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a b s t r a c t

Recent advancements in Bayesian modeling have allowed for likelihood-free posterior estimation. Such
estimation techniques are crucial to the understanding of simulation-based models, whose likelihood
functions may be difficult or even impossible to derive. One particular class of simulation-based models
that have not yet benefited from the progression of Bayesian methods is the class of neurologically-
plausible models of choice response time, in particular the Leaky, Competing Accumulator (LCA) model
and the Feed-Forward Inhibition (FFI) model. These models are unique because their architecture was
designed to embody actual neuronal properties such as inhibition, leakage, and competition. Currently,
these models have not been formally compared by way of principled statistics such as the Bayes factor.
Here, we use a recently developed algorithm – the probability density approximation method – to fit
these models to empirical data consisting of a classic speed accuracy trade-off manipulation. Using
this approach, we find some discrepancies between an assortment of model fit statistics. For some
participants, one model appears to be superior when one fit statistic is used, while another appears
superior when a different statistic is used. However, for 13 of the 20 participants, one model wins by
all of the fit metrics considered. The FFI wins in 5 of these cases, while the LCA wins, often by a wide
margin, for the others.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The goals of cognitive modeling are to understand complex be-
haviors within a system of mathematically-specified mechanisms
or processes, to assess the adequacy of the model in accounting
for experimental data, and to obtain an estimate of the model pa-
rameters, which carry valuable information about how the model
captures the observed behavior for both individuals and groups.
Cognitive models are important because they provide a means
with which cognitive theories can be explicitly tested and com-
pared with one another.
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Perhaps the greatest strength ofmany cognitivemodels is para-
doxically the model’s greatest weakness. Many cognitive models
put forth sophisticated mechanisms meant to capture psycholog-
ically plausible processes. While these mechanisms are entirely
plausible, they often render the cognitive model intractable, or at
least difficult to fully analyze in a principled way such as with
Bayesian statistics. The difficulties encountered in deriving the
full likelihood function have prevented the application of fully
Bayesian analyses formany cognitivemodels, especially those that
attempt to capture neurally-plausible mechanisms.

Consider, for example, the Leaky Competing Accumulator
(LCA; Usher & McClelland, 2001) model. The LCA model was pro-
posed as a neurologically plausible model for choice response time
in a c-alternative task. The model possesses mechanisms that ex-
tend other diffusion-type models (e.g., Ratcliff, 1978) by including
leakage and competition by means of lateral inhibition. Because
the evidence accumulation process used by the LCA model was
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designed to mimic actual neuronal activation patterns, one crit-
ical assumption is that the signal propagated from one accumu-
lator to another can never be negative. This assumption can be
implemented by specifying a floor on each accumulator’s activa-
tion value, such that if the activation of an accumulator in the
model becomes negative, it is reset to zero. The LCAmodel also as-
sumes a competition among response alternatives that depends on
the current state of each of the accumulators. Together, these fea-
tures of themodel sufficiently complicate the equations describing
the joint distributions of choice and response time such that the
likelihood function for the LCAmodel has not been derived. As a re-
sult, all model evaluations to this point have been performed using
either a model simplification or least squares estimation (Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Bogacz, Usher, Zhang, &
McClelland, 2007; Gao, Tortell, & McClelland, 2011; Teodorescu
& Usher, 2013; Tsetsos, Usher, & McClelland, 2011; Usher & Mc-
Clelland, 2001; van Ravenzwaaij, van der Maas, & Wagenmakers,
2012), which have been shown to produce less accurate param-
eter estimates relative to techniques such as maximum likelihood
or Bayesian estimation (e.g., Myung, 2003; Rouder, Sun, Speckman,
Lu, & Zhou, 2003; Turner, Dennis, & Van Zandt, 2013; Van Zandt,
2000).

Recent advances in likelihood-free techniques have allowed
for new insights to simulation-based cognitive models (Turner,
Dennis et al., 2013; Turner & Sederberg, 2012, 2014; Turner &
Van Zandt, 2012, 2014). In particular, the probability density ap-
proximation (PDA; Turner & Sederberg, 2014) method now allows
for fully Bayesian analyses of computational models exclusively
by way of simulation. In this article, we illustrate the impor-
tance of our method by comparing two neural network models
of choice response time that have never been compared using
Bayesian techniques due to their computational complexity: the
LCAmodel (Usher &McClelland, 2001) and the Feed-Forward Inhi-
bition (FFI; Shadlen & Newsome, 2001) model.1 Both models em-
body neurologically plausible mechanisms such as ‘‘leakage’’, or
the passive decay of evidence during a decision, and competition
among alternatives through either lateral inhibition (in the LCA
model) or feed-forward inhibition (in the FFI model). However, it
remains unclear as to which dynamical system best accounts for
empirical data, due to the limitations imposed by intractable like-
lihoods. Specifically, complexity measures that take into account
posterior uncertainty andmodel complexity have yet to be applied.
Here, we will compare the models on the basis of an approxima-
tion to theBayes factor.Webegin bydescribing in greater detail our
method for fitting the models to data. We then describe how our
posterior estimates are converted into a comparison between the
models. Finally, we compare the relative merits of the two models
by evaluating the models’ fit to the data presented in Forstmann
et al. (2011), which consisted of 20 subjects in three speed empha-
sis conditions.

