

* Lots of helpful methods!
 When possible, declare C++ strings for better usability

Stanford University

30

Conversion

* You can convert between string types:
« string s = “text”; converts a Cstring literal into a C++ string
 string("text") ; converts Cstring literal into C++ string
« string.c_str () returnsa Cstring out of a C++ string

Stanford University

C string examples

string word = “apple” + “sauce”;

« Concatenating C strings with +
* Not possible (does not compile)

string wordl = “apple”
string word = wordl + “sauce”;

« Concatenating C++ and C string with +
« Works perfectly! (autoconversion of C string)

31

Stanford University

32

C string examples

string hiQuestion = “hi” + ¢?’;

« Concatenating C string and char with +
* Not possible (produces garbage - particularly nefarious)

string hiQuestion = string(“hi”) + ¢?’;

« Concatenating C++ string and char with +
« Works perfectly! (autoconversion of char)

Stanford University

33

What is the output?

void mystery(string a, string &b) {
a.erase(0, 1);
b += al0];
b.insert(3, "FO0");

int main() {
string a = "Stanford";

string b = "Tree";

mystery(a, b);

cout << a << " " << b << endl;
return 0;

Stanford University

34

Recap

* Strings - double quoted, sequences of chars
* Chars - single quoted, single-character ASCIl numerical values

e Key characteristics of strings
* Mutable in C++

* Concatenate C++ strings with +
* Adding chars can get weird

* Compare with logical operators
e Standard and Stanford-specific libraries that provide helpful string functions
e C++ has both C strings and C++ strings

* under the hood, both are sequences of characters

e C++ strings handle details for you automatically, C-strings do not.

* C++ strings are much more functional and easier to use

* Many times (but not always), C-strings auto-convert to C++ strings when necessary

Stanford University

