
Steve Cooper Handout #36

CS 106A May 10, 2013

Assignment #5 – Chess

Due: 1:15pm on Friday, May 17th
 Your Early Assignment Help (YEAH) hours: Monday 05/13 at 7PM in 200-303

Handout by Thomas Fu

For this assignment, your job is going to be to create the game of Chess. This game, which

originated in its current form in the late 15
th

 century, is currently one of the world’s most popular

and ubiquitous games. By the time you are done with this assignment, you will have your very

own version of this classic game, quite similar to the kind you might find already installed on

your computer
1
. Much like the earlier assignments, though, you'll likely want to decompose this

one into a series of smaller problems, and get started early. We’ll also outline an approach in this

handout that should help you get through the steps.

Figure 1. Image of the Chess game you’re going to program.

 In this assignment, we first describe the starter classes. We then propose a series of steps you

can take to create the game. After suggesting some possible extensions, we include several useful

methods you'll likely wish to use, as part of Appendix A. And, if you are not familiar with the

game of chess, Appendix B includes lots of details.

1 If you’re on a Mac, try looking for Chess in the Applications folder.

 -2-

The Java Files

To get started, let’s take a look at the files that you’ll be getting for this assignment. When you

open up the Chess assignment in Eclipse you’ll see a list of Java files that looks something like

this:

Figure 2. Listing of the files contained in the Chess Assignment.

There are four groups of interesting classes, detailed below.

1) The Chess Pieces

The different types of chess pieces are really what make chess such an interesting game (a board

of entirely pawns would make for a really boring game). There are six distinct types of pieces:

Pawn, Knight, Bishop, Rook, Queen, and King. Each piece has its own unique rules governing

how it can move and capture other pieces. Details about how the pieces move are found in

Appendix B. The bulk of what you’ll be writing for this assignment is the code that will

determine whether a given piece can move to a specified spot on the board. Basically, you’ll be

enforcing the rules of chess.

Let’s take a look at the structure behind how we’re going to be representing the chess pieces. In

Java-speak, we have six different classes (Pawn, Knight, Bishop, Rook, King and Queen) that

are all subclasses of a ChessPiece superclass. This is analogous to the ACM Graphics Library,

where we have GRects, GOvals, GPolygons, GLabels, etc. all of which are subclasses of the

GObject superclass. We have exactly the same thing here. In picture form the structure of our

piece classes looks like this:

Figure 3. Diagram of the ChessPiece class hierarchy.

ChessPiece

Pawn Knight Bishop Castle King Queen

 -3-

We’ve defined a general ChessPiece class that’s responsible for managing the things that are

common across all different types of chess pieces. For instance, every ChessPiece, regardless of

its type, needs to know where it is and what color it is. Then, to get the individual functionality

of each individual type of chess piece, we expanded upon this abstract ChessPiece class and

made specific types of ChessPieces. If this is confusing, you can keep it straight by just

remembering that every Knight is a ChessPiece, but not every ChessPiece is a Knight.

So why did we do this? Since we know that Knights, Pawns, Bishops, etc. are going to have a lot

of overlapping functionality, rather than implementing the same methods a bunch of times, we

just have to do it once in ChessPiece. Then anything that inherits from ChessPiece gets it for free.

This is one of the big benefits of object-oriented programming; it just makes some things really

convenient.

But wait, I get that all the classes like Pawn and Rook extend this ChessPiece superclass, but

where is ChessPiece.java? Why can’t I see it in my Chess assignment? The short answer is, it’s

just like a GraphicsProgram. Remember how your Breakout program extended GraphicsProgram

but you couldn’t actually see GraphicsProgram.java? Well it’s the same deal here. Just like

GraphicsProgram.java lives in acm.jar, ChessPiece.java lives in ChessLib.jar and its interface is

described starting in Appendix A of the handout.

2) The ChessBoard

We begin a discussion of the other classes and java files you’ll be dealing with in this assignment.

Probably the most straightforward of these is the ChessBoard class. This is primary because this

class does basically what you would expect – it allows you to store a bunch of ChessPieces at

different locations (that is what a real life chessboard does after all). Now, to start diving into the

details of this class, let’s begin by looking at the code in ChessBoard.java (comments omitted in

the interest of saving space):

public class ChessBoard{

 public static final int BOARD_SIZE = 8;

 public ChessBoard()

 {

 }

 public ChessPiece pieceAt(int row, int col)

 {

 }

 public void addPiece(ChessPiece piece)

 {

 }

 public void removePiece(int row, int col)

 {

 }

}

 -4-

We’ve just got three methods and a constructor. Let’s talk about this constructor in more detail.

