
Internet
Neel Kishnani, CS106A, Summer 2025

Credit to Mehran Sahami
and Chris Gregg for these

awesome slides!

Sahami & Gregg, CS106A, Stanford University

One reason programming is
fun is because of the

internet...

10

Sahami & Gregg, CS106A, Stanford University

Advanced Economies

Emerging Economies

Smartphone

Mobile

No phone

Smart Phone Access

11

Sahami & Gregg, CS106A, Stanford University

Learning Goals
1. Write a program that can respond to internet requests

12

Sahami & Gregg, CS106A, Stanford University

How does your phone
communicate with instagram?

13

Sahami & Gregg, CS106A, Stanford University

The program on your phone
talks to the program at

Instagram

14

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Kotlin is the
language
of Android
phones

Swift is the
language
of Apple
phones

JavaScript
with HTML
are the
languages
of websites

15

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
profile photo

for
taylorswift

16

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
profile photo

for
taylorswift

17

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
profile photo

for
taylorswift

18

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

19

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
user info for
taylorswift

20

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
user info for
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singer

and songwriter"
}

21

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
user info for
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singer

and songwriter"
}

22

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

23

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
posts for
taylorswift

24

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
posts for
taylorswift

[
"https://cdninstagram.com/CHvCmgPsJdO",
"https://cdninstagram.com/Aslkj23dser",
...

]

25

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
posts for
taylorswift

[
"https://cdninstagram.com/CHvCmgPsJdO",
"https://cdninstagram.com/Aslkj23dser",
...

]

26

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

27

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Set the bio for
taylorswift

to be "Singing"

28

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

"success"

Set the bio for
taylorswift

to be "Singing"

29

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

30

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
user info for
taylorswift

31

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
user info for
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singing"

}

32

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the
user info for
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singing"

}

33

Sahami & Gregg, CS106A, Stanford University

The internet is just many programs sending messages (as
Strings)

Background: The Internet

34

Sahami & Gregg, CS106A, Stanford University

Instagram
datacenter

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Your computer
(Instagram.com)

35

Sahami & Gregg, CS106A, Stanford University

Instagram
datacenter

“Server” “Client”

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Your computer
(Instagram.com)

36

Sahami & Gregg, CS106A, Stanford University

Instagram
datacenter

“Server” “Client”

Get status for “Ngoc”

The internet is just many programs sending messages (as
Strings)

Background: The Internet

Your computer
(Instagram.com)

37

Sahami & Gregg, CS106A, Stanford University

Instagram
datacenter

Your computer
(Instagram.com)

“Server” “Client”

Get status for “Ngoc”

“Enjoying lecture”

The internet is just many programs sending messages (as
Strings)

“request”

“response”

Background: The Internet

38

Sahami & Gregg, CS106A, Stanford University

There are two types of
internet programs. Servers

and Clients

39

Sahami & Gregg, CS106A, Stanford University

Internet 101

40

Sahami & Gregg, CS106A, Stanford University

Computers on the internet

41

Sahami & Gregg, CS106A, Stanford University

Instagram Server

=

Servers are computers (running code)

42

Sahami & Gregg, CS106A, Stanford University

I am here

Instagram’s closest
datacenter is here

43

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

44

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

45

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

46

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

47

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

singing

48

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

singing

49

Sahami & Gregg, CS106A, Stanford University

Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

50

Sahami & Gregg, CS106A, Stanford University

Aside: submarine cables:
https://www.submarinecablemap.com

Sahami & Gregg, CS106A, Stanford University

Many computers can connect
to the same server

52

Sahami & Gregg, CS106A, Stanford University“Client”

Instagram
datacenter

“Server”

The Internet

Chris’ phone
(instagram app)

Your mom’s
computer

(linux shell)

“Client”

Tate Ole Keko’s
computer

(instagram.com)

