
One of the key issues that a theory of perception must 
address is the effect of prior experience. Newborn in-
fants initially have the ability to distinguish a rich variety 
of linguistic contrasts, but by about six months of age, 
their ability has begun to attune to their native language 
(Kuhl, Williams, Lacerda, Stevens, & Lindblom, 1992). 
This reshaping of the perceptual space presumably allows 
the developing infants to recognize their language sounds 
more effectively and may contribute to the warping of per-
ceptual representations toward category prototypes (the 
perceptual magnet effect; Kuhl, 1991, 2000) and to the 
sharpening of sensitivity at category boundaries (the cat-
egorical perception effect; Liberman, Harris, Hoffman, & 
Griffith, 1957). However, there is the suggestion that such 
reshaping may have the side effect of hindering the acqui-
sition of language distinctions later in life (Flege, 1995). 
In this paper, we explore a mechanistic account of how 
first-language speech acquisition can influence the later 
acquisition of second-language speech sounds.

Our exploration is guided by the assumption that speech 
learning is an instance of more general architectural and 
computational principles. We consider four such principles 
and evaluate their usefulness in addressing data from an 
experiment on the acquisition of a nonnative speech con-
trast in adulthood. Specifically, we use the principles to 
develop a computational model of the pattern of successes 
and failures in learning the American English /r/ and /l/ 
by adult native speakers of Japanese (McCandliss, Fiez, 
Protopapas, Conway, & McClelland, 2002). Models of 
perceptual learning often attempt to reproduce only the 
end state of learning, but frequently, this does not place 

sufficient constraints on the models (Damper & Harnad, 
2000; Edelman & Intrator, 2002). In order to impose addi-
tional constraints, we evaluated our model against several 
measures over the time course of learning and under differ-
ent training conditions and explored the extent to which the 
principles can account for a wide range of findings.

The article is organized as follows. First, we give an over-
view of the R/L problem and of the McCandliss et al. (2002) 
results, pointing out aspects of the results that appear puz-
zling in the absence of an explicit mechanistic explanation. 
Next, we introduce and justify the principles underlying our 
model and present an abstract and simplified version to il-
lustrate its basic properties. We then set out our model of the 
McCandliss et al. data and present the modeling results to-
gether with the experimental results. Finally, we evaluate the 
successes and limitations of the model and the consequent 
implications for the architectural principles.

The R/L Problem
The Japanese language does not have distinct /r/ and /l/ 

phonemes, and native speakers of Japanese have extreme 
difficulty distinguishing between the /r/ and /l/ sounds in 
American English (AE), particularly when they occur in 
syllable-initial positions (Logan, Lively, & Pisoni, 1991). 
When presented with an /r/–/l/ continuum in which the 
F3 onset changes systematically from 1362 Hz (for /r/) to 
3698 Hz (for /l/), AE listeners show a fairly sharp discrimi-
nation peak at the boundary between the two categories, 
whereas Japanese listeners show no such boundary even 
after many years of English experience (Miyawaki et al., 
1975). In place of the English /r/ and /l/ sounds, Japanese 
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has an apico-alveolar tap /ɾ/ whose categorization appears 
to depend primarily on the second formant (Iverson et al., 
2003; Lotto, Sato, & Diehl, 2004). Consequently, when 
asked to label AE /r/ and /l/ sounds by a native speech cate-
gory, Japanese listeners usually map both classes of sounds 
to the Japanese /ɾ/, sometimes prefixing the unrounded 
high back vowel /ɯ/ to it (Guion, Flege, Akahane-Yamada, 
& Pruitt, 2000).

There have been several approaches to training Japanese 
listeners to perceive the /r/–/l/ distinction (see, e.g., Lively, 
Logan, & Pisoni, 1993; Strange & Dittmann, 1984). The 
patterns of acquisition are varied and complex, but there 
are also some common characteristics (see Iverson, Hazan, 
& Bannister, 2005, for a comparative study). Specifically, 
learning is rarely complete and learners usually do not 
match the performance of the native speakers; there are 
considerable individual differences in learning (Takagi, 
2002); learning is often facilitated by the use of easy–hard 
procedures in which contrasts are initially easy but progres-
sively become difficult (see, e.g., Jamieson & Moroson, 
1989); generalization is facilitated if there has been some 
stimulus variability (Lively et al., 1993); and finally, learn-
ers show a general bias toward L-labeling after training 
(see Figure 6 of Iverson et al., 2005). For concreteness, in 
the present article, we focus on the training conducted by 
McCandliss et al. (2002). In addition to showing several of 
the characteristics enumerated above, the study explores 
two phenomena not often addressed in /r/–/l/ training stud-
ies: the effectiveness of training without feedback, and the 
effect of category learning on discrimination. Consider-
ation of these phenomena allows the issue of /r/–/l/ learn-
ing to be connected to phenomena in other domains. For ex-
ample, the question of learning with and without feedback 
has been extensively explored in visual learning (Herzog & 
Fahle, 1998; Petrov, Dosher, & Liu, 2005; Rosenthal, Fusi, 
& Hochstein, 2001; Tarr & Cheng, 2003). Furthermore, 
visual learning often results in changes in discriminability 
(e.g., Goldstone, 1994) that are similar to those observed 
in speech perception (e.g., Kuhl, 1991).

The McCandliss et al. (2002) study originated from 
the proposal of McClelland, Thomas, McCandliss, and 
Fiez (1999) that speech perceptual learning may depend 
on an unsupervised Hebbian learning process. In this 
proposal, the presentation of a speech sound elicits a 
perceptual representation that is viewed as a pattern of 
activation over a population of neuron-like processing 
units. Hebbian learning (strengthening of the connections 
between units contributing to this pattern of activation) 
tends to strengthen the tendency for the speech sound to 
elicit the same perceptual representation in the future. 
For the Japanese listeners, /r/ or /l/ both elicit an /ɾ/-like 
representation, and the resulting Hebbian learning causes 
further entrenchment of this tendency. This perspective 
makes two predictions. One is that the learning may be 
facilitated by using exaggerated tokens of /r/ and /l/ to 
elicit distinct representations. Once the representations 
gain a foothold, then Hebbian learning should strengthen 
the contrast between them and eventually result in robust 
perceptual learning. The second prediction is that since 
the establishment and strengthening of representations 

is entirely unsupervised, learning should not depend on 
outcome information. McCandliss et al. (2002) tested 
these predictions by training Japanese listeners in differ-
ent conditions. Since our model attempts to account for 
these results, we shall describe the experiment and results 
in some detail.

Summary of Experimental Results From 
McCandliss et al. (2002)

McCandliss et al. (2002) first recorded /r/ and /l/ words 
spoken by a native speaker of English and acoustically 
manipulated them to generate continua from exagger-
ated /l/ to exaggerated /r/. These stimuli were then used to 
train Japanese subjects in four conditions—fixed versus 
adaptive training stimuli, crossed with the presence ver-
sus absence of feedback. In the fixed conditions, subjects 
always heard the same two intermediate (and initially con-
fusable) tokens of /r/ and /l/ and had to label them as “r” 
or “l.” In the adaptive conditions, subjects initially heard 
exaggerated tokens that were easily identifiable; when the 
participant identified eight successive tokens correctly, 
the /r/ and /l/ tokens moved closer to each other. In the 
feedback conditions, the subjects received immediate vi-
sual feedback on the correctness of each response; in the 
no-feedback conditions, this visual feedback was omitted. 
There were 8 subjects in each condition, 4 trained with a 
rock–lock continuum and 4 with a road–load continuum. 
The training was conducted over 3 days (with daily ses-
sions of 500 trials), with half of the subjects given an ad-
ditional three sessions of training.

The learning of the subjects was evaluated in four ways: 
(1) performance on probe stimuli that were periodically pre-
sented to the subject during the training, (2) categorization 
on trained and untrained R/L continua, (3) same–different 
discrimination of pairs with fixed interstimulus distance 
(“slide test”), and (4) same–different discrimination of pairs 
with increasing interstimulus distance (“expand test”).

The following are the main experimental results that we 
seek to explain. (1) Adaptive training without feedback 
was effective in inducing perceptual learning (Figure 6D). 
(2) Feedback markedly improved the learning and also in-
verted the relative efficacy of the conditions (without feed-
back, adaptive training was better; with feedback, fixed 
training was better). The training efficacy (as measured by 
the rate of learning) may be rank ordered as follows: fixed-
with-feedback, adaptive-with-feedback, adaptive-without-
feedback, fixed-without-feedback (Figure 7B, Figure 6D). 
(3) The learning was not stimulus specific. After training, 
subjects (particularly in the feedback conditions) showed 
improved categorization on the untrained R/L continuum 
(Figure 6D). (4) The improvement in R/L classification 
was paralleled by an increase in discriminability for stim-
ulus pairs that straddled the category boundary (shown by 
the slide test, Figure 9D). Discriminability also improved 
for stimulus pairs that straddled the category boundary 
with greater interstimulus distances (shown by the ex-
pand test, Figure 10B). (5) There were marked individual 
differences in the no-feedback training. Some subjects 
learned quickly even though they were in the fixed condi-
tion, whereas others learned slowly even though they were 
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in the adaptive condition. (6) In all conditions, there was a 
strong bias toward labeling the stimuli as “L”; that is, the 
posttraining category boundary was closer toward the “R” 
end of the L–R continuum than in native English speakers 
(Figure 6D). (7) Learning in the fixed-without-feedback 
condition was very slow, hardly improving between the 
pre- and posttraining categorization curves (Figure 6D).

The results of the experiment are partially consistent 
with the simple Hebbian account, but also demonstrate 
that the account is incomplete. These results supported 
the Hebbian analysis that eliciting separate representa-
tions can induce category learning, even in the absence 
of feedback about response accuracy. However, there was 
a clear effect of feedback. In short, although learning can 
take place without feedback, the speech perceptual system 
can take advantage of feedback when it is available.

Note that the first six results are generally consistent 
with those observed in other perceptual learning and /r/–/l/ 
training studies (e.g., Iverson et al., 2005) and are therefore 
of general theoretical interest. The last result (about slow 
learning in the fixed-without-feedback condition) has not 
been explicitly noted elsewhere to our knowledge, but it may 
have real-world validity, given that the majority of Japanese 
speakers learning English are exposed to normal (i.e., unex-
aggerated) /r/ and /l/ sounds without consistent feedback. 
Thus, the lack of learning in the fixed-without-feedback 
condition may shed light on the larger causes of difficulty in 
/r/–/l/ learning. Consequently, our goal in the present work 
was to develop a model of perceptual learning for speech that 
can account for perceptual learning without feedback, the 
role of feedback when it is available, and the conditions that 
lead to the lack of learning. The formulation of the model 
will be constrained by two factors: The empirical constraint 
is the detailed pattern of findings in the McCandliss et al. 
(2002) experiment (described above), and the theoretical 
constraint is a general conception of language learning and 
neural architecture. In the following section, we describe the 
theoretical constraint in more detail.

THEORETICAL APPROACH

General Conception
We first give our overall conception of the initial speech 

learning process and how it affects second language ac-
quisition and then describe the general principles govern-
ing the formulation of the model itself.

We work within the context of the idea that an infant’s 
perceptual space is initially quite plastic and subject to 
structuring through experience (Kuhl, 2000). From birth, 
infants are exposed—without explicit labels—to sounds of 
the ambient native language. They may receive correlated 
inputs (for example, the sight of the facial movements of the 
speaker), but for simplicity, we will not include such influ-
ences. As the experience accumulates, perceptual represen-
tations that are activated most frequently (such as those cor-
responding to prototypical sounds of the native language) 
come to function as “perceptual magnets” (Kuhl, 1991) or 
“attractors” (Flege, 1995). That is, there is a graded category 
structure with sounds near the centroids of the clusters that 
produce stronger perceptual representations than those at 

the edges of these clusters (this is similar to the mechanism 
used by Rosenthal et al., 2001, to address unsupervised vi-
sual category learning; see also Anderson, Silverstein, Ritz, 
& Jones, 1977). Inputs near an attractor point tend to be dis-
torted in the direction of the attractor, making stimuli near 
the same attractor more similar to each other. These percep-
tual attractors are strengthened throughout childhood and 
gradually become strongly entrenched. If an adult listener 
hears new sounds (e.g., from a second language) that are 
near the center of an existing attractor, the distortion pro-
duced by the attractor will reduce discriminability between 
the sounds and retard acquisition of the new distinction. 
Consequently, age-dependent effects on perceptual learn-
ing are taken to be gradual and experience dependent rather 
than strictly dependent on biological factors, such as pu-
berty (Flege, 1992; White, 2001).

