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Credit to Mehran Sahami 
and Chris Gregg for these 

awesome slides!
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One reason programming is 
fun is because of the 

internet...
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Advanced Economies

Emerging Economies

Smartphone

Mobile

No phone

Smart Phone Access
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Learning Goals
1. Write a program that can respond to internet requests
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How does your phone 
communicate with instagram?
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The program on your phone 
talks to the program at 

Instagram
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Instagram Server

Kotlin is the 
language 
of Android 
phones

Swift is the 
language 
of Apple 
phones

JavaScript 
with HTML 
are the 
languages 
of websites
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Instagram Server

Taylor Swift

Send the 
profile photo 

for 
taylorswift
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Instagram Server

Taylor Swift

Send the 
profile photo 

for 
taylorswift
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Instagram Server

Taylor Swift

Send the 
profile photo 

for 
taylorswift
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Instagram Server

Taylor Swift

19



Sahami & Gregg, CS106A, Stanford University

Instagram Server

Taylor Swift

Send the 
user info for 
taylorswift
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Instagram Server

Taylor Swift

Send the 
user info for 
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singer 

and songwriter"
}
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Instagram Server

Taylor Swift

Send the 
user info for 
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singer 

and songwriter"
}
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Instagram Server

Taylor Swift
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Instagram Server

Taylor Swift

Send the 
posts for 
taylorswift
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Instagram Server

Taylor Swift

Send the 
posts for 
taylorswift

[
"https://cdninstagram.com/CHvCmgPsJdO",
"https://cdninstagram.com/Aslkj23dser",
...

]
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Instagram Server

Taylor Swift

Send the 
posts for 
taylorswift

[
"https://cdninstagram.com/CHvCmgPsJdO",
"https://cdninstagram.com/Aslkj23dser",
...

]
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Instagram Server

Taylor Swift
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Instagram Server

Taylor Swift

Set the bio for 
taylorswift

to be "Singing"
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Instagram Server

Taylor Swift

"success"

Set the bio for 
taylorswift

to be "Singing"
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Instagram Server

Taylor Swift
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Instagram Server

Taylor Swift

Send the 
user info for 
taylorswift
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Instagram Server

Taylor Swift

Send the 
user info for 
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singing"

}
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Instagram Server

Taylor Swift

Send the 
user info for 
taylorswift

{
"name": "Taylor Swift",
"bio" : "Singing"

}
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The internet is just many programs sending messages (as 
Strings)

Background: The Internet
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Instagram 
datacenter

The internet is just many programs sending messages (as 
Strings)

Background: The Internet

Your computer 
(Instagram.com)
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Instagram 
datacenter

“Server” “Client”

The internet is just many programs sending messages (as 
Strings)

Background: The Internet

Your computer 
(Instagram.com)
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Instagram 
datacenter

“Server” “Client”

Get status for “Ngoc”

The internet is just many programs sending messages (as 
Strings)

Background: The Internet

Your computer 
(Instagram.com)
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Instagram 
datacenter

Your computer 
(Instagram.com)

“Server” “Client”

Get status for “Ngoc”

“Enjoying lecture”

The internet is just many programs sending messages (as 
Strings)

“request”

“response”

Background: The Internet
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There are two types of 
internet programs. Servers 

and Clients
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Internet 101
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Computers on the internet
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Instagram Server

=

Servers are computers (running code)
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I am here

Instagram’s closest 
datacenter is here
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Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet
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Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet
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Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

singing
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Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet

singing
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Instagram Server

Chris Piech

Status: Chris is chillinStatus: Chris is lecturing

The Internet
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Aside: submarine cables:
https://www.submarinecablemap.com
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Many computers can connect 
to the same server
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Instagram 
datacenter

“Server”

The Internet

Chris’ phone 
(instagram app)

Your mom’s 
computer

(linux shell)

“Client”

Tate Ole Keko’s 
computer 

(instagram.com)

“Client”
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Most of the Internet

Server / Clients
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Today, the server
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A server’s main job is to 
respond to requests
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Server

Request 
From a client

Response
To the client

A Server’s Simple Purpose

57



Sahami & Gregg, CS106A, Stanford University

Request 
someRequest

String
serverResponse

A Server’s Simple Purpose
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Servers on one slide

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = MyServer() 
 # start the server! 
 SimpleServer.run_server(handler, 8000)

# enjoy
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      return "hello world"
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = MyServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = MyServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = MyServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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What is a Port?
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = MyServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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Servers on one slide

2

3

1

# turn on the server
def main(): 
 # make an instance of your server class
 handler = HitServer() 
 # start the server! 
 run_server(handler, 8000)

# enjoy

# handle server requests (must be in a class)
class MyServer:
   def handle_request(self, request):
      # return a string response!
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What is a Request?