The constructor will need to initialize whatever data structure you’re going to use to store the

ChessPieces and their locations. Strictly speaking, you’re free to choose whatever data structure

you like, provided the methods pieceAt, addPiece, and removePiece all work like they’re

supposed to, but seeing as how we just learned about Arrays and ArrayLists (specifically two-

dimensional Arrays and ArrayLists), it seems like using one of these might be a good way to

proceed. Let’s just say, for example, that you wanted to use a two-dimensional Array of

ChessPieces to back the ChessBoard class. Thus the job of the constructor would be to initialize

this Array to all nulls, as initially, there aren't any pieces on the board.

Now let’s talk really briefly about the methods pieceAt, addPiece, and removePiece. These

methods should behave more or less how you’d expect, but for the sake of clarity we’ll go over

their functionality. The first one, pieceAt, should, return the ChessPiece located at the specified

row and column, or null (if no piece exists at the current location). Next, addPiece should add

the given ChessPiece to your ChessBoard. Be advised that this method only takes one argument

(a single ChessPiece) so to figure out where this piece is to go, you’ll have to take advantage of

the fact that each ChessPiece knows its location (you will find the methods getRow() and

getCol() defined in the ChessPiece class to be helpful). If the user attempts to add a piece to

a location where one already exists, addPiece should overwrite the old piece with the new

one. Finally, the method removePiece should remove whatever ChessPiece is at the specified

row and column from your ChessBoard data structure, setting the ChessPiece at that row and

column to be null.

In addition to these three required methods, you’re free to add any other methods to the

ChessBoard class in order to make your job easier. For instance, it might not be a bad idea to add

a method that initializes the board by adding ChessPieces to produce the starting configuration

for a game of chess. One important note on these required methods though – you have to

implement them exactly as they are given to you. That means DO NOT change the headers for

these methods (i.e. addPiece must have return type void and must accept a ChessPiece as its one

argument).

3) The ChessDisplay

This entire section is about a class that has already been written for you. In the Chess class, we

have created an object of the ChessDisplay type. You will invoke methods on this object to

display the board as well as to determine what square was clicked by the user when the game is

played (which is described below). There are a few caveats you must consider.

Caveat One: Just because you don’t have to draw anything doesn’t mean you don’t have to deal

with mouse input. We’ll take care of the drawing; you take care of figuring out what to do when

the user clicks the mouse (more on this below). However, we do provide a helper method int[]

getLocation(int x, int y), which takes in a x and y coordinate and returns the corresponding

row and column on the ChessBoard as a array of length 2 – the first element is the row, the

second the column.

Caveat Two: Even though we’ll do all the drawing for you, you still need to tell us what to draw.

Or rather, you need to tell ChessDisplay what to draw. This isn’t as hard as it sounds, though,

 -5-

and you can do this through the conveniently named method void draw(ChessBoard board)

defined in the ChessDisplay class. We’ll discuss more about when to call this method in the next

section, but for now all you need to know is this. You pass in a ChessBoard (which here we

called board) all loaded up with ChessPieces into the draw method, and ChessDisplay will then

draw that board to the screen. It will then stay on the screen until you call draw again. Anytime

you want to update the screen, you just call draw.

Caveat Three: To make the game look nicer, when the user selects a piece to move (again, more

on this in the next section), your job is to highlight the square that piece is sitting on to make it

stand out. We’ve written three methods for you, void selectSquare(double row, double col,

Color c), void unselectSquare(int row, int col), and void unselectAll(). The method

selectSquare highlights the square at the given row and column with the given color;

unselectSquare changes the square at the given row and column to its original color; and

unselectAll changes all squares drawn to the screen to their original colors.

One more note about the ChessDisplay class. When you use the methods selectSquare,

unselectSquare, unselectAll each of these methods addresses the chessboard using the same

convention as a GraphicsProgram. That is, the square corresponding to row-column coordinates

of (0,0) is the top left square on the chessboard. (See Figure 4 below.) This is consistent with the

idea of having the origin in the top left of the screen. Additionally, this is the default convention

for how the chessboard is labeled when it is displayed to the screen, as shown in the Figure

below. Again, all methods in ChessDisplay use the convention that (0,0) is the top left

square of the chessboard. Basically this means if you say:

display.selectSquare(0, 0, Color.YELLOW);

display.draw(board);

then the square in the upper left-hand corner will be highlighted.

Figure 4.Image of the default numbering scheme for the chessboard as it is displayed to the screen. Observe how the coordinate

(0,0) corresponds to the upper left-hand corner of the chessboard.

 -6-

4) The Chess Class

 ***If you are not familiar with the game of Chess, see Appendix B for a game

description****

So far we’ve discussed the ChessPiece subclasses (these represent the individual chess pieces),

the ChessBoard class (which represents the board that holds these pieces), and the ChessDisplay

class (which draws everything to the screen). Now we turn to the Chess class, which actually will

be managing the game. This file is responsible for reading mouse input from the screen and

handling the gameplay accordingly. This means that nearly all of the action in Chess will be the

result of MouseEvents, which work just like they did in earlier GraphicsPrograms.