“Client”
53

Sahami & Gregg, CS106A, Stanford University

Most of the Internet

Server / Clients

54

Sahami & Gregg, CS106A, Stanford University

Today, the server

55

Sahami & Gregg, CS106A, Stanford University

A server’s main job is to
respond to requests

56

Sahami & Gregg, CS106A, Stanford University

Server

Request
From a client

Response
To the client

A Server’s Simple Purpose

57

Sahami & Gregg, CS106A, Stanford University

Request
someRequest

String
serverResponse

A Server’s Simple Purpose

58

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = MyServer()
 # start the server!
 SimpleServer.run_server(handler, 8000)

enjoy

59

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

60

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

61

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

62

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

63

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

64

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

65

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 return "hello world"

66

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

67

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = MyServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

68

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = MyServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

69

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = MyServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

70

Sahami & Gregg, CS106A, Stanford University

What is a Port?

71

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = MyServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

72

Sahami & Gregg, CS106A, Stanford University

Servers on one slide

2

3

1

turn on the server
def main():
 # make an instance of your server class
 handler = HitServer()
 # start the server!
 run_server(handler, 8000)

enjoy

handle server requests (must be in a class)
class MyServer:
 def handle_request(self, request):
 # return a string response!

73

Sahami & Gregg, CS106A, Stanford University

What is a Request?

/* Request has a command */
command (type is string)

/* Request has parameters */
params (type is dict)

// methods that the server calls on requests
request.get_command()
request.get_params()

74

Sahami & Gregg, CS106A, Stanford University

class Request:
 '''
 The request class packages the key information from an internet request.
 An internet request has both a command and a dictionary of parameters.
 This class defines a special function __str__ which means if you have an
 instance of a request you can put it in a print function.
 '''
 def __init__(self, request_command, request_params):
 # every request has a command (string)
 self.command = request_command
 # every request has params (dictionary). Can be {}
 self.params = request_params

 def get_params(self):
 # a 'getter' method to get the params
 return self.params

 def get_command(self):
 # a 'getter' method to get the command
 return self.command

 def __str__(self):
 # a special method which says what happens when you 'print' a request
 return 'command=\'' + self.command + '\' params=' + str(self.params75

Sahami & Gregg, CS106A, Stanford University

First Server Example!
from SimpleInternet import run_server
import json

class MyServer:
 def __init__(self):
 ''' You can store data in your server! '''
 pass

 # this is the server request callback function.
 def handle_request(self, request):
 ''' This function gets called every time someone makes a
 request to our server.'''
 return 'hello world'

def main():
 # make an instance of your server class
 handler = MyServer()
 # start the server to handle internet requests!
 run_server(handler, 8000)

76

Sahami & Gregg, CS106A, Stanford University

Who makes requests?

77

Sahami & Gregg, CS106A, Stanford University

Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')

78

Sahami & Gregg, CS106A, Stanford University

Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')

Web browsers can send requests!

79

Sahami & Gregg, CS106A, Stanford University

Anatomy of a Browser Request

80

Sahami & Gregg, CS106A, Stanford University

Anatomy of a Browser Request

The protocol.
Usually http or https

81

Sahami & Gregg, CS106A, Stanford University

Anatomy of a Browser Request

The webaddress
of the computer
that will respond

to the request

82

Sahami & Gregg, CS106A, Stanford University

Anatomy of a Browser Request

The request command

83

Sahami & Gregg, CS106A, Stanford University

Anatomy of a Browser Request

The request params

84

Sahami & Gregg, CS106A, Stanford University

First Server Example!
from SimpleInternet import run_server
import json

class MyServer:
 def __init__(self):
 ''' You can store data in your server! '''
 pass

 # this is the server request callback function.
 def handle_request(self, request):
 ''' This function gets called every time someone makes a
 request to our server.'''
 return 'hello world'

def main():
 # make an instance of your server class
 handler = MyServer()
 # start the server to handle internet requests!
 run_server(handler, 8000)

85

Housekeeping

Kishnani, CS106A, Summer 2025

● Assignment 5 (last assignment!) out now and due back next

Wednesday at 1159PM

● Final exam logistics + materials on course website

● Final exam: Saturday August 16th from 710PM in Hewlett 200

● Last class: Monday August 11th

● Neelʼs office hours likely shifted earlier than Friday

Sahami & Gregg, CS106A, Stanford University

Recall Requests

/* Request has a command */
command (string)