It is into the context established by such experience that 
an adult native speaker of one language would come to a 
perceptual learning experiment such as that of McCand-
liss et al. (2002). In the present article, we take the view 
that mechanisms similar to those operating to establish 
perceptual attractors through development are also op-
erating to influence the course of learning in the experi-
ment. Within the context of the above conception, we go 
on to explore the question of how feedback may influ-
ence the perceptual learning process, by either modulating 
or supplementing the mechanisms that allow essentially 
Hebbian unsupervised learning processes to shape the 
attractors affecting perceptual representations.

General Principles Governing 
Model Formulation

Our model is intended to instantiate this general concep-
tion in a simplified framework in which the actual dynam-
ics of speech sounds are ignored and sounds are treated as 
points in a simplified input space spanning two dimen-
sions. This simplification allows us to explore whether the 
problem of speech perceptual learning may be formulated 
in terms of the following general principles that are widely 
applicable in other domains of cognition.

Processing engages attractors in a multilayer net-
work via interactive activation and competition. The 
perceptual system is assumed to be organized around a 
set of processing principles articulated in McClelland 
(1992) and embodied in several models of perception and 
perceptual identification (e.g., the stochastic interactive 
activation model of McClelland, 1991, and Movellan & 
McClelland, 2001, and the ART framework of Carpenter 
& Grossberg, 1987, and Goldstone, Steyvers, & Larimer, 
1996). The principles specify that processing takes place 
in a network consisting of several interacting layers with 
inhibitory connections within a layer and excitatory con-
nections between layers. The activation of each unit is a 
graded nonlinear function of the net input, and the activa-
tion propagates continuously in time across the layers. The 
network is intrinsically stochastic; that is, random noise 
perturbs the inputs to units at each time step.

Perceptual learning increases the strength of the 
attractors established by the interactive dynamics. 
This increase in strength may be instantiated as an increase 
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in the neural activity to stimuli similar to those experienced 
frequently. Support for this assumption comes from a se-
ries of studies by Recanzone, Merzenich, and Schreiner 
(1992a, 1992b). In their experiment, monkeys were trained 
to discriminate between the frequencies of vibrotactile 
stimuli applied to their fingertips. After the training, the 
stimulation of the trained skin resulted in temporally syn-
chronous neural activity over a larger cortical area.1 This 
result is consistent with some imaging studies of humans 
(e.g., Pleger et al., 2003). Of specific relevance to our 
own work, Callan et al. (2003) and Callan, Jones, Callan, 
and Akahane-Yamada (2004) explored this issue in Japa-
nese subjects who were trained to discriminate /r/ and /l/ 
using the materials of Logan et al. (1991). After training, 
their subjects exhibited increased activity in auditory and 
speech motor areas while performing an /l/–/r/ classifica-
tion task.

Learning occurs in a Hebbian manner both in the 
presence and absence of correlated information, indi-
cating the category membership of the input. This as-
sumption is consistent with behavioral evidence (McCand-
liss et al., 2002; Rosenthal et al., 2001) and other modeling 
approaches (Carpenter & Grossberg; 1987; Petrov et al., 
2005; Rumelhart & Zipser, 1985). Furthermore, Hebbian 
processes have been demonstrated to be sufficient for syn-
aptic change in the auditory cortex. For example, Ahissar, 
Abeles, Ahissar, Haidarliu, and Vaadia (1998) monitored a 
neuron A in the auditory cortex of a monkey while it was 
being trained on a discrimination task and electrically stim-
ulated neuron B whenever A was active. After the training, 
there was increased correlation between the activities of the 
two neurons, suggesting the presence of Hebb-like synaptic 
change (see Syka, 2002, for a review of related results).

Perceptual processes and representations occur 
within topographic maps. There is substantial evi-
dence both for the existence of topographic maps and 
for their plasticity (Buonomano & Merzenich, 1998; 
Kohonen, 1993). Such representations allow efficient 
representations, with spatially bounded receptive fields 
allowing for distributed sparse coding and the overlap 
between receptive fields allowing for noise tolerance 
and generalization (Idiart, Berk, & Abbot, 1995; Poggio, 
1990). Moreover, objects in the world are cohesive along 
dimensions such as time, space, and frequency. A topo-
graphic map “projects” this cohesiveness directly into the 
perceptual system and can thereby guide its development, 
as demonstrated by models of the maturation of the early 
visual pathways (Linsker, 1986; Sirosh & Miikkulainen, 
1997) and by models of somatotopic map reorganization 
(Grajski & Merzenich, 1990; Sutton, Reggia, Armentrout, 
& D’Autrechy, 1994).

In our model, the above principles are instantiated in a 
multilayer network with bidirectional inhibitory connec-
tions within a layer, bidirectional excitatory connections 
between layers, and Hebbian update of the between-layer 
connections. The bidirectional connections implement 
attractors, a mechanism common to many earlier models, 
such as interactive activation models of written and spoken 
word perception (McClelland & Elman, 1986; McClelland 
& Rumelhart, 1981) and models of associative memory 

(e.g., Anderson et al., 1977). Our model also shares many 
features with Grossberg’s ART networks (Carpenter & 
Grossberg, 1987; Grossberg, 1988; see also Hoshino, 
2002), with assumptions based on Grossberg’s for learn-
ing in the absence of supervision. There are differences, 
however: ART models do not often employ topographic 
maps, and we do not employ some features of ART models, 
such as the use of a mismatch detection mechanism.

We present our model in two stages, each instantiated 
in a separate simulation. Simulation 1 uses an abstract 
and simplified version of the model to illustrate many of 
its basic properties as well as how certain characteristics 
of perceptual learning would arise within models of this 
type. Simulation 2 uses an elaborated version of the model 
to address the acquisition of the /r/–/l/ contrast by Japa-
nese adults, as was investigated in the McCandliss et al. 
(2002) experiment.

SIMULATION 1 
Aspects of the Nature and Acquisition of 

Categories of Speech Sounds

Simulation 1 illustrates how our model addresses—at 
an abstract level—several putative aspects of the nature 
and acquisition of categories of speech sounds. These as-
pects all play key roles in our account (in Simulation 2) 
of the acquisition of the /r/–/l/ distinction in Japanese 
adults. Although there has been disagreement about some 
of these aspects, they have all been argued for by others, 
and we list some of the main protagonists of each point. 
(1) Perceptual categories can be acquired in an unsuper-
vised manner (Kuhl et al., 1992; Rosenthal et al., 2001). 
(2) Membership in the resulting perceptual categories can 
be graded; that is, some stimuli may be better exemplars 
of the category than others (Kuhl et al., 1992; Miller, 
1994; Oden & Massaro, 1978). (3) There appears to be 
an inverse relation between the goodness of category ex-
emplars and their discriminability (the perceptual magnet 
effect; Kuhl, 1991). (4) Discriminability is usually maxi-
mal at category boundaries (cf. the categorical perception 
effect; Liberman et al., 1957).

Description of Model
Architecture. The network consists of three one-

dimensional layers, designated L1, L2, and L3 (Figure 1A). 
L1 is topographically connected to L2; each L2 unit has the 
strongest connection to the L1 unit directly below it and 
exponentially weaker connections to L1 units that are fur-
ther away. Specifically, the weight between L2 unit a and 
L1 unit b is given by exp(2(a 2 b)2 / β21), with β21 5 15. 
The incoming L1 weight vector to each L2 unit is normal-
ized to have unit magnitude, and the input space does not 
wrap around. L2 is bidirectionally connected to L3, with 
the L2L3 weights initialized from a uniform distribution 
between 0 and 0.03 [notated as Uniform(0, 0.03)] and the 
L3L2 weights from Uniform(0, 0.0005). The asymmetry 
is needed to prevent the recurrent excitation from exerting 
an influence too early in learning, which could cause the net-
work to lock on to spurious attractors. Finally, each L2 unit 
is connected to itself with a weight of 11.0 and to all others 



Learning New Speech Categories in Adulthood        57

in its layer with a weight of ]0.2; L3 units have similar con-
nectivity except that the inhibitory weights are ]2.0.

Network dynamics. Each unit in k in L2 and L3 gradu-
ally accumulates its incoming activity (its “net input” netk) 
and converts it to an instantaneous firing rate (its “output 
activity” ak). The net input tends to decay to zero and is also 
subject to noise during the integration. The output activity 
increases monotonically with nonnegative net input and 
asymptotes toward a maximum value of 1.0. These values 
were regulated by the following differential equation:

dnet net wscale w a dt dt

a

k k j kj kj j
= − + ∑ ⋅( ) ⋅ + ξ

net
,

kk k
net gain= ⋅( ) max , tanh ,0

act

where wkj are the incoming weights, ξnet is the integration 
noise [ξnet~N(0,snet)], and gainact is the gain of the activa-
tion function. wscalekj is a “weight scaling” parameter, set 
to 1 for L1L2 and L2L3 weights and to 5 for L3L2 
weights. We assume that each L3 unit is a member of a 
group of neurons with similar incoming and outgoing pro-
jections, as would be the case if L3 is a topographic map. 
The recurrent excitation to an L2 unit k is the summed 
input from all neurons in that group, which we approxi-
mate by scaling up the influence of the single active L3 
unit. Before each input was presented, Gaussian noise was 
added to the input pattern, Ii

noisy 5 Ii 1 ξinput, where ξinput ~ 
N(0, σinput). The activations of the input units were clamped 
to the noisy input pattern for 30 time steps, and the network 
was allowed to settle with dt 5 0.2, σinput 5 0.02, σnet 5 
0.2, and gainact 5 0.5.

Weight update. After the settling was completed, the 
weights between L2 and L3 were updated using a Hebbian 
rule: Δwjk 5 η aj ak, with η 5 0.02. For simplicity, we 
turned off the learning between L1 and L2. However, sim-

ulations in which L1–L2 learning was allowed produced 
similar results. Following the update, the weights were 
multiplicatively normalized in a graded manner; that is, 
for small weight-vector magnitudes there was no normal-
ization, but as the weight vector magnitude increased, the 
normalization was applied with greater force (if the weight 
vector magnitudes are always fully normalized, then the 
initial random configurations would get reinforced and 
prevent further learning). Let w be the weight vector be-
fore the weight update and Δw the change in the weight 
vector. Then mnew, the magnitude of the new weight vec-
tor, is defined to be:

	 m f w w f w w wnew ] |= − ⋅ + ⋅ +[ (| |) | (| |) | |,1 ∆ 	

where f (x) is a function that decreases from 1 to 0 
over the range [0, M ], and M is the maximum magni-
tude of the weight vector. We chose M 5 1 and  f (m) 5 
max[(M 2 m)3, 0], but the learning is not sensitive to the 
value of the exponent and only requires that it be $1. For 
L2L3 projections, the weight vectors to be normalized 
are the sets of incoming weights. For L3L2 projections, 
the weight vectors are the sets of outgoing weights. This 
configuration forces the L2L3 and L3L2 weights to 
be approximately symmetric and is required to achieve the 
attractor behavior (Grossberg, 1988).

Inputs. Each input stimulus was a bump of activity on 
the input layer. The center of the bump was the “input loca-
tion” and could vary continuously between 1 and 80. For an 
input location x, the activity of input unit i was a Gaussian 
bump centered at x, given by exp(2(i 2 x)2 / βinput), with 
βinput 5 2. The resulting input pattern was normalized to 
have a magnitude of 1.0. The input locations were drawn 
from two Gaussian distributions, N(29, 3) and N(51, 3), 
with 400 locations from each distribution. The input pat-
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terns were presented to the network in random order 4,000 
times, and the between-layer weights were updated after 
each presentation.