The games of chess works by alternating turns between a White player and a Black player, with

the White player always playing first. You will need to mirror this functionality in your program.

Unlike in games like Breakout, all the action in Chess happens in response to a user action, so

the bulk of your code will be in mousePressed (see Part III under our “Suggested Approach”

section for more details about mousePressed, including pseudocode). You will therefore need to

keep track of the turn across mousePressed calls.

During a single turn the user will select one of their pieces by clicking on it, which will highlight

it. We have provided a helper method int[] getLocation(int x, int y) in the ChessDisplay

class which translates x and y coordinates to a row and column on the ChessBoard (see

Appendix A for more details about this method). The user will then click a second time on the

square that he or she would like to move the piece to. If the piece is unable to move to the square,

or the user re-clicks the same square, the piece is un-highlighted and nothing happens – it

continues to be that player’s turn, and the player can try the two-click process again, with that

piece or another one.

If they are able to move the piece to that square, the piece should be moved, capturing the

opponent’s piece if appropriate. You should also print the line “color pieceType moved from

(oldRow, oldCol) to (newRow, newCol)” with the italicized words replaced with their appropriate

values. An example would be the following line: White queen moved from (0,1) to (2,3). Feel

free to use real Chess notation for this line as well!

You will also need to print a message when one of the players is in check, which you can

determine by calling our helper method boolean isInCheck(ChessBoard board, int Player).

You should print something like “Black is in check.”

The games ends when one of players is in checkmate or stalemate, which you can figure out by

calling our helper methods boolean isInCheckMate(ChessBoard board, int Player) and

boolean isInStalemate(ChessBoard board, int Player) on the Chess class. When this happens,

print a message like “Black is in checkmate. Game over.” or “Stalemate. Game over.” and stop

responding to mouseclicks.

See Part III under our “Suggested Approach” section for a more in-depth discussion of gameplay

mechanics.

 -7-

The Pieces Redux

Having discussed the ChessBoard class responsible for keeping track of the pieces and their

locations, and the Chess class, responsible for the gameplay, it is now time to turn our attention

back to the chess pieces themselves. With an understanding of Chess and ChessBoard under our

belts, we can now move into a more thorough understanding of the ChessPiece subclasses. In

particular, we begin our discussion with some of the fields that each of these classes inherits

from ChessPiece.

It is important to note the stuff that you get for free from the ChessPiece class. Because your

Knight, Rook, Queen, etc. classes all subclass from ChessPiece, you get access to the instance

variables that are defined in ChessPiece. In particular, you have access to the variables shown in

the code block below:

What this means (don’t worry about what protected means, you can treat it like private) is that

you can treat this code like it’s in each of your chess piece files (Pawn.java, King.java, etc.). This

means that in any of the ChessPiece subclasses (i.e. Pawn, Knight, Bishop, Rook, Queen, and

King) you can use row, col, color, BLACK, or WHITE as if it had been defined directly in the class

you are working in.

For instance, let us consider the constructor for the Rook class:

Notice how this constructor is using row, col, and color as if they had been defined in the Rook

class itself (even though if you look in Rook.java you will not see them). You can do this in any

method in any of the ChessPiece subclasses.

Because each of the pieces Queen, King, etc. all subclass from ChessPiece, when we are dealing

with a ChessPiece, we need a way to tell which type of piece is it. For instance, if somewhere in

your code you have a line like:

ChessPiece piece = board.pieceAt(row, col);

public Rook(int initialRow, int initialCol, int pieceColor)

{

 row = initialRow;

 col = initialCol;

 color = pieceColor;

}

public static final int BLACK = 0;

public static final int WHITE = 1;

protected int row, col;

protected int color;

 -8-

There is no way to tell a priori what kind of ChessPiece piece is (it could just as easily be a Pawn

as a King). This is equivalent to your code in Breakout when you said something like:

GObject collider = getElementAt(x, y);

Just as you were unsure whether the GObject called collider was a GOval, GRect, GLabel, etc.,

in the example code above, it is unclear whether the ChessPiece called piece is a Queen, King,

Knight, etc.

Therefore, we’ve had to add a way to distinguish different ChessPiece subclasses. You are not

required to use this code, but it may be useful for debugging. We definie an enumerated type

called PieceType in the file PieceType.java, and each class implements a method getType() that

returns the enumerated type of the object. This method is already written for you. An example of

its usage is below.

We have one last comment about ChessPiece subclasses. If you go open up any of the chess

piece files, say Pawn.java, you’ll see basically the same thing in all of them. First of all there’s a

constructor (e.g. public Pawn(int row, int col, int color)) that is filled in for you, a

method public boolean canMoveTo(int row, int col, ChessBoard board), and a

method public PieceType getType(). The only one of these you need to worry about doing

anything with is canMoveTo.

Now when you first look in Pawn.java, say, you’ll see that it looks like canMoveTo is already

filled in. In fact, it’s calling a method called automagicPawnCanMoveTo(row, col, board).

