For-each loop iteration over collection (not Stack,Queue,PriorityQueue)

for (type name : collection) {

* Al Big-Ob runtimes listed are average-case; some methods perform differently under various cases.

cel)

Vector<T>
v.add(val) or v += val appends value to end of vector o) *
v.clear() removes all elements o)
v.get(i) or v[i] returns value at given index o)
v.insert(i, val) inserts at given index, shifting subsequent values right O(N)
v.isEmpty() returns true if there are no elements o)
v.remove(1i) removes value at given index, shifting subsequent values left O(N)
v.set(i, val) or v[i] = val replaces value at given index o)
v.size() returns number of elements o)
v.subList(start, length) returns new vector containing subrange of elements O(N)
Grid<T>
g.get(row, col) or g[row][col] or g[location] returns value stoted at given row/column location o)
g.inBounds(row, col) or g.inBounds(location) returns true if given row/column index is within (0, 0) ... R, C) | O(1)
g.numCols() returns number of columns C o)
g.numRows () returns number of rows R o)
g.set(row, col, val) or g[row][col] = val or changes value stored at given row/column location o)
g[location] = val
GridLocation GridLocationRange
GridLocation(row,col) | constructor GridLocationRange(constructor, start/end locations ate inclusive

endRow, endCol)

startRow, startCol,

Loc.row access row field r.contains(Lloc) returns true if loc contained in range
Loc.col access col field r.isempty() returns true if range is empty
r.startLocation() returns start/end as GridLLocation
r.endLocation()
for (GridLocation loc: r) | iterate over locations in range
Stack<T> Queue<T>
s.clear() removes all elements O(1) q.clear() removes all elements ONN)
s.push(val) | adds value to top of stack O(1) g.enqueue(val) | adds value to back of queue O(1)
s.pop() removes/returns top value o) g.dequeue() removes/teturns front value o)
pop/peek etror if empty dequeue/peek etror if empty
s.peek() returns top value without removing O(1) q.peek() returns front value without removing o)
s.isEmpty() | returns true if no elements o) g.isEmpty() returns true if no elements o)
s.size() returns number of elements O(1) g.size() returns number of elements o)

Set<T>, HashSet<T>

s.add(val) or s += val adds to set; if a duplicate, no effect O(log N), O(1)
s.clear() removes all elements OomN)
s.contains(val) returns true if value is found in the set O(log N), O(1)
s.first() returns first element from set (does not remove it) O(log N), O(1)
s.isEmpty() returns true if there are no elements o)
s.isSubsetOf(s2) returns true if s2 contains all elements of § O(N)
s.remove(val) or s -= val removes value from set, if present O(log N), O(1)
s.size() returns number of elements o)

sl == s2, s1 != s2 operators for set equality testing O(N)
sl1.unionWith(s2) returns set of all elements of s2 and s1 O(N)
sl.intersect(s2) returns set of all elements in both s1 and s2 O(N)
sl.difference(s2) returns set of all elements s1 notin s2 O(N)

Map<K, V>, HashMap<K, V>

m.clear() removes all key/value pairs ONN)
m.containsKey (key) returns true if map contains a pair for the given key O(log N), O(1)
m.get(key) or m[Rey] returns value paired with the given key O(log N), O(1)
(or a default value such as @, false, "" if key is not present)

m.isEmpty() returns true if there are no key/value pairs o)
m.keys () returns a Vector copy of all keys in the map ONN)
m.put(key, val) or m[Rey] = val | adds a pairing of the given key to the given value O(log N), O(1)
m.remove(key) removes any existing pairing for the given key O(log N), O(1)
m.size() returns number of key/value pairs o)
m.values() returns a Vector copy of all values in the map O(N)

A for-each loop on a map iterates over the £eys, not the values.

PriorityQueue<V>
pqg.clear() removes all entries o)
pq.dequeue() removes/returns value of frontmost entry, frontmost = most O(log N)
urgent priority, dequeue/peek error if empty

pq.enqueue(val, priority) adds entry for value with given priority O(log N)
pq.isEmpty() returns true if no entries o)

pq.peek() returns value of frontmost entry o)
pq.peekPriority() returns priority of frontmost entry o)

pq.size() returns number of entries o)

Lexicon
L.contains(word) returns true if the word is found in the lexicon O(log N)
L.containsPrefix(text) returns true if any word starts with this prefix text O(log N)
Strings

str.at(i) or s[1i]

character at a given O-based index in the string

str.append(str)

add text to the end of a string (in-place)

str.compare(str)

return -1, 0, or 1 depending on relative ordering

str.erase(i, Llength)

delete text from a string starting at given index (in-place)

str.find(str)
str.rfind(str)

returns the first or last index where the start of the given string or character
appears in this string (or string: :npos if not found)

str.insert(i, str)

add text into a string at a given index (in-place)

str.length() or str.size()

number of characters in this string

str.replace(i, len, str)

replaces Len chars at given index with new text (in-place)

str.substr(start, Llength) or
str.substr(start)

returns the next Length characters beginning at index start (inclusive);
if Length is omitted, grabs from start to the end of the string

endsWith(str, suffix), startsWith(str, prefix)

returns true if the string begins or ends with the given prefix/suffix

integerToString(int), stringToInteger(str)

returns a conversion between numbers and strings

stringContains(str, substr)

true if substr contained in str

stringSplit(str, separator)

breaks apart a string into a Vector of substrings divided by separator

toLowerCase(str), toUpperCase(str)

returns an uppet/lowercase version of a string

trim(str)

returns string with any surrounding whitespace removed

SimpleTest

STUDENT_TEST("Example test cases") {
Vector<int> v;
EXPECT(v.isEmpty());
EXPECT_EQUAL(1 + 2, 3);
EXPECT_ERROR(empty[@]);