Results and Discussion
Each time an input is presented to the network, it results 

in a pattern of activity over L2. The L3 unit that is most 
strongly activated by this pattern suppresses the other L3 
units, and the resulting weight update increases its sensi-
tivity to that particular pattern. Through this process of 
competitive learning (Rumelhart & Zipser, 1985), the L3 
units divide up the L2 space so that each L3 unit becomes 
most responsive to one input cluster; thus, the L2L3 
weights eventually reflect the structure of the categories 
(Figure 1B). Consequently, whenever an L3 unit is acti-
vated, it recurrently excites the prototypical L2 represen-
tation for that category, which in turn further excites the 
L3 unit, and so on; this reverberating activity between L2 
and L3 instantiates a perceptual attractor.

Figure 2 illustrates the attractor dynamics after training. 
When the stimulus is outside the category (Figure 2A), the 
L2 activity is relatively unbiased. When the stimulus is 
closer to the category (Figure 2B), the recurrent excitation 

from L3 increases the total amount of L2 activation. In 
addition, the L2 activity pattern (“perceptual representa-
tion”) becomes biased toward the center of the category. 
However, the original input still exerts an influence, so 
the representation does not completely converge toward 
the category center. The attractor set up by the recurrent 
excitation is not a fixed state that is the same for all inputs, 
but is more like a flexible schema (Rumelhart, Smolensky, 
McClelland, & Hinton, 1986) that is adapted toward the 
current input. The resonance between L2 and L3 is self-
sustaining, and if the input was turned off during the set-
tling process, the L2 activity would shift entirely toward 
the center of that input’s category.

The attractor dynamics have two consequences. First, the 
“category goodness” of a stimulus (defined as the activity of 
the winning L3 unit) increases gradually toward the center 
of the category (Figure 3A). Second, the discriminability of 
adjacent stimuli (defined as the Euclidean distance between 
the corresponding L2 activity patterns) is inversely pro-
portional to their category goodness (Figure 3B). The dis-
crimination minima occur because stimuli near the center 
of a category engage the same attractor; the maxima occur 
because stimuli within a category evoke greater levels of 

Figure 2. The attractor dynamics of the network in Simulation 1 after 4,000 updates (the 
input and integration noise were turned off to provide a clearer view of the network’s tenden-
cies). (A) The development of L2 activity for an input centered at location 24 (vertical dotted 
line). The center of the category is at location 29 (vertical solid line). The rising curves indicate 
L2 activity at successive points in time. (B–E). The L2 activity for inputs at locations 26, 27, 
29, and 33. (F) The activity of the winning L3 unit for the same set of inputs. The inset number 
is the location of the input.
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L2 activity than stimuli outside the category, and this dif-
ference in activity level increases discriminability between 
stimuli on different sides of a category boundary (note that 
these effects are entirely abolished if the recurrent excita-
tion is disabled). Figures 3C and 3D show that the relation 
between category membership and discrimination persists 
even when the input categories are close together.

In summary, we have demonstrated that a network with 
recurrent excitation from a “category layer” to a “represen-
tation layer” can show phenomena such as unsupervised 
category acquisition, graded category membership, grad-
ual assimilation toward an attractor, and discriminability 
that is inversely proportional to the category goodness. 
The time course of the network’s activity is also consistent 
with behavioral data that speech percepts tend to become 
more categorical as the interstimulus interval is increased 
(Pisoni, 1973).

SIMULATION 2 
Model of the McCandliss et al. (2002) Experiment

Simulation 1 indicates that an interactive Hebbian model 
can capture several putative aspects of the acquisition and 
processing of speech categories and also illustrates how 
the development of activity in the representation layer 
contributes to the network’s performance. In the following 
simulation, we use the same architecture to account for the 

perceptual learning in McCandliss et al. (2002)—in par-
ticular, the pattern of learning with the presence versus ab-
sence of feedback and with fixed versus adaptive stimuli. 
We also use Simulation 2 to illustrate our conception of 
why second-language acquisition is difficult, how this dif-
ficulty relates to the McCandliss et al. training, and which 
factors underlie intersubject differences in the training.

Before proceeding further, a terminological caution is 
necessary. In the literature, the term feedback is used to 
refer to either outcome information provided to the sub-
ject or recurrent connectivity in a neural network. We use 
it only in the former sense and use the term recurrent ex-
citation to refer to the latter.

Phases of Learning and Basic  
Model Architecture

The network to accomplish the McCandliss task is a 
two-dimensional version of that in Simulation 1 (Fig-
ure 4A), with L1 and L2 implementing a topographic map 
over two acoustic features that are most relevant for distin-
guishing /r/ and /l/ (Figure 4B) and L3 detecting clusters 
in the L2 activity distributions.

The simulation consists of two phases. In Phase 1 
(“Japanese environment”), the network is exposed to un-
labeled instances of the Japanese alveolar tap /ɾ/ and velar 
approximant //. These two Japanese sounds are acousti-
cally the most confusable with AE /r/ and /l/; thus, by train-
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ing the network with these sounds, we attempted to capture 
the warping of the Japanese perceptual space near /r/ and 
/l/. We proceed from the assumption that exemplars of the 
Japanese /ɾ/ are highly variable (particularly along F3) and 
are spread out over a region that for an English listener 
would include both the /r/ and /l/ categories (Lotto, Sato, 
& Diehl, 2004). The Japanese-trained network eventually 
develops an attractor so that stimuli within the /ɾ/ category 
(and hence /r/ and /l/ stimuli) are less discriminable from 
each other. In Phase 2 (“R/L training”), the Japanese-
trained network is trained to categorize AE /r/ and /l/ using 
the training conditions in McCandliss et al. (2002)—that 
is, fixed stimuli with and without feedback and adaptive 
stimuli with and without feedback.

Two caveats are in order regarding the aforementioned 
architecture. First, L2 and L3 should be thought of as a 
single perceptual system. In particular, we emphasize that 
we do not think of the L3 units as localist phoneme repre-
sentations, but as approximations to a distributed (possibly 
topographic) representation. Second, while actual speech 
is time varying, the input stimulus to the model is static. 
Moreover, the space of F2 and F3 onsets is just one slice 
through a much higher dimensional space (comprising, 
for example, the other formants and the overall amplitude 
envelopes of the sounds). The localist L3 representation 
and the static, low-dimensional inputs are therefore sim-
plifications adopted for the sake of allowing the explora-
tion of more general principles.

Model Elaboration
The general principles, learning phases, and architec-

ture that were previously discussed provided the start-
ing place for our development of a model of the findings 
of the McCandliss et al. (2002) experiments. When we 
turned attention to applying the model to these findings, 
additional issues arose that required careful consideration. 
We will consider these issues in turn.

Differentiation of network architecture into 
fast- and slow-learning systems. The first issue concerns 
the difference in timescales between the initial native-lan-
guage exposure and the duration of the McCandliss et al. 
(2002) experiment. The Japanese subjects had experienced 
Japanese language sounds intensively for many years, so it 
is unlikely that their perceptual systems were fluctuating 
on a day-to-day basis or that they could be fundamentally 
restructured over a brief period. Yet, their perceptual abili-
ties were modified after only three days of training in the 
McCandliss et al. experiment. So how should the relation 
between the long-term exposure and the experimental 
learning be understood?

One approach to this problem of “catastrophic interfer-
ence” is to assume that L3 has a large pool of unused units; 
when a stimulus is sufficiently distant from all existing 
categories, a new unit is recruited to represent that stimu-
lus (see, e.g., Carpenter & Grossberg, 1987). However, 
this approach is difficult to apply when (as in the case 
of /r/ and /l/ and the Japanese tap) the new stimulus cat-
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egories are nested within an existing category. A second 
approach, advocated by McClelland, McNaughton, and 
O’Reilly (1995), is to assume that there are two comple-
mentary learning systems in the brain: a hippocampal one 
that quickly learns conjunctions of features and a cortical 
one that gradually discovers higher order statistical struc-
ture in the hippocampal memories and integrates them 
with prior memories. This system allows stable long-term 
knowledge as well as the rapid learning of new categories 
that overlap with the existing categories.

We suggest that a similar complementary system may 
underlie the language learning in the McCandliss et al. 
(2002) experiment. Specifically, we assumed that (1) the 
training results in new auditory categories that interact 
with the representation layer without directly modifying 
the Japanese attractor structure, and (2) the new categories 
are mediated by a pool of units that is functionally sepa-
rate from the L3 pool that mediates the Japanese attractor 
structure. In our approach, the R and L response units are 
placed in a new pool that has within-layer inhibition and 
bidirectional connections to L2 (we shall refer to the pre-
existing pool of L3 units as the slow learning pool, or 
SLP, and the new pool as the fast learning pool, or FLP). 
The learning rate between L2 and the FLP is much higher 
than that between L2 and the SLP, which ensures that the 
rapid intra-experiment learning does not catastrophically 
modify the preexisting tendencies in the network. A fur-
ther advantage to this organization is that the FLP units 
can register the network’s “R” and “L” labeling responses 
and receive feedback when it is available.

Incorporating outcome information into Hebbian 
learning. A central goal of our work was to explore the 
possibility of relying on Hebbian learning to account 
for the learning advantage of feedback. Although the 
feedback in the McCandliss et al. (2002) experiment in-
dicated only whether the response was correct, subjects 
could easily use this information to determine which al-
ternative was correct, since there are only two alterna-
tives. We therefore assumed that the outcome informa-
tion results in external input to the units representing the 
alternatives, with excitatory input being provided to the 
correct response unit and inhibitory input to the incorrect 
alternative (this is referred to as soft-clamping).2 We also 
assumed that the size of these inputs was moderate, so 
that the units’ final activation levels reflected a combina-
tion of the outcome-based input and the result of process-
ing the current stimulus.

Modulation of the learning rate by the “confi-
dence” of response unit activation. One of the key as-
pects of the McCandliss et al. (2002) experiment was the 
very slow learning in the fixed-without-feedback condi-
tion. Capturing this aspect of the data proved to be quite 
challenging, since competitive Hebbian learning tends to 
lead to one of two outcomes, neither of which match the 
pattern seen in the behavioral data: (1) If neither unit has 
a substantial initial advantage, one tends to win for one of 
the stimuli, whereas the other tends to win for the other; 
Hebbian learning strengthens this contrastive tendency, and 
the network rapidly learns to distinguish the two stimuli. 
(2) If initially one response unit has a substantial advan-

tage over the other, that unit tends to win the competition 
between the response units for stimuli from both catego-
ries. Hebbian learning then strengthens the weights to this 
unit, allowing it to win even more often until it very quickly 
takes over the stimulus space for both categories. In short, 
competitive Hebbian learning is very rapid for appropriate 
and inappropriate learning outcomes; in the latter cases, 
the rapidity is counterproductive since it is very difficult 
for the system to recover from the inappropriate state. We 
therefore considered the possibility that a Hebbian system 
might trade off the overall rapidity of learning in exchange 
for a greater chance of appropriate learning. In particular, 
we posited that the rate of learning is proportional to the 
“confidence” of the network in its response (defined as the 
absolute difference between the activations of the R and 
L units). Under many conditions, the likelihood of being 
correct will tend to be lower when the confidence is lower, 
and in such cases, the “confidence modulation” would pre-
vent the network from committing itself to an inappropriate 
outcome.

This modulation has important consequences for the 
current model. At the start of training, confidence is low for 
both correct and incorrect responses. In the feedback con-
ditions, the soft-clamped outcome information enhances 
confidence for correct responses and lowers it for incorrect 
ones, allowing fairly rapid learning. In the fixed-without-
feedback condition, confidence is low for both correct and 
incorrect responses, resulting in very slow learning that 
prevents a single response category from taking over the 
stimulus space for both categories. In the adaptive-without-
feedback condition, the confidence tends to be higher on 
average (because the stimuli are exaggerated and easier to 
distinguish); therefore, learning progresses more quickly 
than in the fixed training condition.