What’s this automagic thing? Well, in some sense, it’s a gift. This is a method that will always

give you the correct answer for whether or not your piece, in this case, a pawn, can move to a

given location. Why is it there? So you can test your Chess.java and ChessBoard.java code

before diving into messing with the ChessPieces. What does this mean? It means that you should

be sure that Chess and ChessBoard are absolutely 100% working before you start working on the

ChessPieces or things will get very difficult very fast. It also means that nowhere in your final

project should you have any calls to any automagic methods. Got it? No automagic method calls

in your final project.

ChessPiece piece = board.pieceAt(row, col);

switch (piece.getType())

{

 case KING: doKingThings(); break;

 case QUEEN: doQueenThings(); break;

 …

}

 -9-

The assignment: Our Suggested Approach

Having discussed all of the parts of this assignment, we now outline a suggested strategy for

tackling this project. This is, by no means, the only way of doing this assignment, but it is a quite

reasonable way that should make this project manageable.

Part I: Implement the required methods in the ChessBoard Class

This basically just involves filling in the methods for the ChessBoard.java class. Unfortunately,

there’s not a great way to test your implementation right off the bat, but at the same time, there’s

really not a whole lot to do here. While you’re free to use whatever data structures you want to

back the ChessBoard class, a two-dimensional Array or ArrayList seems quite reasonable. Once

you get this data structure set up, write the three required methods (addPiece, removePiece, and

pieceAt).

Part II: Write a method to initialize the ChessBoard

This can be done in either the ChessBoard class (within the constructor) or the Chess class, but

basically at some point you’re going to need a method to create the initial board setup. In

particular, after the board is initialized, it should look like this:

Figure 5. Initial configuration of the Chess game. When your board is initialized the pieces should be in exactly this

configuration.

Make sure to use the addPiece method to add the pieces to the chess board. For example, if you

are initializing the board in the constructor for the ChessBoard class, you might use the following

code to add a black rook:
addPiece(new Rook(0,7,ChessPiece.BLACK));

In order to make sure that your board is initialized correctly, try calling display.draw(board);

from your run method in Chess.java. This method will cause the ChessPiece configuration stored

in the ChessBoard called board to be drawn to the screen.

 -10-

Part III: Add mouseListeners to Chess and implement mousePressed

The mousePressed method is where all of the action in Chess.java originates. In fact, because

this program is entirely driven by mouseInput from the user, this is where you do all of your

game logic.

The way the basic gameplay should work is as follows. The player whose turn it is (for example,

let’s look at the logic for White’s turn; unless otherwise noted, Black’s turn works the same way)

clicks on a location on the board corresponding to one of their pieces. If he/she does not click on

a space with a white piece (i.e. a blank space or a space with a black piece) then nothing happens.

If the user does click on a space with a white piece, however, then he/she is marking that piece as

the piece they wish to move. At this point, you should highlight the square that piece is sitting on

to mark it as selected.

Now, once a white piece has been selected, the next click made by the user will indicate the

space that they wish to move the selected piece to. At this point, it is your job to determine

whether or not the proposed move is legal (each ChessPiece subclass implements a method

boolean canMoveTo(int row, int col, ChessBoard board) to be used in just such an occasion).

If the proposed move is legal, you have a number of tasks to complete. The first is to move the

piece accordingly; this means first removing the ChessPiece that is being moved from the

ChessBoard, invoking the method void moveTo(int row, int col) on the ChessPiece itself so it

knows its new location, and then adding the piece being moved back to the board. This is

particularly tricky and particularly important: the method moveTo(int row, int col) does not

update the position of the ChessPiece on the board, it only changes the position the

ChessPiece thinks it is at. To actually move the ChessPiece you need to remove it from the

ChessBoard, call moveTo, and then add it back to the ChessBoard. Next, you should clear

any squares that had been highlighted and draw the new board configuration (if you’re unclear

how to do this, go back and reread the previous section). Finally, you need to advance the game

to the Black’s turn. If the proposed move is not legal OR if the player clicks again on the piece

they already selected
2
, then simply clear all highlighted squares and White’s turn starts over

again.

At the end of each turn, you should also check to see if the move resulted in either player being

in check, if there is a checkmate
3
, or if there is a stalemate. If one of these special conditions is

found to have occurred, you should print a message to the screen indicating as much. If either

player is in checkmate the game should also end. Checking for Check, Checkmate, and

Stalemate is normally quite difficult, but we have made it easier for you by providing you with

the methods boolean isInCheckMate(ChessBoard board, int Player), boolean

isInCheck(ChessBoard board, int Player), and boolean isInStalemate(ChessBoard board,

int Player).