2. Experiment

The data we will use to test the models were presented in
Forstmann et al. (2011), and consist of 20 subjects. The experi-
ment used a moving dots task where subjects were asked to de-
cide whether a cloud of semi-randomly moving dots appeared to
move to the left or to the right. Subjects indicated their response
by pressing one of two spatially compatible buttons with either
their left or right index finger. Before each decision trial, subjects
were instructed whether to respond quickly (the speed condition),

1 Although Ratcliff and Smith (2004) used the Bayesian information criteria to
compare many simulation-based models, they did not obtain proper Bayesian
posteriors, which is the endeavor of the current manuscript.
accurately (the accuracy condition), or at their own pace (the neu-
tral condition). Following the trial, subjects were provided feed-
back about their performance. In the speed and neutral conditions,
subjects were told that their responses were too slow whenever
they exceeded a RT of 400 and 750 ms, respectively. In the accu-
racy condition, subjects were told when their responses were in-
correct. Each subject completed 840 trials, equally distributed over
the three conditions. These data serve as a benchmark for our met-
ric comparison given that we have some experience in analyzing
them in a variety of contexts (Turner et al., 2013; Turner & Seder-
berg, 2014; Turner, Sederberg, Brown, & Steyvers, 2013).

3. Likelihood-free inference

As the reader of this special issue is no doubt aware, there are
many advantages of using Bayesian statistics in cognitive model-
ing. However, the widespread dissemination of Bayesian statis-
tics can largely be attributed to advanced statistical techniques
for approximating the posterior distribution (see, e.g., Gelman,
Carlin, Stern, & Rubin, 2004; Gilks, Best, & Tan, 1995; Gilks &
Wild, 1992; Robert & Casella, 2004; Ter Braak, 2006), rather than
evaluating it precisely. Approximating any posterior distribution
depends on efficient evaluation of two functions: (1) the prior dis-
tribution for the model parameters, and (2) the likelihood func-
tion relating themodel parameters to the observed data. For purely
statistical models, evaluating these functions is, generally speak-
ing, straightforward. However, for cognitive models who attempt
to provide mechanistic explanations for how data manifest, direct
evaluation of the likelihood function can be difficult, if not impos-
sible. We refer to these models as ‘‘simulation-based’’ to indicate
that explicit equations for the likelihood function are either (1) in-
tensely difficult to practically evaluate (e.g., Montenegro,Myung, &
Pitt, 2011; Myung, Montenegro, & Pitt, 2007; Turner, Dennis et al.,
2013), or (2) have not yet been derived (e.g., Shadlen & Newsome,
2001; Usher & McClelland, 2001). Recently, a suite of algorithms
have been developed specifically for analyzing (simulation-based)
cognitive models in a fully (hierarchical) Bayesian context (Turner
& Sederberg, 2012, 2014; Turner & Van Zandt, 2014). While com-
binations of these algorithms can be used to effectively evaluate
the joint posterior distribution, we require only one algorithm –
the probability density approximation (PDA; Turner & Sederberg,
2014) method – to evaluate the models presented in this article.

3.1. The probability density approximation method

As discussed in Turner and Sederberg (2014), the PDA method
is an alternative likelihood-free algorithm that does not require
sufficient statistics for the parameters of interest. Turner and
Sederberg demonstrated the utility of their algorithm by verifying
that it could be used to accurately estimate the posterior
distribution of the parameters of the Linear Ballistic Accumulator
(LBA; Brown & Heathcote, 2008) model, which has a tractable
likelihood function and is amenable to Bayesian estimation
(Donkin, Averell, Brown, & Heathcote, 2009; Donkin, Heathcote, &
Brown, 2009; Turner, Sederberg et al., 2013). In addition, Turner
and Sederberg showed that the PDA method could be used to
estimate the parameters of the LCA model in a fully hierarchical
Bayesian context.