Phase 1: Acquisition of Japanese /ɾ/ and //
Architecture. The network consists of three layers 

(Figure 4A). The first two layers (L1 and L2) are both 
20 3 20 grids, and L1 is topographically mapped to L2 
such that the weight between L2 unit (a, b) and L1 unit 
(c, d) is exp(2[(a 2 c)2 1 (b 2 d)2] / β21), with β21 5 15. 
The incoming L1 weight vector to each L2 unit is normal-
ized to have unit magnitude, and the input space does not 
wrap around. The third layer consists of a single pool of 
units with 5 units (henceforth, the SLP). The SLP is bidi-
rectionally connected to L2, with L2SLP weights initial-
ized from Uniform(0, 0.06) and SLPL2 weights from 
Uniform(0, 0.0005). Each L2 unit is connected to itself 
with a weight of 11.0 and to all others in its layer with a 
weight of ]0.07; each SLP unit is connected to itself with 
a weight of 12.0 and to all others in its pool with a weight 
of ]2.0.

Network dynamics and weight update. The activity 
update was exactly the same as that in Simulation 1: dt 5 
0.2 for 30 timesteps, σinput 5 0.02, σnet 5 0.2, gainact 5 
0.5, and wscalekj 5 1 for L1L2 and L2L3 weights and 
5 for L3L2 weights. The maximum weight vector mag-
nitude was 1.0 for all projections, and there was no learn-
ing on L1L2 weights. The learning rate on each trial was 
modulated by the model’s “confidence” in its learning, de-
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fined as the absolute difference in activity (after settling) 
between the winning unit and the next most-active unit 
(Usher & McClelland, 2001). The learning rate η for the 
trial was η 5 ηmax · [1 2 exp(2confidence · βconf)], where 
ηmax 5 0.004 and βconf 5 10.

Inputs. The input space to the network was the two-
dimensional space of F2 and F3 onsets, transformed from 
Hertz to Barks (the Bark scale resembles a log transforma-
tion of the formants and is an approximation of initial audi-
tory processing, Kewley-Port & Atal, 1989).3 The limits of 
the input space were defined as F2min 5 450 Hz, F2max 5 
2400 Hz, F3min 5 1050 Hz, and F3max 5 5500 Hz (Fig-
ure 4B). For each input stimulus, the F2 and F3 onsets 
were converted into a location in the input grid:
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where Nx 5 20 and Ny 5 20. The activity of the input unit 
(a, b) was defined as exp(2[(x '2a)2 1 (y '2b)2] / βinput), 
with βinput 5 9. The resulting input pattern was normal-
ized to have a magnitude of 1.0. Exemplars of the two 
Japanese categories were drawn from bivariate Gaussian 
distributions. The mean F2 and F3 onset values, derived 
from Japanese speakers’ utterances of /ɾa/ and /a/ (data 
from Guion et al., 2000),4 were 1340 and 2400 Hz for /ɾ/ 
and 625 and 2700 Hz for //. Following our hypothesis 
about the formation of a large Japanese /ɾ/ attractor (and 
generally consistent with the data reported in Lotto, Sato, 
& Diehl, 2004), we assumed that /ɾ/ has a fairly large vari-
ability, with F2 SD 5 √6 Barks and F3 SD 5 √5 Barks. 
For //, we used F2 SD 5 √0.15 Barks and F3 SD 5 
√0.15 Barks. Finally, 1,600 exemplars were drawn from 
/ɾ/ and 400 were drawn from //.

Training. The input stimuli were presented to the net-
work 8,000 times in random order (without supervision), 
and the weights were updated after the network had settled 
in response to each input.

Phase 2: R/L Training
Architecture. In Phase 2, a second pool with two units 

(the FLP) is introduced in the third layer. This pool is bi-
directionally connected to L2 and has the same internal 
connectivity as the SLP. Both the L2FLP and FLPL2 
weights are initialized from Uniform(0, 0.0005). There is 
no interaction between the SLP and the FLP.

Dynamics and weight update. The activity update 
was exactly the same as that in Phase 1. The learning rate 
η on each trial was modulated by the confidence, with 
ηmax 5 0.001. The “confidence” on a given trial was 
defined to be the absolute difference in activity—after 
settling—between the L unit and the R unit. Once the 
confidence was calculated, the L2FLP weights were 
updated with learning rate η and L2SLP weights with 
learning rate η/20.

Inputs. McCandliss et al. (2002) used two stimulus 
continua (rock–lock and load–road). We started with the 
F2 and F3 onsets of the natural utterances (the “anchor” 
stimuli).5 If AL and AR are the F2 3 F3 locations of the 
/l/ and /r/ anchors, then the location Ak of stimulus index 

k was calculated as AL 1 k · (AR 2 AL). The stimulus in-
dices ranged from ]0.6 to 11.6, in steps of 0.05. Once 
these locations were calculated, the corresponding input 
patterns were generated as in Phase 1. McCandliss et al. 
also established midpoints for the two continua, defined as 
the location of the crossover from ,50% to .50% /r/ re-
sponses by native English speakers. These locations were 
0.45 for lock–rock and 0.35 for load–road, and we used 
the same values for our continua also.

R/L pretraining. The McCandliss training assumed 
that Japanese listeners are initially able to distinguish ex-
treme /r/ and /l/. In order to set up these initial response 
preferences and to match the pretraining experimental 
data, the L2FLP weights were set to be initially quite 
weak. Next, one unit in the FLP was designated as the 
R-response unit and the other as the L-response unit. 
Then, the most exaggerated stimuli (stimulus indices 
]0.6 and 11.6) were presented to the network 300 times, 
and soft-clamped feedback was provided (see the Training 
conditions section). Confidence modulation was not used 
during this pretraining (i.e., η 5 ηmax 5 0.001).

Training conditions. The network trained in Phase 1 
was the starting point, serving as a generic “Japanese lis-
tener.” One hundred twenty-eight instances of this net-
work (32 in each training condition) were pretrained and 
then trained in a single session of 3,000 trials. Half the 
networks were trained on rock–lock and the other half on 
road–load. In all conditions, the labeling response of the 
network was taken to be the FLP unit with the greater 
activation after the final time step. In the no-feedback 
conditions, the weights were updated using the activity 
values at the final time step. In the feedback conditions, 
the net input of the correct FLP unit was incremented by 
0.2 after the final time step, and the net input of the incor-
rect FLP unit was decremented by 0.2 (with a net input 
floor at 0.0). Then, the output activations were recalcu-
lated, the confidence was recomputed, and the weights 
were updated.

In the adaptive-stimulus conditions, the stimuli were 
paired into 37 “levels.” If the midpoint of the continuum 
was designated m, then Level 0 consisted of the pair (m 2 
0.05, m 1 0.05), Level 1 had (m 2 0.1, m 1 0.05), Level 2 
had (m 2 0.1, m 1 0.1), and so on. The adaptive training 
began at Level 30. When the network made eight correct 
responses in a row, the level was decreased by 1 (with a 
floor at Level 15); if the network made an error, the level 
was increased by 1 (with a ceiling at Level 37). In the fixed-
stimulus conditions, the stimulus pair at Level 15 was used 
as the training stimuli (henceforth, the “fixed stimuli”).

There are two differences between the above protocols 
and the actual experiment. In the experiment, the fixed 
stimuli were at Level 8 instead of Level 15, and there was 
no floor in the adaptive training. These restrictions are nec-
essary in the model because if the stimuli are very close 
to each other, there is (1) greater competition between the 
L3 units, which (2) lowers the overall activity level and 
the amount of recurrent excitation, thereby (3) decreas-
ing the discriminability peak at the category boundary. 
The use of Level 15 brought our model closer to the data 
regarding the starting place of learning and allowed us to 
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focus on the overall trend in the data (viz. the presence of 
a discriminability peak).

Results and Discussion
The learning of the network is best seen in the response 

of the L and R units to different stimuli, with both the 
input and integration noise turned off. Figure 5 shows 
these responses for the four training conditions at differ-
ent stages of learning. The figure also shows the activ-
ity of the SLP unit that is associated with the Japanese 
tap attractor (effectively, the strength of the Japanese tap 
attractor). Crucially, the L-side stimuli are more prone 
to fall into the Japanese tap attractor than are the R-side 
stimuli, an asymmetry that follows directly from the 
layout of the input space. An L-side stimulus, therefore, 
activates the tap attractor, which recurrently excites L2, 
which increases L2 activity levels, which causes faster 
Hebbian learning. Thus, the L-unit in the FLP tends to 
(1) learn faster than the R-unit, (2) develop the same map-
ping as the Japanese tap unit, and (3) take over parts of the 
stimulus space corresponding to the English /r/, causing 
an overall bias toward L-labeling. A second point about 
Figure 5 is that slight learning also occurs for the Japanese 
tap unit in the SLP. The learning is subtle because of the 
slow learning rate; however, one can see that the attractor 

increases slightly to encompass both the /l/ and /r/ stimuli 
(Flege, 1995).

Categorization
Figure 6 shows the categorization curves during the 

training for the subjects and the model, and Figure 7 shows 
the time courses of the learning. The subjects’ time course 
was evaluated by periodically presenting probe stimuli; 
every 20 trials, one of the fixed stimuli was randomly 
chosen and presented, with feedback being provided only 
in the feedback conditions. The networks’ learning was 
evaluated in the same manner. The model’s learning is a 
little faster than that of the subjects, but in general, the 
network captures the relative rates of learning: Learning 
is fastest in the fixed-with-feedback condition, followed 
by adaptive-with-feedback, adaptive-without-feedback, 
and finally, fixed-without-feedback. From Figure 6, the 
experimental training duration of 1,500 trials appears 
to correspond to approximately 1,500 weight updates in 
the model. Moreover, the model captures the interesting 
pattern that although posttraining categorization was bet-
ter for the adaptive than for the fixed condition, in the 
no-feedback condition, the time courses of learning were 
very similar. Finally, the categorization curves (Figure 6A) 
show the bias toward L-labeling.
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Two discrepancies between the experiment and the 
model may be noted. The first concerns the effect of ex-
tended training. In the experiment, the extended training 
improved the categorization in the fixed-without-feedback 
condition on the /l/ side of the continuum. The model also 
shows improvement, but the categorization curve as a 
whole is more biased toward L-labeling. However, this 
discrepancy may be incidental. While the /l/ bias of the 
categorization is not prominent in the McCandliss et al. 
(2002) data, we have observed it in ongoing experiments 
that use lock–rock and synthetic la–ra continua, some-
times to the extent that subjects classify all the stimuli as 
/l/. The second discrepancy concerns the time course of 
learning in the fixed-with-feedback condition. The experi-
mental data (Figure 7B) show a very rapid initial increase 
(much faster than the adaptive-with-feedback condition), 
and the model does not. We shall return to this point in the 
discussion when assessing the effectiveness of Hebbian 
learning.

Transfer
Figure 8 shows how training on the lock–rock or the 

load–road continuum transfers to the other one (the cat-
egorization curves are averaged over both directions of 
transfer). The model’s transfer is quite good by 2,000 
weight updates and somewhat better than the experimen-
tal transfer curve after 1,500 training trials. The superior 
performance by the model is most likely because of its 
restriction to the F2 3 F3 input space. The actual sounds 
differ along dimensions other than F2 and F3, such as the 
overall intensity contour and the vowel context (/o/ vs. /ɑ/), 
and these additional differences might impair transfer in 
the actual experiment. However, there are two points that 
suggest that the F2 3 F3 space is a useful simplification. 
For both model and data, the transfer curves are (1) shifted 
toward the /r/ side of the continuum and (2) are quite poor 
for /l/ stimuli in the adaptive-without-feedback condition. 
In the model, the former is due to the influence of the 
Japanese tap attractor over the F2 3 F3 space, and the 

Figure 6. Categorization curves for the model (A–C) and the subjects (D–E) averaged over both training con-
tinua. In (E), each curve is averaged over the four subjects who continued to receive the same training. The control 
data are the average categorization curves prior to any training. In the fixed conditions, the midpoint between the 
fixed stimuli is 0.475 for lock–rock and 0.375 for load–road. In the adaptive conditions, the midpoints are 0.45 and 
0.35, respectively. The vertical dotted line shows (0.35 1 0.375 1 0.45 1 0.475)/4 5 0.4125.
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latter is due to the layout of stimuli in the F2 3 F3 input 
space (Figure 4B). Specifically, the rock and road anchors 
are closer to each other than are the lock and load anchors; 
consequently, it is easier to transfer /r/ across continua 
than /l/. These similarities suggest that stimulus relation-
ships in the F2 3 F3 space capture some of the acoustic 
relationships between the actual stimulus sounds.