We have written the code to look for Check, Checkmate, and Stalemate for you so you don’t

need to worry about this. All you need to do is all one of our pre-written methods. All of these

2
 This gives the player an easy way to unselect a certain piece.

3
 Actually, you know a priori that, in our example, White cannot be in check since it is against the rules for White to

move himself/herself into check or checkmate.

 -11-

can be called from the Chess class, and each returns a boolean indicating if either check,

checkmate, or stalemate conditions are active for the given player (here, the player is specified

by using the constants ChessPiece.WHITE and ChessPiece.BLACK).

Since that may have been a lot all to handle all at once, let’s go ahead and lay it out in

pseudocode, just to make sure it’s clear:

Now, here’s the cool thing: as the assignment is given to you, each of the ChessPiece subclasses

come with an “automagic” method that will correctly determine whether or not a piece can move

to a specified square for you. So when you have completed Part III of this outline, you should

public void mousePressed(MouseEvent e)

{

 Figure out which player’s turn it is

call getLocation(e.getX(), e.getY()) to convert the mouse click location in

pixels to a row and column on the ChessBoard

 if(this is the first click of their turn)

 {

 if(they click on a piece of their own color)

 {

 highlight spot where the player clicked with selectSquare

store the piece at the location the user clicked so you can move it

on the next click

draw the board

 }

 }

 else

 {

check to see if the piece selected on the previous click can move to the

spot selected on this click with the canMoveTo method.

if(the chosen piece can move to the selected spot AND the selected spot is

not the spot the piece already occupies)

{

 remove the piece from the board with the method removePiece

 update the ChessPiece’s location with the method moveTo

add the updated ChessPiece back to the board addPiece

 clear all highlighted squares with the method unselectAll

 draw the board

check for Checkmates or Stalemates with isInCheckmate or

isinStalemate and print appropriate message

advance to next player’s turn

}

else

{

 clear all highlighted squares

 draw the board

 remain the same player’s turn

}

 }

}

 -12-

have a fully working Chess game. Once everything here is working, it’s time to get going on the

rules governing the motions of the chess pieces.

Part IV: Implement canMoveTo for the Knight

Note: I recommend that you test each implementation of canMoveTo as you write it. Just

place a few pieces on a ChessBoard and try playing around with your pieces to make sure

they move like you expect. For instance, if I were testing my Knight, I would make a board

with only two Black Knights and two White Knights just to see if everything worked how I

wanted.

Next, you need to start implementing the canMoveTo methods for each of the pieces, starting with

the Knight.

The first thing to check is: does the Knight move two spaces in one direction and one space in a

different direction? If it does not, then you already know the move isn’t valid so you can stop

now. If the Knight is trying to move in an L-shape though, then you need to check the status of

the destination square. In particular, a piece can never capture another piece of its same color, so

if the destination is occupied by another piece of the same color, then the move is not valid.

Otherwise, we’re almost home free. The only thing left to check is if the proposed move would

put the player who controls the Knight in check. That is, a player is never allowed to make a

move that would put himself/herself into check, so if the proposed move would put the Knight’s

own King into check then it is not legal. We’ve given you a method called boolean

moveWouldCauseCheck(int finalRow, int finalCol, ChessBoard board) that will check this for

you. You can call this from your canMoveTo method, and if you provide the row and column of

the proposed destination (as well as the ChessBoard), this method will tell you whether or not

that move will cause you to move into Check. This method is included in the method reference

sheet in Appendix A.

In pseudocode, this might look like:

public boolean canMoveTo(int row, int col, ChessBoard board)

{

if the space at (row,col) is two spaces in one direction and one space in the

other direction from (this.row, this.col)

if the space at (row,col) is occupied by a piece with the same color

as this.color

 return false;

else

check to see whether or not this move would cause the player to

move him/herself into check using moveWouldCauseCheck

if this would cause check

 return false

else

 return true

else

 return false;

}

 -13-

Part V: Implement canMoveTo for the Rook

The first thing to do when determining whether or not a given move for a Rook is legal is to

figure out whether or not the destination square lies along one of the horizontal or vertical lines

emanating from the Rook. If the proposed square is not along one of these lines then obviously

the move isn’t valid. If it is along one of these lines, then the next thing to check is whether or

not the Rook can actually make it to that square. If there is a piece of either color between the

Rook and the square it is trying to move to, then the move is not valid:

Figure 7. In the left board configuration, the Black Rook (red circle) cannot move to capture the white pawn (green square)

because her path is blocked by a black pawn. In the right board configuration the pawn has moved so the rook is free to capture

the pawn.

And, finally it is necessary to check that the destination square either contains a piece of the

opposing color or contains no pieces. Of course, even if the Rook’s path is unobstructed by other

pieces, the move is only valid if it does not put the King of that Rook’s color in check.

Part VI: Implement canMoveTo for the Bishop

The Bishop is very similar to the Rook, except that it can only move along diagonal lines. The

remaining requirements are the same – the Bishop can only move to a given square as long as it

lies along one of the allowed directions of motion and as long as no pieces stand between its

current location and its destination square. Again, the destination must either contain a piece of

the opposing color or be empty, and the move must not put the King of that Bishop’s color into

check.