/* Request has parameters */
params (dict)

// methods that the server calls on requests
request.get_command()
request.get_params()

87

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

ServerServer has a bunch of discrete
things it can do

make_toast blend 88

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

ServerServer has a bunch of discrete
things it can do

get_status add_user 89

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

Server

get_status add_user 90

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

Server

get_status add_user

request.get_command()
 => ”get_status”

91

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

To make toast, I need a
parameter which is the kind

of bread

get_status
92

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

get_status

I was given a parameter!

93

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

request.params[“userName”]

get_status
94

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

get_status
95

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

get_status

taylorswift

96

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

singing

97

Sahami & Gregg, CS106A, Stanford University

Must be a string!

def handle_request(self, request):
 cmd = request.command
 if cmd == 'get_status':
 user = request.params['userName']
 status = self.get_status(user)
 return status

98

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

99

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

100

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

101

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

102

Sahami & Gregg, CS106A, Stanford University

Requests are like Remote Method Calls

103

Sahami & Gregg, CS106A, Stanford University

Internet sends data as strings…

How do you send a list or a dictionary?

105

Sahami & Gregg, CS106A, Stanford University

Requests responses are
strings, often encoded

using JSON

106

Sahami & Gregg, CS106A, Stanford University

Recall JSON

{
 "Chris":32,
 "Gary":70,
 "Mehran":50,
 "Brahm":23,
 "Rihanna":32,
 "Adele":32
}

ages.json
import json

load data
data = json.load(open(‘ages.json’))

save data
json.dump(data, open(‘ages.json’))

107

Sahami & Gregg, CS106A, Stanford University

Recall JSON

{
 "Chris":32,
 "Gary":70,
 "Mehran":50,
 "Brahm":23,
 "Rihanna":32,
 "Adele":32
}

ages.json
import json

load data
data = json.load(open(‘ages.json’))

save data
json.dump(data, open(‘ages.json’))

108

Sahami & Gregg, CS106A, Stanford University

Recall JSON

{
 "Chris":32,
 "Gary":70,
 "Mehran":50,
 "Brahm":23,
 "Rihanna":32,
 "Adele":32
}

ages.json
import json

load data
data = json.load(open(‘ages.json’))

save data
json.dump(data, open(‘ages.json’))

write a variable to a string
data_str = json.dumps(data)

109

Sahami & Gregg, CS106A, Stanford University

Time for a little chat

110

Sahami & Gregg, CS106A, Stanford University

Chat Server and Client

111

Sahami & Gregg, CS106A, Stanford University

Chat Server
newMsg

msg = text
user = user

getMsgs
index = start_index

Chat Server

112

Sahami & Gregg, CS106A, Stanford University

history = [
]

Send

Chat Client

Send

Chat Client

Hello world

newMsg
{
 'msg' : Hello world,
 'user' : 'C'
}

113

Sahami & Gregg, CS106A, Stanford University

history = [
 '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

getMsgs
{
 'index' : 0
}

114

Sahami & Gregg, CS106A, Stanford University

history = [
 '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

'["[C] Hello world"]'

> [C] Hello world

115

Sahami & Gregg, CS106A, Stanford University

history = [
 '[C] Hello world'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

Im here too

newMsg
{
 'msg' : 'Im here too'
 'user' : 'B'
}

116

Sahami & Gregg, CS106A, Stanford University

history = [
 '[C] Hello world',
 '[B] Im here too'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

'Got it'

117

Sahami & Gregg, CS106A, Stanford University

Learning Goals
1. Write a program that can respond to internet requests

118

Sahami & Gregg, CS106A, Stanford University

Things we saw along the way

The request command

data_str = json.dumps(data)

response = requests.get(url)

119

Sahami & Gregg, CS106A, Stanford University

Search Engine

Bajillion Extension

120

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120