Discrimination
The discrimination ability of the model was evaluated 

in the same manner as that of the subjects. In the slide test, 
eight pairs of stimuli were presented for same–different 
discrimination. The distance between the stimuli in each 
pair was fixed at 0.3, and the midpoint of the pair was 
gradually increased (0.15 to 0.85 in steps of 0.1). In the 
expand test, the midpoint of each stimulus pair was fixed 
at the midpoint of the continuum, and the distance be-
tween the stimuli in each pair was gradually increased (0.1 
to 1.5 in steps of 0.2).

These two tasks were mapped onto the network in the 
following manner. Each stimulus in a pair was presented 
to the network, and once the network settled, the activ-
ity of the representation layer was recorded (the weights 
were not updated during the tests). The patterns of activ-
ity of the two stimuli (their “perceptual representations”) 

were then used to generate a same–different response. We 
used a variant of the “differencing” strategy (Macmillan 
& Creelman, 1991): First, we presented the “same” and 
“different” stimulus pairs to the network and calculated 
the Euclidean distance between each pair of perceptual 
representations. These distances were then averaged to get 
a mean “perceptual distance” for each unique pair. Next, 
we estimated a mapping from the perceptual distance to 
the probability of a “different” response.6 Figures 9 and 10 
directly report this probability.

Figure 9 shows the results of the slide test for the model 
and the subjects. The control subjects show a gradual in-
crease in the discriminability toward the /r/ end of the con-
tinuum. After the R/L training, the subjects in the adaptive 
and the fixed-with-feedback conditions develop a peak at 
the category boundary that rides on top of the existing slope. 
The model generates qualitatively similar discrimination 
curves. The pretraining shape of the curve occurs because 
the /r/ end of the continuum is closer to the boundary of the 
Japanese tap attractor (see Figure 4B). With training, the 
R and L units develop two subsidiary attractors within the 
larger, shallower basin of the Japanese tap attractor, thereby 
creating a discrimination peak at the boundary (the location 
of the peak coincides with the crossover point in the catego-
rization curve). The peak development is mediated by the 
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strong lateral inhibition in FLP; this ensures a sharp change 
from one category to the other and maximizes the percep-
tual distance between stimuli straddling the boundary.

The results of the expand test are shown in Figure 10. 
The experimental data are rather noisy, but generally 
there is an increase in discriminability after training, with 
the largest change occurring at a separation between 0.5 
and 1.0. The model shows a similar increase. One differ-
ence is that the model’s discrimination peaks at a sepa-
ration just short of 1.0 and decreases thereafter. This is 
because each category is also a spatially bounded region 
in L2. As the stimuli move further away from categories, 
the attractors are only weakly activated; therefore, the 
perceptual representations are weaker. Some of the dis-
crimination curves in the experiment also show a slight 
decrease, so there is tentative support that a spatially 
bounded representation may underlie the subjects’ per-
formance also.

One interesting relation between the data and the model 
concerns the timing between the development of the cat-
egorization and discrimination. In the data, the categoriza-
tion for the feedback conditions is quite good after 1,500 
trials, and the corresponding discrimination peaks are also 
well developed (Figures 6D and 9D). The categorization 
for the adaptive-without-feedback condition is also quite 
good, but its discrimination peak appears to be less devel-
oped. This suggests that the discrimination peak need not 
always “keep pace” with the categorization, but can lag 
behind to some extent. The model exhibits an intriguingly 

similar pattern of lag. The categorization for the feedback 
conditions is quite good after 1,500 weight updates, and 
the discrimination peaks take 500 more updates to develop. 
The categorization for the adaptive-without-feedback con-
dition is quite good after 2,000 updates, and its peak takes 
1,000 more updates to develop. Thus, the model exhibits 
an exaggerated version of the lag observed in the data, with 
the amount of lag being smaller in the more effective train-
ing conditions. The lagging is due to the development of 
the attractor dynamics. First, the categorization is stabi-
lized, then (after more training) the attractors get strength-
ened and affect the discrimination. The lag is greater with 
adaptive-without-feedback mainly because the learning is 
slower; thus, the attractors take longer to strengthen.

Individual Differences
As was noted earlier, there were individual differences 

in the no-feedback training, with some subjects in the 
fixed condition learning as quickly as “good” learners in 
the adaptive condition and vice versa. Some of these dif-
ferences may be due to variations in the subjects’ percep-
tual spaces. For example, the Japanese tap attractor may 
be much more powerful or cover a larger extent, causing 
the training stimuli to be perceptually much more similar 
to each other and requiring many more training trials be-
fore the /r/ and /l/ categories get established.

The model as was previously described assumes that all 
“subjects” (i.e., instances of the network) have the same ini-
tial state. We attempted to simulate variations in the initial 
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state by manipulating the relation between the initial state 
and the training stimuli. Specifically, we assumed that en-
larging the extent of an attractor is equivalent to shrinking 
the length of a continuum that cuts across that attractor.7 
The shrinking was implemented as follows: Let s1 . . . s45 
be formants of the stimuli, and let sm be the midpoint of 
the continuum. Then, the rescaled stimuli rs1 . . . rs45 were 
defined by rsi 5 stimscale · (si 2 sm) 1 sm. We then reran 
the simulations, with stimscale ranging from 0.3 to 1.0. 
For each value of stimscale, 16 instances of the network 
were trained on the lock–rock continuum (four in each 
of the training conditions) for 3,000 weight updates. All 
the instances were pretrained with the extreme stimuli of 
the unmodified continuum (i.e., stimscale 5 1.0), so the 
rescaled continuum was only used during the actual train-
ing. All other parameters were the same as those in the 
previous simulation.

Figure 11 shows the results from the simulation in terms 
of the slope and bias in the categorization curves, with 
greater slope and smaller bias indicating better categori-
zation. At stimscale 5 1.0, we see the expected order of 
categorization ability—the two feedback conditions, then 
the adaptive-without-feedback condition, and finally, the 
fixed-without-feedback condition (the latter with a strong 
L-bias). With decreasing stimscale, the categorization 
becomes more difficult, indicated by a decreasing slope 
and (because of increasing dominance of the Japanese 
tap attractor) an increasing labeling bias. Each individual 

subject in the experiment may be thought of as being at 
a different location on the stimscale continuum: A sub-
ject may be unable to learn in the fixed-without-feedback 
condition but thrive in the others (e.g., at stimscale 5 0.7 
or 0.8). Conversely, a subject in the adaptive-without-
feedback condition may fare as badly as a subject in the 
fixed-without-feedback condition (e.g., if the former has 
stimscale 5 0.6, and the latter has stimscale 5 0.9). Of 
course, this explanation is only one of several possible ac-
counts for intersubject variation, but in the discussion, we 
shall consider ways to diagnose the “stimscale–attractor 
dominance” of a subject before training.

The curves in Figure 11 can also be interpreted as in-
dicating the robustness of the training conditions. The 
fixed-with-feedback condition collapses at stimscale 5 
0.6, whereas the adaptive conditions show more “graceful 
degradation.” The brittleness of the fixed-with-feedback 
condition (it either works really well or not at all) stems 
from the use of soft-clamped supervision. If hard-clamped 
supervision or much stronger soft clamping were used in-
stead (or equivalently, the “strength” of the feedback to 
the subject was varied in some way), then learning would 
be possible for smaller stimscale values.

GENERAL DISCUSSION

The Hebbian attractor model elucidated in Simulations 
1 and 2 is able to capture several key phenomena in speech 
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perception, such as unsupervised category acquisition, 
graded category membership, and a systematic relation 
between category membership and discriminability. In 
addition, the model is able to capture many of the results 
from McCandliss et al. (2002). These include (1) the ef-
fectiveness of adaptive-without-feedback training, (2) the 
relative time course of learning in different feedback and 
stimulus conditions, (3) a strong bias toward L-labeling 
in posttraining categorization, (4) transfer of training to a 
new stimulus continuum, and (5) an acquired increase of 
discriminability at the category boundary. Furthermore, 
the model provides a possible basis for some aspects of 
the individual differences seen in learning.

More generally, our model gives a mechanistic account 
of how perception is influenced by prior experience, how 
difficulty in discrimination may be related to difficulty 
in second language learning, and how outcome infor-
mation and exaggerated input may be used to facilitate 
learning. The account, similar to that articulated by Flege 
(1995) and Kuhl (2000), hypothesizes that initial experi-
ence influences perception through the development of 
dynamical attractors that are automatically engaged by 
the current stimulus. In adulthood, learning occurs after 
a perceptual representation is modified by the attractors; 
therefore, the learning is slower and also tends to further 
entrench the attractors. Exaggerated input allows the sys-

tem to “break free” of the attractors and establish distinct 
representations, thereby promoting learning even when 
feedback is not provided. The facilitation of learning by 
exaggerated inputs may also underlie other phenomena in 
speech learning. For example, 6–12-month-old Mandarin 
infants who are exposed to clearer (i.e., more exagger-
ated) vowel sounds in infant-directed speech are better at 
discriminating those vowel sounds (Liu, Kuhl, & Tsao,  
2003), and in fact, English and Japanese mothers tend to 
exaggerate the durations and formants of infant-directed 
speech in language-specific ways (Werker et al., 2007; see 
also Kuhl et al., 1997).

Assessment of the Principles Underlying 
the Model

As was noted earlier, our goal for this model was to ex-
amine whether four key principles—interactive competi-
tion leading to attractors, increased attractor strength with 
learning, Hebbian learning, and topographic maps—may 
be sufficient to account for the perceptual learning in the 
McCandliss et al. (2002) experiment. What conclusions 
can be reached on this score? Our short answer would be 
that the principles, augmented with the additional prin-
ciple of confidence modulation of the learning rate, have 
brought us fairly close to a complete account of the data. 
We first discuss how the principles contributed to the suc-
cesses of the model and then consider some open issues.

The attractor dynamics and the increased attractor 
strength with learning are responsible for the L-bias in 
the categorization curves, the pretraining difficulty in 
discriminating /l/ and /r/ stimuli, the development of a 
discrimination peak at the category boundary, and the lag 
between the improvement of the categorization and the 
development of the discrimination peak. More generally, 
these principles help explain why nonnative contrasts that 
map onto a single native category are especially difficult 
to tell apart (consistent with the predictions made by the 
perceptual assimilation model; Best, 1995) and are espe-
cially difficult to learn (consistent with the speech learn-
ing model; Flege, 1995). Furthermore, the principles pre-
dict that continual exposure to unexaggerated English /r/ 
and /l/ sounds may not be helpful for Japanese listeners: 
An attractor that inadvertently pulls in both /r/ and /l/ only 
gets strengthened by further exposure to the sounds.

The Hebbian learning promotes the symmetric con-
nectivity that is necessary for stable attractor dynamics 
(Grossberg, 1976, 1988). Moreover, it allows a uniform 
account of both unsupervised and supervised learning. 
Essentially, Hebbian learning reinforces the pattern of 
activity in place during the weight update; consequently, 
any mechanism that promotes the formation of correct 
activity patterns will result in successful learning. When 
outcome information is present, the correct activity pat-
tern is promoted through soft clamping. When outcome 
information is absent, the correct activity patterns may 
be promoted using initially exaggerated inputs. The 
confidence-modulation of the learning rate aids in the 
learning by ensuring that the network does not prema-
turely commit to a learning path. The idea that something 
like confidence might be used to modulate processing is 
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strongly promoted in other work. Cohen, Aston-Jones, and 
Gilzenrat (2004) describe a connectionist architecture for 
attentional control in which the “conflict” (the competi-
tion between alternative responses) is monitored and used 
to regulate allocation of attention. The conflict signal is 
quite similar to our “confidence” signal and could be used 
to modulate learning rate. This could occur, for example, 
by modulating activation in dopamine neurons, which 
may in turn regulate learning rate at synapses undergoing 
modification (Montague, Hyman, & Cohen, 2004).