 -14-

Part VII: Implement canMoveTo for the Queen

Once you have canMoveTo for the Rook and Bishop, canMoveTo for the Queen should be

straightforward. The Bishop can only move along diagonals, and the Rook can only move along

horizontal or vertical lines. The Queen can move along both diagonals and horizontal and

vertical lines – she is a combination of the Rook and the Bishop. This means you can basically

copy and paste the code from your Rook and Bishop canMoveTo method straight into Queen.java

and get them working with only minor modifications. Much like the Bishop and Rook, the

Queen can only move to a given square as long as it lies along one of these allowed directions of

motion and as long as no pieces stand between its current location and its destination.

Additionally, the destination must either contain a piece of the opposing color or be empty, and

the move is only valid as long as it does not put the Queen’s King into check.

Figure 8. In the left board configuration, the Black Queen (red circle) cannot move to capture the white pawn (green square)

because her path is blocked by a black pawn. In the right board configuration the pawn has moved so the queen is free to capture

the pawn.

Part VIII: Implement canMoveTo for the King

Because the King can only move one square at a time (in any direction), checking that is it

unobstructed by pieces along its path is not a concern. Of course, it cannot move to a space

currently occupied by one of its own pieces, and it cannot move in such a way that would put it

into check.

Part IX: Implement canMoveTo for the Pawn

The Pawns are the hardest class to implement canMoveTo for. There’s nothing inherently tricky

about Pawns, there’s just a lot to check for. Things to keep in mind: (1) the direction that Pawns

can move depends on their color; (2) pawns move forward but capture diagonally; (3) pawns can

only even move one space at a time (either straight ahead or on diagonals) except for their very

 -15-

first move, in which case they are allowed to move two spaces forward (they still cannot jump

over any pieces).

As with all other pieces, Pawns cannot capture pieces of their own color, and they cannot move

in such a way that would put their own King in check.

And that’s it, if you’ve made it this far then you’re done! Congratulate yourself and play a

few games of chess with your friends. Or, if you’re really bored, then read on about some of

the extension possibilities with Chess (there’s a lot).

 -16-

For experienced chess players only:

If you’re familiar with the game of Chess, however, you’ll know that this is not how chessboards

are actually labeled. With the official scheme for labeling chessboards, the “origin” of the

chessboard is the lower left-hand corner of the chessboard and is assigned the label a1 (with ‘a’

representing the first column and ‘1’ representing the first row). The row and column labels then

increase as you move up and to the right:

Figure 6.Image of the traditional numbering scheme for a chessboard. Observe how the coordinate a1 corresponds to the lower

left-hand corner of the chessboard.

If you would like to switch the labeling displayed in your Chess game from the default one

(Figure 5) to the official chess labeling (Figure 6). Simply use the method useRealChessLabels

defined in the ChessDisplay class and explained in Appendix A of the handout. Note that

changing the way the labels are displayed on the screen does not change how the

ChessDisplay methods address the squares, it only changes the labels displayed.

 -17-

Extensions
Because of the rich nature of the chess game, this assignment is particularly well suited for

extensions. Here are just a few ideas, but feel free to add your own.

Add Castling or En Passant

These are both more advanced chess moves that require more logic than the basic version of the

Chess rules we had you implement in this assignment. Adding in these moves (more detail on

which can easily be found in Wikipedia) will make the game more complete.

Write your own method(s) to test for check, checkmate, or stalemate.

Sure we give you the code to do this already, but it could be fun to write these tests yourself.

They’re not actually that difficult, but they require a lot of comfort with array manipulation. The

basic idea to test for whether or not you’re in check is to see if any enemy piece can move to the

same square as your King. If you want a real challenge, try implementing the method

moveWouldCauseCheck.

Print out the game in Chess Algebraic Notion

It is quite easy to print out messages to the screen in chess (just use the print() or println()

commands). A nice feature to add would be saving the game history (all of the moves, in chess

notation) to a file.

Change the display

While the graphics for Chess are certainly passable, they are also quite boring (there’s so little

color). Fortunately, this assignment was written so that you can have fun with the display. In

order to extend this, there are a number of things you can do. One is simply changing what the

pieces and chessboard look like when they are drawn. To change what the chessboard looks like,

simply include a method called public void draw() in the ChessBoard class. You can treat this

method almost exactly like you are working in a graphics program, except instead of just saying

add(), remove(), removeAll(), getSize(), or getWidth(), you need to say display.add(),

display.getSize(), display.removeAll(), etc. The same will work with each of your ChessPiece

subclasses, except here you need to include a method public void draw(double squareX,

double squareY, double squareSideLength), where square and squareY give you the location

(in pixels) of the upper left corner of the square the piece is in, and squareSideLength gives you

the size of the square.