/* Request has a command */
command (type is string)

/* Request has parameters */
params (type is dict)

// methods that the server calls on requests
request.get_command()
request.get_params()
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class Request:
  '''
  The request class packages the key information from an internet request.
  An internet request has both a command and a dictionary of parameters.
  This class defines a special function __str__ which means if you have an
  instance of a request you can put it in a print function.
  '''
  def __init__(self, request_command, request_params):
    # every request has a command (string)
    self.command = request_command
    # every request has params (dictionary). Can be {}
    self.params = request_params

  def get_params(self):
    # a 'getter' method to get the params
    return self.params

  def get_command(self):
    # a 'getter' method to get the command
    return self.command

  def __str__(self):
    # a special method which says what happens when you 'print' a request
    return 'command=\'' + self.command + '\' params=' + str(self.params75
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First Server Example!
from SimpleInternet import run_server 
import json 

class MyServer: 
 def __init__(self): 
  ''' You can store data in your server! '''
  pass

  # this is the server request callback function. 
 def handle_request(self, request): 
  ''' This function gets called every time someone makes a 
  request to our server.''' 
  return 'hello world'

def main(): 
 # make an instance of your server class
 handler = MyServer() 
 # start the server to handle internet requests! 
 run_server(handler, 8000)
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Who makes requests?
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Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')
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Who makes requests?

Other programs can send requests!

response = requests.get('https://xkcd.com/353/')

Web browsers can send requests!
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Anatomy of a Browser Request
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Anatomy of a Browser Request

The protocol. 
Usually http or https
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Anatomy of a Browser Request

The webaddress
of the computer 
that will respond 

to the request
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Anatomy of a Browser Request

The request command
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Anatomy of a Browser Request

The request params
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First Server Example!
from SimpleInternet import run_server 
import json 

class MyServer: 
 def __init__(self): 
  ''' You can store data in your server! '''
  pass

 # this is the server request callback function. 
 def handle_request(self, request): 
  ''' This function gets called every time someone makes a 
  request to our server.''' 
  return 'hello world'

def main(): 
 # make an instance of your server class
 handler = MyServer() 
 # start the server to handle internet requests! 
 run_server(handler, 8000)
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Housekeeping

Kishnani, CS106A, Summer 2025

● Assignment 5 (last assignment!) out now and due back next 

Wednesday at 1159PM

● Final exam logistics + materials on course website

● Final exam: Saturday August 16th from 710PM in Hewlett 200

● Last class: Monday August 11th

● Neelʼs office hours likely shifted earlier than Friday
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Recall Requests

/* Request has a command */
command (string)

/* Request has parameters */
params (dict)

// methods that the server calls on requests
request.get_command()
request.get_params()
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Requests are like Remote Method Calls

ServerServer has a bunch of discrete 
things it can do

make_toast blend 88
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Requests are like Remote Method Calls

ServerServer has a bunch of discrete 
things it can do

get_status add_user 89
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Requests are like Remote Method Calls

Server

get_status add_user 90
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Requests are like Remote Method Calls

Server

get_status add_user

request.get_command()
 => ”get_status”
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Requests are like Remote Method Calls

To make toast, I need a 
parameter which is the kind 

of bread

get_status
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Requests are like Remote Method Calls

get_status

I was given a parameter!
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Requests are like Remote Method Calls

request.params[“userName”]

get_status
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Requests are like Remote Method Calls

get_status
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Requests are like Remote Method Calls

get_status

taylorswift
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Requests are like Remote Method Calls

singing
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Must be a string!

def handle_request(self, request):
  cmd = request.command
  if cmd == 'get_status':
    user = request.params['userName']
    status = self.get_status(user)
    return status
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Requests are like Remote Method Calls
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Requests are like Remote Method Calls
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Requests are like Remote Method Calls
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Requests are like Remote Method Calls
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Requests are like Remote Method Calls
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Internet sends data as strings…

How do you send a list or a dictionary?
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Requests responses are 
strings, often encoded 

using JSON
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Recall JSON

{
 "Chris":32,
 "Gary":70,
 "Mehran":50,
 "Brahm":23,
 "Rihanna":32,
 "Adele":32
}

ages.json
import json

# load data
data = json.load(open(‘ages.json’))

# save data
json.dump(data, open(‘ages.json’))
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Recall JSON

{
 "Chris":32,
 "Gary":70,
 "Mehran":50,
 "Brahm":23,
 "Rihanna":32,
 "Adele":32
}

ages.json
import json

# load data
data = json.load(open(‘ages.json’))

# save data
json.dump(data, open(‘ages.json’))

108



Sahami & Gregg, CS106A, Stanford University

Recall JSON

{
 "Chris":32,
 "Gary":70,
 "Mehran":50,
 "Brahm":23,
 "Rihanna":32,
 "Adele":32
}

ages.json
import json

# load data
data = json.load(open(‘ages.json’))

# save data
json.dump(data, open(‘ages.json’))

# write a variable to a string
data_str = json.dumps(data)
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Time for a little chat

110



Sahami & Gregg, CS106A, Stanford University

Chat Server and Client
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Chat Server
newMsg

msg = text
user = user

getMsgs
index = start_index

Chat Server
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history = [
]

Send

Chat Client

Send

Chat Client

Hello world

newMsg
{
   'msg' : Hello world,
   'user' : 'C'
} 
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history = [
   '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

getMsgs
{
   'index' : 0
}
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history = [
   '[C] Hello world'
]

Send

Chat Client

Send

Chat Client

'["[C] Hello world"]'

> [C] Hello world
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history = [
   '[C] Hello world'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

Im here too

newMsg
{
   'msg' : 'Im here too'
   'user' : 'B'
}
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history = [
   '[C] Hello world',
   '[B] Im here too'
]

Send

Chat Client

Send

Chat Client > [C] Hello world

'Got it'
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Learning Goals
1. Write a program that can respond to internet requests
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Things we saw along the way

The request command

data_str = json.dumps(data)

response = requests.get(url)
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Search Engine

Bajillion Extension

120
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