Finally, the topographic representation allows a simple 
explanation for learning with adaptive stimuli and for the 
transfer effects, since proximity in stimulus space maps di-
rectly into overlap between the corresponding perceptual rep-
resentations. We do not suggest that topographic representa-
tions are necessary for speech perceptual learning. However, 
their utility in this model, together with neurophysiological 
evidence for topographic organization of complex visual 
features (see, e.g., Tanaka, 1997), suggest that speech learn-
ing and processing are also served by topographic represen-
tation of phonetically relevant parameters.

Although the principles are successful in accounting 
for many aspects of the data, two issues remain. First, we 

had to stipulate a minimum distance between the adaptive 
stimuli in the model (i.e., introduce a floor at Level 15), a 
restriction that was absent in the experiment. Second, the 
advantage of fixed over adaptive training when feedback 
is provided is weaker in the model than in the data (Fig-
ures 7A and 7B). We now discuss the difficulties in more 
detail and evaluate their implications for the principles.

As was noted earlier, the stipulation of a minimum dis-
tance between the adaptive stimuli is necessary because 
greater proximity between stimuli leads to greater competi-
tion in L3, which in turn lowers the activity of the R and L 
units. Essentially, the competition in L3 does not lead to a 
binary state (where the winning and losing units settle at 1.0 
and 0.0, respectively). The competition can be made more 
binary by increasing the self-excitation and lateral inhibi-
tion. Doing so, however, tends to disrupt learning because 
the network is always fully confident in its responses, even 
when it makes erroneous responses early in training, thereby 
prematurely committing itself to inappropriate learning out-
comes. However, this shortcoming may be overcome by a 
mechanism recently implicated in real neural systems. In 
our model, the within-layer weights are fixed; therefore, 
the characteristics of the competition do not change over 
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training. Some have suggested, however, that inhibitory 
connection weights may be up-regulated as excitatory input 
increases (Foeller & Feldman, 2004; Lamsa, Heeroma, & 
Kullmann, 2005). Such a mechanism could allow the inhibi-
tory weights to change, such that the inhibition is moder-
ate early in training (resulting in graded FLP activity, low 
confidence, and relatively slow learning) and high later in 
training (resulting in binary FLP activity, high confidence, 
and relatively fast learning). With such an extension to the 
within-FLP dynamics, the network may be able to success-
fully learn even with closely spaced inputs, thereby elimi-
nating the need for a minimum distance between adaptive 
stimuli.8

The second issue (that the advantage of fixed training 
when feedback is provided is weaker in the model than 
in the data) is more involved because of a complexity in 
the data. The subjects’ performance in the fixed-with-
feedback condition at the beginning of each session is 
almost at the level of the adaptive-with-feedback con-
dition, jumping up within each session and then falling 
back again at the beginning of the next (Figure 7B). If we 
take the performance at the beginning of each session as 
an indicator of a longer-lasting component of learning, 
the model would seem to capture this component quite 
well. Of course, the basis of the short-lived within-session 
advantage still remains to be specified. We leave for fu-
ture research to consider whether a distinction between 
short- and long-lasting components is useful and what the 
nature of the short-term component might be.

Comparison With the Model Proposed by 
Guenther and Colleagues

Guenther and his colleagues have taken an approach 
to auditory category learning that differs significantly 
from ours. The key idea behind their model (Guenther 
& Bohland, 2002; Guenther, Nieto-Castanon, Ghosh, & 
Tourville, 2004) is that the initial auditory layer has sepa-
rate topographic projections to a category-learning layer 
(CL) and an auditory map (AM) that are responsible for 
categorization and discrimination judgments, respec-
tively. The CL has inhibitory projections to AM, so a pro-
totypical stimulus (1) causes greater CL activity, which 
(2) increases AM inhibition, which (3) decreases AM 
activity and makes it more susceptible to noise, thereby 
(4) impairing discrimination judgments. Consequently, 
discriminability is worse for the prototypical stimulus 
than for nonprototypical stimuli.

Guenther et al.’s (2004) proposal differs from ours in 
several ways. One key difference is that they explicitly 
address different effects of categorization versus dis-
crimination training (Guenther, Husain, Cohen, & Shinn-
Cunningham, 1999). Thus far, we have only addressed 
categorization training and have not yet considered ways 
in which the model could be extended to address discrimi-
nation training. It will be interesting to explore whether 
an approach based on assigning every possible stimulus 
to its own distinct category can provide an account of per-
formance in such discrimination tasks or whether another 
approach altogether will be required. A second difference 
between the models concerns their architectures. In our 

model, a more prototypical stimulus invokes a stronger 
attractor, thereby suppressing noise. Consequently, if an 
AX discrimination test is given after categorization train-
ing, then Prob(“different” | same) should decrease toward 
the center of the category. In Guenther et al.’s (2004) model, 
a more prototypical stimulus suppresses stimulus-driven 
activity in the AM, thereby enhancing noise. Consequently, 
their model predicts that Prob(“different” | same) should 
increase toward the center of the category.

The difference in architecture corresponds to another 
difference in predictions as well: Guenther et al. (2004) 
predicted that categorization training results in decreased 
AM activity for prototypical stimuli, whereas we assumed 
that the training results in increased L2 activity.9 The data 
from Guenther et al. (2004) appear to indicate a decrease 
in activity, but there are two concerns. First, a general 
decrease in fMRI activity may mask a smaller area of in-
creased, highly coherent neural activity (Recanzone et al., 
1992a, p. 1080). Second, in other studies, R/L categoriza-
tion training has produced widespread activity increases 
in the auditory cortex (Callan et al., 2004; Callan et al., 
2003).10 We therefore suggest that the existing evidence 
is ambiguous and that further research aimed at producing 
data that distinguish the two theories is warranted.

Directions for Further Tests and Extensions of 
the Model

One exciting direction for future elaboration of the 
model is the long-term consolidation of new second lan-
guage learning. In our current implementation, the FLP 
allows fairly rapid learning that does not change the con-
nections that have been built up in the SLP through years of 
experience. What happens once the subjects leave the ex-
periment? One possibility is that the SLP may very gradu-
ally incorporate the newly acquired distinction. Following 
successful R/L training, the dynamics between the FLP and 
L2 add two new attractors to the system that correspond to 
English /r/ and /l/. If the training is sustained and intensive, 
the /r/ and /l/ attractors result in two consistently differ-
ent patterns of L2 activity. Unused units in the SLP may 
become sensitive to one or both of these two patterns and 
slowly learn them. Thus, the FLP could act like “training 
wheels” for the SLP, stabilizing the L2 representations so 
that the slower pool can consolidate them more thoroughly. 
Exploratory simulations with the current model support 
this possibility and indicate that it is a promising direction 
for future modeling and experimental efforts.

Note that the FLP is not exclusive to adult second-
language learning. Following the complementary memory 
systems hypothesis (McClelland et al., 1995), we suppose 
that the FLP exists side by side with the SLP through-
out life. During first-language acquisition, the perceptual 
space is relatively uniform and easily shaped by the FLP 
activity; consequently, consolidation of FLP structure 
into the SLP would be rapid. Later in life, the perceptual 
space is inhomogenous and less amenable to shaping by 
the FLP; consequently, consolidation would be slower and 
more error prone.

Our model also allows other predictions about R/L 
training. If Japanese listeners are given a sliding-window 
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discrimination test with stimulus pairs extending beyond 
the lock–rock and load–road anchors, then there should 
be a peak in the discriminability that indicates the bound-
ary of the Japanese tap category (the location of the peak 
may vary among subjects). The further the peak is from 
the anchor stimuli, the greater the extent of the Japanese 
tap attractor and the greater the predicted difficulty of 
the subject in acquiring the R and L categories. More-
over, there should be a general L-labeling bias during and 
after training, with the amount of /l/ bias being inversely 
proportional to the amount of feedback (e.g., the percent-
age of trials on which feedback is given). The rationale is 
that learning without feedback is dominated by preexist-
ing attractors; thus, new stimuli are more likely to be as-
similated into existing categories. The feedback tends to 
counter this assimilation and allows the new category to 
establish itself (cf. the amount of L-bias in the different 
conditions in Figure 6).

Finally, although we have focused on speech and second-
language acquisition, some of the phenomena are charac-
teristic of perceptual learning in other modalities also. For 
example, Goldstone (1994) trained subjects to categorize 
patches of different sizes and brightness and found that 
subjects showed increased discriminability at category 
boundaries and instances of decreased discriminability 
for same-category items. This pattern may be explained 
with the current model if the two dimensions of the input 
layer are assumed to be size and brightness (cf. Goldstone, 
Steyvers, & Larimer, 1996). Similar networks may account 
for other instances of supervised visual category learning 
(Livingston, Andrews, & Harnad, 1998), unsupervised vi-
sual category learning (Rosenthal et al., 2001), and super-
vised auditory category learning (Guenther et al., 1999).

Conclusions

Interactive competitive networks with graded activa-
tion have been proposed for several perceptual and lin-
guistic phenomena (McClelland, 1992; McClelland & 
Elman, 1986; McClelland & Rumelhart, 1981; Usher & 
McClelland, 2001) and share several properties in com-
mon with models addressing many other phenomena that 
have been proposed by Grossberg and collaborators (e.g., 
Carpenter & Grossberg, 1987). The results of the work 
reported here suggest that this framework can also be ex-
tended to several aspects of speech perceptual learning. In 
particular, our explorations indicate that four architectural 
principles—interactive competition leading to attractors, 
increased attractor strength with learning, Hebbian learn-
ing, and topographic maps—can provide a framework in 
which one can account for the basic pattern of success and 
failure in learning with and without outcome information. 
Instantiation of these principles in a concrete model also 
revealed the need for (1) an architectural differentiation 
into fast and slow learning systems, (2) uniform treatment 
of response predispositions and external outcome infor-
mation in a manner consistent with Hebbian learning, and 
(3) modulation of the learning rate by the “confidence” 
of the network in its responses. The modeling also under-
scored the experimental data in need of clarification, such 

as the distinction between reinforcement and supervisory 
feedback and the relative advantage of fixed over adaptive 
training when feedback is provided.

Our effort has also revealed that there is far more work 
to do before we can claim to have a full understanding of 
speech perceptual learning. We have focused on acquir-
ing a nonnative speech category distinction in adulthood, 
modeling data from a single published experiment. Several 
deficiencies in the model’s account of these data remain 
to be fully addressed, and we have also indicated several 
possible extensions of the model to address issues beyond 
this single experiment. A fuller account is also needed of 
the initial development of spoken language perception. 
Whether the current approach can be extended to fully ad-
dress this process as it occurs in the natural experience of 
young children in all language cultures is a question that 
can only be answered by future investigations.

AUTHOR NOTE

This research was supported by NIMH Grant MH64445 and Train-
ing Grant 5T32-MH019983-07. The authors thank Susan G. Guion for 
generously providing the recordings from her experiment and Mary L. 
Conway for her assistance with data analysis. Correspondence concern-
ing this article should be addressed to J. L. McClelland, Department of 
Psychology, 450 Serra Mall, Jordan Hall, Bldg. 420, Stanford, CA 94305 
(e-mail: jlm@psych.stanford.edu).

References

Ahissar, E., Abeles, M., Ahissar, M., Haidarliu, S., & Vaadia, E. 
(1998). Hebbian-like functional plasticity in the auditory cortex of the 
behaving monkey. Neuropharmacology, 37, 633-655.

Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. 
(1977). Distinctive features, categorical perception, and probability 
learning: Some applications of a neural model. Psychological Review, 
84, 413-451.

Best, C. T. (1995). A direct realist perspective on cross-language speech 
perception. In W. Strange (Ed.), Speech perception and linguistic ex-
perience (pp. 167-200). Timonium, MD: York Press.

Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plastic-
ity: From synapses to maps. Annual Review of Neuroscience, 21, 
149-186.

Callan, D. E., Jones, J. A., Callan, A. M., & Akahane-Yamada, R. 
(2004). Phonetic perceptual identification by native- and second-
language speakers differentially activates brain regions involved with 
acoustic phonetic processing and those involved with articulatory-
auditory/orosensory internal models. NeuroImage, 22, 1182-1194.

Callan, D. E., Tajima, K., Callan, A. M., Kubo, R., Masaki, S., & 
Akahane-Yamada, R. (2003). Learning-induced neural plasticity 
associated with improved identification performance after training of 
a difficult second-language contrast. NeuroImage, 19, 113-124.

Carpenter, G. A., & Grossberg, S. (1987). A massively parallel ar-
chitecture for a self-organizing neural pattern recognition machine. 
Computer Vision, Graphics, & Image Processing, 37, 54-115.

Cohen, J. D., Aston-Jones, G., & Gilzenrat, M. S. (2004). A 
systems-level perspective on attention and cognitive control. In M. I. 
Posner (Ed.), Cognitive neuroscience of attention (pp. 71-90). New 
York: Guilford.

Damper, R. I., & Harnad, S. R. (2000). Neural network models of cat-
egorical perception. Perception & Psychophysics, 62, 843-867.

Edelman, S., & Intrator, N. (2002). Models of perceptual learning. 
In M. Fahle & T. Poggio (Eds.), Perceptual learning (pp. 337-354). 
Cambridge, MA: MIT Press.

Flege, J. E. (1992). Speech learning in a second language. In C. A. 
Ferguson, L. Menn, & C. Stoel-Gammon (Eds.), Phonological de-
velopment: Models, research, implications (pp. 565-604). Timonium, 
MD: York Press.

Flege, J. E. (1995). Second language speech learning: Theory, findings, 

http://www.ingentaconnect.com/content/external-references?article=0028-3908()37L.633[aid=1183609]
http://www.ingentaconnect.com/content/external-references?article=0033-295x()84L.413[aid=214871]
http://www.ingentaconnect.com/content/external-references?article=0033-295x()84L.413[aid=214871]
http://www.ingentaconnect.com/content/external-references?article=0147-006x()21L.149[aid=215026]
http://www.ingentaconnect.com/content/external-references?article=0147-006x()21L.149[aid=215026]
http://www.ingentaconnect.com/content/external-references?article=1053-8119()22L.1182[aid=7843979]
http://www.ingentaconnect.com/content/external-references?article=1053-8119()19L.113[aid=6889770]
http://www.ingentaconnect.com/content/external-references?article=0734-189x()37L.54[aid=217331]
http://www.ingentaconnect.com/content/external-references?article=0031-5117()62L.843[aid=5231348]


72        Vallabha and McClelland

and problems. In W. Strange (Ed.), Speech perception and linguistic 
experience (pp. 233-277). Timonium, MD: York Press.

Foeller, E., & Feldman, D. E. (2004). Synaptic basis for developmen-
tal plasticity in somatosensory cortex. Current Opinion in Neurobiol-
ogy, 14, 89-95.

Goldstone, R. L. (1994). Influences of categorization on perceptual 
discrimination. Journal of Experimental Psychology: General, 123, 
178-200.

Goldstone, R. L., Steyvers, M., & Larimer, K. (1996). Categorical 
perception of novel dimensions. In G. W. Cottrell (Ed.), Proceedings 
of the Eighteenth Annual Conference of the Cognitive Science Society 
(pp. 243-248). Mahwah, NJ: Erlbaum.

Grajski, K., & Merzenich, M. M. (1990). Hebb-type dynamics is 
sufficient to account for the inverse magnification rule in cortical 
somatotopy. Neural Computation, 2, 71-84.

Grossberg, S. (1976). Adaptive pattern classification and universal 
recoding: I. Parallel development and coding of neural feature detec-
tors. Biological Cybernetics, 23, 121-134.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mecha-
nisms, and architectures. Neural Networks, 1, 17-61.

Guenther, F. H., & Bohland, J. W. (2002). Learning sound catego-
ries: A neural model and supporting experiments. Acoustical Science 
& Technology, 23, 213-221.

Guenther, F. H., Husain, F. T., Cohen, M. A., & Shinn-Cunningham, 
B. G. (1999). Effects of categorization and discrimination training on 
auditory perceptual space. Journal of the Acoustical Society of Amer-
ica, 106, 2900-2912.

Guenther, F. H., Nieto-Castanon, A., Ghosh, S. S., & Tourville, 
J. A. (2004). Representation of sound categories in auditory cortical 
maps. Journal of Speech, Language, & Hearing Research, 47, 46-57.

Guion, S. G., Flege, J. E., Akahane-Yamada, R., & Pruitt, J. C. 
(2000). An investigation of current models of second language speech 
perception: The case of Japanese adults’ perception of English conso-
nants. Journal of the Acoustical Society of America, 107, 2711-2724.

Herzog, M. H., & Fahle, M. (1998). Modeling perceptual learning: 
Difficulties and how they can be overcome. Biological Cybernetics, 
78, 107-117.

Hoshino, O. (2002). Dynamic interaction of attractors across multiple 
cortical networks as a neural basis for intersensory facilitation. Con-
nection Science, 14, 115-135.

Idiart, M., Berk, B., & Abbott, L. F. (1995). Reduced representation 
by neural networks with restricted receptive fields. Neural Computa-
tion, 7, 507-517.

Iverson, P., Hazan, V., & Bannister, K. (2005). Phonetic training with 
acoustic cue manipulations: A comparison of methods for teaching 
English /r/–/l/ to Japanese adults. Journal of the Acoustical Society of 
America, 118, 3267-3278.

Iverson, P., Kuhl, P. K., Akahane-Yamada, R., Diesch, E., Tohkura, Y., 
Kettermann, A., & Siebert, C. (2003). A perceptual interference ac-
count of acquisition difficulties for non-native phonemes. Cognition, 
87, B47-B57.

Jamieson, D. G., & Moroson, D. E. (1989). Training new, nonnative 
speech contrasts: A comparison of the prototype and perceptual fading 
techniques. Canadian Journal of Psychology, 43, 88-96.

Kewley-Port, D., & Atal, B. (1989). Perceptual differences between 
vowels located in a limited phonetic space. Journal of the Acoustical 
Society of America, 85, 1726-1740.

Kohonen, T. (1993). Physiological interpretation of the self-organizing 
map algorithm. Neural Networks, 6, 895-905.

Kuhl, P. K. (1991). Human adults and human infants show a “percep-
tual magnet effect” for the prototypes of speech categories, monkeys 
do not. Perception & Psychophysics, 50, 93-107.

Kuhl, P. K. (2000). A new view of language acquisition. Proceedings of 
the National Academy of Sciences, 97, 11850-11857.

Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., 
Kozhevnikova, E. V., Ryskina, V. L., et al. (1997). Cross-language 
analysis of phonetic units in language addressed to infants. Science, 
277, 684-686.

Kuhl, P. K., Williams, K. A., Lacerda, F., Stevens, K. N., & 
Lindblom, B. (1992). Linguistic experience alters phonetic percep-
tion in infants by 6 months of age. Science, 255, 606-608.

Lamsa, K., Heeroma, J. H., & Kullmann, D. M. (2005). Hebbian LTP 

in feed-forward inhibitory interneurons and the temporal fidelity of 
input discrimination. Nature Neuroscience, 8, 916-924.

Liberman, A. M., Harris, K. S., Hoffman, H. S., & Griffith, B. C. 
(1957). The discrimination of speech sounds within and across pho-
netic boundaries. Journal of Experimental Psychology, 54, 358-368.

Linsker, R. (1986). From basic network principles to neural architec-
ture: Emergence of spatial-opponent cells. Proceedings of the Na-
tional Academy of Sciences, 83, 7508-7512.

Liu, H.-M., Kuhl, P. K., & Tsao, F.-M. (2003). An association between 
mothers’ speech clarity and infants’ speech discrimination skills. De-
velopmental Science, 6, F1-F10.

Lively, S. E., Logan, J. S., & Pisoni, D. B. (1993). Training Japanese 
listeners to identify English /r/ and /l/. II: The role of phonetic envi-
ronment and talker variability in learning new perceptual categories. 
Journal of the Acoustical Society of America, 94, 1242-1255.

Livingston, K. R., Andrews, J. K., & Harnad, S. (1998). Categorical 
perception effects induced by category learning. Journal of Experi-
mental Psychology: Learning, Memory, & Cognition, 24, 732-753.

Logan, J. S., Lively, S. E., & Pisoni, D. B. (1991). Training Japanese 
listeners to identify English /r/ and /l/: A first report. Journal of the 
Acoustical Society of America, 89, 874-886.

Lotto, A. J., Sato, M., & Diehl, R. L. (2004). Mapping the task for the 
second language learner: The case of the Japanese acquisition of /r/ 
and /l/. Paper presented at the “From Sound to Sense: 501 Years of 
Discoveries in Speech Communication” conference, Cambridge, MA.

Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A 
user’s guide. Cambridge: Cambridge University Press.

McCandliss, B. D., Fiez, J. A., Protopapas, A., Conway, M., & 
McClelland, J. L. (2002). Success and failure in teaching the [r]-[l] 
contrast to Japanese adults: Tests of a Hebbian model of plasticity and 
stabilization in spoken language perception. Cognitive, Affective, & 
Behavioral Neuroscience, 2, 89-108.

McClelland, J. L. (1991). Stochastic interactive processes and the ef-
fect of context on perception. Cognitive Psychology, 23, 1-44.

McClelland, J. L. (1993). Toward a theory of information process-
ing in graded, random, and interactive networks. In D. E. Meyer & 
S. Kornblum (Eds.), Attention and performance XIV: Synergies in ex-
perimental psychology, artificial intelligence, and cognitive neurosci-
ence (pp. 655-688). Cambridge, MA: MIT Press.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of 
speech perception. Cognitive Psychology, 18, 1-86.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). 
Why there are complementary learning systems in the hippocampus 
and neocortex: Insights from the successes and failures of connec-
tionist models of learning and memory. Psychological Review, 102, 
419-457.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive acti-
vation model of context effects in letter perception: I. An account of 
basic findings. Psychological Review, 88, 375-407.

McClelland, J. L., Thomas, A., McCandliss, B. D., & Fiez, J. A. 
(1999). Understanding failures of learning: Hebbian learning, compe-
tition for representational space, and some preliminary experimental 
data. In J. Reggia, E. Ruppin, & D. Glanzman (Eds.), Disorders of 
brain, behavior and cognition: The neurocomputational perspec-
tive (Progress in Brain Research, Vol. 121, pp. 75-80). Amsterdam: 
Elsevier.

Miller, J. L. (1994). On the internal structure of phonetic categories: A 
progress report. Cognition, 50, 271-285.

Miyawaki, K., Strange, W., Verbrugge, R., Liberman, A. M., Jen-
kins, J. J., & Fujimura, O. (1975). An effect of linguistic experience: 
The discrimination of [r] and [l] by native speakers of Japanese and 
English. Perception & Psychophysics, 18, 331-340.

Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational 
roles for dopamine in behavioral control. Nature, 431, 760-767.

Movellan, J. R., & McClelland, J. L. (2001). The Morton–Massaro 
law of information integration: Implications for models of perception. 
Psychological Review, 108, 113-148.

Oden, G. C., & Massaro, D. W. (1978). Integration of featural informa-
tion in speech perception. Psychological Review, 85, 172-191.