Highlight all available moves

It’s one thing to check if a certain move is valid or not. It’s another to find all available moves. It

would be nice if, when a user clicks on a certain piece to select it, you highlighted all spaces to

which they could possibly move.

Add a computer player

Sure, it’s tricky, but it can be done. A reasonable first-pass at doing this is to consider all

possible moves you can make, somehow assigning points to each of those moves (plus certain

number of points for each piece captured, minus a certain number of points for each piece you

open up to being captured, etc.) and then pick the highest scoring move. You can do a lot here.

 -18-

Appendix A: Reference Methods
This appendix is designed to serve as a reference for you when you are programming Chess. It’s

a list of all the methods that you can use for free in your implementation of this game.

Class Method Name Description
ChessDisplay void draw(ChessBoard board) Updates the drawing of

the chessboard on the

screen based on the

locations of the

ChessPieces stored in

board
ChessDisplay int[] getLocation(int mouseX, int mouseY) Converts an x-y

coordinate of a

mouseClick location to

a row and column of a

square on the

chessboard. The row-

column pair is returned

as an array of ints of

length 2.
ChessDisplay void selectSquare(int row, int col, Color c) Marks a specified

square on the displayed

chessboard with the

specified color
ChessDisplay void unselectSquare(int row, int col) Returns the specified

square on the displayed

chessboard to its default

color
ChessDisplay void unselectAll()

Returns all squares on

the displayed

chessboard to their

default colors
ChessDisplay useRealChessLabels(boolean useLabel) Changes the labeling

convention for the

chessboard as it is

drawn to the screen.

Passing in true will

label the chessboard

according to the official

convention, while

passing in false will

label the chessboard

according to the ACM

Graphics convention.
Chess void println(String str) Prints a given string to

the TextField beneath

the displayed

chessboard (with a

carriage return)
Chess void print(String str) Prints a given string to

the TextField beneath

the displayed

chessboard

 -19-

Chess boolean isInCheckMate(ChessBoard board, int player) Returns a Boolean

indicating whether or

not the specified player

is in checkmate (the

player is identified by

the constants

ChessPiece.BLACK/

ChessPiece.WHITE)
Chess boolean isInCheck(ChessBoard board, int player) Returns a Boolean

indicating whether or

not the specified player

is in check (the player

is identified by the

constants

ChessPiece.BLACK/

ChessPiece.WHITE)
Chess boolean isInStalemate(ChessBoard board, int player) Returns a Boolean

indicating whether or

not the specified player

has been put into a

stalemate situation(the

player is identified by

the constants

ChessPiece.BLACK/

ChessPiece.WHITE)
ChessPiece boolean moveWouldCauseCheck(int finalRow, int

finalCol, ChessBoard board)
Returns a Boolean

indicating whether or

not moving the piece to

the position at

(finalRow, finalCol)

would cause the player

identified by color to be

put in check
ChessPiece int getRow() Returns the row number

of the ChessPiece
ChessPiece int getCol() Returns the column

number of the

ChessPiece
ChessPiece int getColor() Returns the an int

corresponding to the

color of the ChessPiece

(ChessPiece.BLACK or

ChessPiece.WHITE)
ChessPiece void moveTo(int row, int col) Updates the position of

the ChessPiece to be the

location specified by

(row, col)

 -20-

Appendix B – How the game of chess is played

The Game

The basic idea behind chess is pretty simple. It’s a two-player game played on an 8 by 8 grid

(Figure 1), with each player controlling his or her own army of colored pieces (traditionally

colored white and black). The game always begins with the pieces arranged as shown in Figure 1,

and starts with White moving one of his/her pieces. The players then alternate turns, with each

player moving one of their own pieces on their turn (the exact rules governing how each piece

can move will be discussed later). If a player moves one of his/her pieces onto a square occupied

by his/her opponent’s piece, then the enemy piece is said to be “captured” and is removed from

the board (Figure 7).

Figure 7. Example of capturing. The black Rook (originally at b6) moves to the same square as the white Bishop (located at b2),

so the Bishop is “captured” and removed from the board.

The game ends when one player captures the other player’s King. To this end, there are a couple

of special scenarios known as check and checkmate. A player is said to be in check if their King

is in danger of being captured by an opposing piece in one move. That is, a player is in check if

his/her opponent could capture his/her King by making a single move. Once a player is in check,

they are required to make a move to get themselves out of check (because if he/she did not,

he/she would lose). Similarly, a player is not allowed to make a move that would put him/herself

into check (again, doing so would immediately cause that player to lose). Sometimes, however,

there are situations in which a player is in check and every legal move to available would also

result in him/her being in check. This is known as a checkmate and results in the conclusion of

the game, with the checkmated player losing.

Interestingly enough, however, the majority of high-quality chess games does not end with

checkmates, but instead ends with draws, often the result of a condition called a stalemate. A

stalemate occurs when a player is currently not in check, but any legal move left available would

result in him/her moving into check. There are other ways to end a chess game by a draw, but we

won’t go into them here, and you don’t need to worry about them for your game (they’re fairly

 -21-

infrequent, but hey, they make for great extensions. If you want to read about them check out

http://en.wikipedia.org/wiki/Draw_(chess)).

The Pieces

The Knight

This is what a knight looks like on a chessboard:

Figure 8. Image of a knight.

So what make a knight really interesting, and really easy, is how it moves. In particular the

knight moves in L-shapes, moving first two squares in one direction and then one square in a

perpendicular direction:

Figure 9. Diagram showing all of the spots where the Knight can move. Notice that every viable spot is two spaces away in one

direction and then one space away in a perpendicular direction. Courtesy of www.thechesszone.com

The Knight is the only piece in chess that can jump over other pieces. What this means is, if you

want to check to see if a given move with a Knight is valid, all you need to do is look at the state

of the square the Knight is trying to move to.

The Queen

The Queen is considered the most powerful piece in chess. This is because of its extensive ability

to move and capture pieces.

http://en.wikipedia.org/wiki/Draw_(chess))

 -22-

Figure 10. Image of a Queen. Like the King, it’s depicted by a crown, but it’s very different than a King. Don’t get them

confused.

A queen is allowed to move and capture enemy pieces along any straight line (horizontal,

vertical, or diagonal) from the square that she currently occupies:

Figure 11. Diagram showing all squares to which the black Queen is allowed to legally move. Notice that every viable spot is on

a straight line emanating out from the Queen’s current location. Courtesy of www.thechesszone.com

The Bishop and Rook

Figure 12. Images of a Bishop (left) and Rook (right). The Rook is often called a Castle, but the official name is a Rook so that’s

what we’re going to use.

Since we already talked about the Queen in a fair amount of depth, I’m going to go much faster

through the Bishop and Rook. They can effectively be thought of as less-powerful variants on the

Queen. In particular, the Bishop is a variant that can only move along diagonals, whereas the

Rook is a variant that can only move along horizontal or vertical lines.

 -23-

Figure 13. Diagrams showing all squares to which the black Bishop (left) and white Rook (right) are allowed to legally move.

Notice that every viable spot is on a straight line emanating out from the Bishop or Rook’s current location, but the straight lines

allowed are different for the Bishop and Rook. Courtesy of www.thechesszone.com

The King

Figure 14. Image of a King.

Like the Knight, the King is also quite a simple piece. This is because its range of motion is quite

limited. In particular, the King can only move one space, but it can move in any direction. To

answer your question (if you haven’t played Chess before), yes it is a little weird that the most

important piece in the game is also one of the weakest as far as its ability to attack and move.

That’s just how it goes.

Figure 15. Diagram showing all the spaces where the black King can legally move. Courtesy of www.thechesszone.com

http://www.thechesszone.com/

 -24-

The Pawn

Figure 16 Image of a pawn. The picture of it is boring, but the way it moves is quite interesting.

Interestingly enough, the pawn, which is definitely the weakest piece in the game of Chess, is

also the most complicated to get right. We’ll go slowly to make sure everything’s clear. The first

interesting thing to say about pawns is that they only can move “forward.” In this case forward is

defined as towards the opponent’s side of the board. In our orientation, this means that White

pawns must always move up the screen, and Black pawns must always move down.

Now, ordinarily, pawns only move along a vertical line (always towards the opponent’s side of

the board) and they only move one space at a time. Except for two scenarios: a pawn’s first move

and capturing. For instance, each pawn is given the option of moving forward either one or two

spaces on its first move (assuming that these paths lie unblocked by any pieces):

Figure 17. Diagram showing the unique movement of a pawn on its first move. Since the white Pawns shown have not been

moved, they have the option of moving forward either one or two spaces (as indicated by the blue arrows) on their first move.

This only applies if this move is not blocked by any piece, friend or enemy. Courtesy of www.thechesszone.com

Additionally, Pawns have another interesting wrinkle in that they capture differently than they

move. In particular, while Pawns are only allowed to move along a vertical line forward, they

capture on a diagonal line forward:

 -25-

Figure 18. Diagrams showing the unique way in which Pawns capture. Although pawns an only move forward along vertical

lines, they are only allowed to capture forward along diagonal lines.

This also means, however, that Pawns cannot capture directly forward:

Figure 19. Diagram showing pawns who cannot capture each other (red boxes). Since pawns can only capture on diagonals,

neither the black nor the white pawn in either of the red boxes can move in the current configuration.

Finally (and this you don’t have to worry about), if a Pawn makes it all the way to the other side

of the board, the player in command of the Pawn gets to replace that Pawn with their choice of a

Knight, Bishop, Rook, or Queen (in this version of Chess is taken care of automatically for you –

try it, it’s kind of cool).