Petrov, A., Dosher, B. A., & Liu, Z.-L. (2005). The dynamics of per-
ceptual learning: An incremental reweighting model. Psychological 
Review, 112, 715-743.

http://www.ingentaconnect.com/content/external-references?article=0036-8075()255L.606[aid=146074]
http://www.ingentaconnect.com/content/external-references?article=1097-6256()8L.916[aid=7843981]
http://www.ingentaconnect.com/content/external-references?article=0022-1015()54L.358[aid=5912435]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()83L.7508[aid=216488]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()83L.7508[aid=216488]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()94L.1242[aid=1271334]
http://www.ingentaconnect.com/content/external-references?article=0278-7393()24L.732[aid=299241]
http://www.ingentaconnect.com/content/external-references?article=0278-7393()24L.732[aid=299241]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()89L.874[aid=1271335]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()89L.874[aid=1271335]
http://www.ingentaconnect.com/content/external-references?article=1530-7026()2L.89[aid=7815944]
http://www.ingentaconnect.com/content/external-references?article=1530-7026()2L.89[aid=7815944]
http://www.ingentaconnect.com/content/external-references?article=0010-0285()23L.1[aid=1271338]
http://www.ingentaconnect.com/content/external-references?article=0010-0285()18L.1[aid=213246]
http://www.ingentaconnect.com/content/external-references?article=0033-295x()102L.419[aid=19110]
http://www.ingentaconnect.com/content/external-references?article=0033-295x()102L.419[aid=19110]
http://www.ingentaconnect.com/content/external-references?article=0033-295x()88L.375[aid=214854]
http://www.ingentaconnect.com/content/external-references?article=0010-0277()50L.271[aid=302893]
http://www.ingentaconnect.com/content/external-references?article=0028-0836()431L.760[aid=7843980]
http://www.ingentaconnect.com/content/external-references?article=0033-295X()108L.113[aid=6213249]
http://www.ingentaconnect.com/content/external-references?article=0033-295x()85L.172[aid=302896]
http://www.ingentaconnect.com/content/external-references?article=0033-295X()112L.715[aid=7641060]
http://www.ingentaconnect.com/content/external-references?article=0033-295X()112L.715[aid=7641060]
http://www.ingentaconnect.com/content/external-references?article=0899-7667()2L.71[aid=1183651]
http://www.ingentaconnect.com/content/external-references?article=0340-1200()23L.121[aid=216575]
http://www.ingentaconnect.com/content/external-references?article=0893-6080()1L.17[aid=891153]
http://www.ingentaconnect.com/content/external-references?article=1346-3969()23L.213[aid=7843987]
http://www.ingentaconnect.com/content/external-references?article=1346-3969()23L.213[aid=7843987]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()106L.2900[aid=5022852]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()106L.2900[aid=5022852]
http://www.ingentaconnect.com/content/external-references?article=1092-4388()47L.46[aid=7843986]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()107L.2711[aid=3155433]
http://www.ingentaconnect.com/content/external-references?article=0340-1200()78L.107[aid=5514949]
http://www.ingentaconnect.com/content/external-references?article=0340-1200()78L.107[aid=5514949]
http://www.ingentaconnect.com/content/external-references?article=0954-0091()14L.115[aid=7843985]
http://www.ingentaconnect.com/content/external-references?article=0954-0091()14L.115[aid=7843985]
http://www.ingentaconnect.com/content/external-references?article=0899-7667()7L.507[aid=7843984]
http://www.ingentaconnect.com/content/external-references?article=0899-7667()7L.507[aid=7843984]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()118L.3267[aid=7843983]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()118L.3267[aid=7843983]
http://www.ingentaconnect.com/content/external-references?article=0008-4255()43L.88[aid=3155434]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()85L.1726[aid=7843982]
http://www.ingentaconnect.com/content/external-references?article=0001-4966()85L.1726[aid=7843982]
http://www.ingentaconnect.com/content/external-references?article=0031-5117()50L.93[aid=298923]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()97L.11850[aid=5305818]
http://www.ingentaconnect.com/content/external-references?article=0027-8424()97L.11850[aid=5305818]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()277L.684[aid=2861896]
http://www.ingentaconnect.com/content/external-references?article=0036-8075()277L.684[aid=2861896]
http://www.ingentaconnect.com/content/external-references?article=0959-4388()14L.89[aid=7843988]
http://www.ingentaconnect.com/content/external-references?article=0959-4388()14L.89[aid=7843988]
http://www.ingentaconnect.com/content/external-references?article=0096-3445()123L.178[aid=299235]
http://www.ingentaconnect.com/content/external-references?article=0096-3445()123L.178[aid=299235]


Learning New Speech Categories in Adulthood        73

Pisoni, D. B. (1973). Auditory and phonetic memory codes in the dis-
crimination of consonants and vowels. Perception & Psychophysics, 
13, 253-260.

Pleger, B., Foerster, A.-F., Ragert, P., Dinse, H. R., Schwenkreis,  P., 
Malin, J.-P., et al. (2003). Functional imaging of perceptual learn-
ing in human primary and secondary somatosensory cortex. Neuron, 
40, 643-653.

Poggio, T. (1990). A theory of how the brain might work. Cold Spring 
Harbor Symposia on Quantitative Biology, 55, 899-910.

Recanzone, G. H., Merzenich, M. M., & Schreiner, C. E. (1992a). 
Changes in the distributed temporal response properties of SI cor-
tical neurons reflect improvements in performance on a temporally 
based tactile discrimination task. Journal of Neurophysiology, 67, 
1071-1091.

Recanzone, G. H., Merzenich, M. M., & Schreiner, C. E. (1992b). 
Progressive improvement in discriminative abilities in adult owl mon-
keys performing a tactile frequency discrimination task. Journal of 
Neurophysiology, 67, 1015-1030.

Rosenthal, O., Fusi, S., & Hochstein, S. (2001). Forming classes by 
stimulus frequency: Behavior and theory. Proceedings of the National 
Academy of Sciences, 98, 4265-4270.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, 
G. E. (1986). Schemata and sequential thought processes in PDP 
models. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel dis-
tributed processing: Explorations in the microstructure of cognition 
(Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.

Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by competi-
tive learning. Cognitive Science, 9, 75-112.

Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields 
and patterned lateral interaction in a self-organizing model of the pri-
mary visual cortex. Neural Computation, 9, 577-594.

Strange, W., & Dittmann, S. (1984). Effect of discrimination training 
on the perception of /r– l/ by Japanese adults learning English. Percep-
tion & Psychophysics, 36, 131-145.

Sutton, G. G., Reggia, J. A., Armentrout, S. L., & D’Autrechy, 
C. L. (1994). Cortical map reorganization as a competitive process. 
Neural Computation, 6, 1-13.

Syka, J. (2002). Plastic changes in the central auditory system after 
hearing loss, restoration of function, and during learning. Physiologi-
cal Reviews, 82, 601-636.

Takagi, N. (2002). The limits of training Japanese listeners to identify 
English /r/ and /l/: Eight case studies. Journal of the Acoustical Soci-
ety of America, 111, 2887-2896.

Tanaka, K. (1997). Mechanisms of visual object recognition: Monkey 
and human studies. Current Opinion in Neurobiology, 7, 523-529.

Tarr, M. J., & Cheng, Y. D. (2003). Learning to see faces and objects. 
Trends in Cognitive Sciences, 7, 23-30.

Traunmüller, H. (1990). Analytical expressions for the tonotopic sen-
sory scale. Journal of the Acoustical Society of America, 88, 97-100.

Usher, M., & McClelland, J. L. (2001). The time course of percep-
tual choice: The leaky, competing accumulator model. Psychological 
Review, 108, 550-592.

Werker, J. F., Pons, F., Dietrich, C., Kajikawa, S., Fais, L., & 
Amano, S. (2007). Infant-directed speech supports phonetic category 
learning in English and Japanese. Cognition, 103, 147-162.

White, S. (2001). Learning to communicate. Current Opinion in Neu-
robiology, 11, 510-520.

Yamada, R. A., & Tohkura, Y. (1990). Perception and production of 
syllable-initial /r/ and /l/ by native speakers of Japanese. In Proceed-
ings of the 1990 International Conference on Spoken Language Pro-
cessing (pp. 757-760).

Zhang, Y., Kuhl, P. K., Imada, T., Kotani, M., & Tohkura, Y. (2005). 
Effects of language experience: Neural commitment to language-
specific auditory patterns. NeuroImage, 26, 703-720.

NOTES

1. Recanzone et al. (1992a) reported the representations of trained and 
untrained skin only for the range of training frequencies (20–30 Hz). 
Hence, it is not clear whether the increased cortical activity was specific 

to location and frequency of stimulation or just the location alone. For 
current purposes, the key point is that topographic distribution of stimuli 
is one (though probably not the only) factor that results in increased 
activity and enlarged representations.

2. “Soft clamping” is typically used to influence the activities of some 
units while allowing them to participate in interactive processing. Pres-
ently, we use the term more loosely to refer to any adjustment of the net 
input.

3. We used the formula from Traunmüller (1990): Bark( f ) 5 [26.81 / 
(1 1 1960 / f )] 2 0.53.

4. The formant analysis of the Guion et al. (2000) sounds indicated the 
mean F2 onset for // to be approximately 900 Hz. In our preliminary 
simulations with this F2 location, // was too close to /ɾ/, and the /r/ 
and /l/ stimuli were often pulled into the // attractor. This behavior 
does not match experimental data, and in fact, the Japanese // category 
appears to assimilate more toward the American English /w/ (Yamada 
& Tohkura, 1990). Therefore, we shifted the mean F2 onset of // to 
625 Hz, which is much closer to the American /w/.

5. The F2 and F3 onsets of the anchor stimuli were measured 70 msec 
from the start for lock–rock stimuli and 145 msec from the start for load–
road stimuli (the onset locations are different because the load–road 
stimuli happened to have a longer initial pause). The formant values for 
the anchors were as follows: lock (F2 5 1083 Hz, F3 5 2944 Hz), rock 
(F2 5 968 Hz, F3 5 1753 Hz), load (F2 5 1246 Hz, F3 5 2856 Hz), 
road (F2 5 939 Hz, F3 5 1732 Hz).

6. The mapping was estimated as follows. (1) Assume there are N 
unique stimulus pairs in the slide test, so that the test yields N aver-
age perceptual distances for each condition in the model. We picked 
the condition with the largest range of distances; this was the fixed-
with-feedback condition after 2,000 updates. (2) From the experimental 
data, we calculated the average probability of a “different” response for 
each of the N unique stimulus pairs in the slide test for the fixed-with-
feedback condition. (3) We fitted a sigmoid from the ranked sequence 
of N distances to the ranked sequence of N experimental probabilities. 
(4) The sigmoid was applied to each perceptual distance in each condi-
tion in the model to directly calculate the probability of a “different” 
response. The same method was used to calculate the response prob-
abilities in the expand test, except that the sigmoid was fitted using the 
expand test data from the model and the experiment.

7. This equivalence is approximate, of course, since we are ignoring 
factors like β21 (the receptive field size of L2 units) and βinput (the size 
of each input bump).

8. Such up-regulation of inhibition may also be present in the SLP. 
Since the native-language categories would be stable and robust, the 
level of excitatory input (and, consequently, the within-SLP inhibition) 
would be expected to be fairly stable; in the asymptotic case, the inhibi-
tory levels may be considered to be fixed. Therefore, the regulation of 
inhibitory activity may selectively modulate FLP learning without af-
fecting the slower scale learning in the SLP.

9. Another difference concerns the skew in the perceptual representa-
tions. In Guenther et al.’s (2004) model, training decreases the overall 
level of AM activity, but does not systematically skew the representation 
as such. Upon our view, training systematically skews the representa-
tions of near-prototypical stimuli (cf. Figure 2). However, with current 
imaging techniques, it is difficult to resolve whether a neural representa-
tion is skewed in some way.
10. Zhang et al. (2005) suggest on the basis of MEG data that Japanese 

listeners have greater cortical activity when listening to nonnative (/r/ 
and /l/) sounds in comparison with native (/b/ and /w/) sounds. How-
ever, the activity level was measured by the number of equivalent cur-
rent dipole clusters, so the “greater activity” may be due to increased 
variability rather than a larger locus of activity. Significantly, the latency 
of the maximum MEG response was slower for nonnative sounds. With 
these caveats, Zhang et al.’s results are generally consistent with our hy-
pothesis that native-sound perception involves greater and more focused 
neural activity (this idea is also similar to Zhang et al.’s own proposal of 
“neural commitment”).

(Manuscript received October 15, 2005; 
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