Although the details of how to apply the PDAmethod to various
data types are explained in detail in Turner and Sederberg (2014),
we will reproduce the relevant details for applying the method to
data containing both discrete and continuous measures. For ease
of exposition, we consider the common case of data consisting
of one discrete measurement (e.g., choice) and one continuous
measurement (e.g., response time). For the discretemeasurements,
suppose there are C options, and for the continuousmeasurements
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there are an infinite number of possible values. For the observed
data from N trials, we denote the continuous measures as Y =

{Y1, Y2, . . . , YN}, the discrete measures as Z = {Z1, Z2, . . . , ZN},
and the full set of data as D = {D1,D2, . . . ,DN}. We assume that
the ith data pair Di = (Yi, Zi) arise from a model with parameters
θ so that D ∼ Model(θ). We can then write the density under the
assumed model, conditional on the parameters θ , as

Model(Di = {Yi, Zi}|θ). (1)

For simulation-based models, the density in Eq. (1) is generally
what cannot be easily evaluated. For these models, we must
instead rely on an approximation. In fact, the accuracy of our
estimated joint posterior distribution of the parameters θ depends
almost entirely on our ability to accurately approximate Eq. (1).

To estimate Eq. (1), we begin by generating a proposal
parameter value θ∗. We then use θ∗ to simulate a set of data X =

{X (1), . . . , X (C)
}, where X (c) is the set of continuous measurements

for the cth discrete alternative. In other words, we separate the
continuous measures on the basis of the discrete measures. For
example, in a two-alternative choice task where choice response
time data are collected, we would divide the simulated data into
two bins: X (1) could consist of the response times for choice one
(e.g., the correct response), and X (2) could consist of the response
times for choice two (e.g., the incorrect response). We then
introduce a vector containing the set of the number of observations
for each alternative, so that n = {n(1), n(2), . . . , n(C)

} and J =C
c=1 n

(c) (i.e., J denotes the total number of model simulations).
For each response time distribution, we construct a proper

kernel density estimate (see Turner & Sederberg, 2014, for details)
for the simulated probability density function (SPDF) by evaluating

fn(c)

x|X (c)

=
1

h(c)J

n(c)
j=1

K


x − X (c)

j

h(c)


, (2)

where K(·) is the kernel and h(c) is a smoothing parameter known
as the bandwidth. The kernel is usually chosen to be unimodal and
symmetric about zero to place a decreasingweight on observations
Xj further from the point where the density is being estimated (i.e.,
at location x). While the kernel can take many forms, in this article
we will only consider the Epanechnikov kernel, given by

K(x) =


3
4


1 − x2


if x ∈ [−1, 1]

0 if x ∉ [−1, 1].
(3)

The accuracy of kernel density function is measured by the mean
integrated squared error (MISE), a measure of divergence between
a true and an estimated density function. The Epanechnikov kernel
was derived on the basis of minimizing the asymptotic MISE,
and so it is optimal in a statistical sense (Epanechnikov, 1969;
Silverman, 1986). We denote the set of bandwidth parameters
h = {h(1), h(2), . . . , h(C)

}, so that

h(c)
= 0.9min


SD

X (c) , IQR X (c)


1.34

 
n(c)−1/5

, (4)

where SD(·) denotes the standard deviation, and IQR(·) denotes
the interquartile range. This particular choice of the bandwidth is
known as Silverman’s rule of thumb (Silverman, 1986), and has
been shown to make the kernel density estimate more accurate.

Eq. (2) is known as a deffective probability density function,
which means that if integrated for all values of x, it will integrate
to the probability of making a particular response choice. In other
words, it is scaled to reflect that for any given choice response time
pair, other choices could have been made. The use of Eq. (2) in
our calculations is important so that our model simultaneously fits
both aspects of our data (i.e., response choice and response time).
Referring back to Eq. (1), the likelihood function can be approx-
imated by way of the following equation:

L(θ |D) =

N
i=1

Model(Di|θ) =

N
i=1

fn(Zi)

Yi|X (Zi)


. (5)

With a suitable approximation of the PDF in hand, we have only
to combine the approximated likelihood function with the prior
distributions to obtain an approximation of the joint posterior dis-
tribution for the model parameters θ :

π(θ |D) ∝ π(θ)L(θ |D).

As in conventional Markov chain Monte Carlo, the proposal pa-
rameter value θ∗ is accepted withMetropolis Hastings probability.
Namely, on the tth iteration, the current state of the algorithm is
at the previous location θt−1. We set θt = θ∗ with probability

min

1,

π(θ∗
|D)q(θt−1|θ

∗)

π(θt−1|D)q(θ∗|θt−1)


, (6)

otherwise we set θt = θt−1. In Eq. (6), q(θ∗
|θ) is the probability

density function (PDF) of a ‘‘proposal distribution’’ from which θ∗

is generated.
The PDA method is surprisingly easy to program and use

because many statistical software packages such as R, Python, and
MATLAB, already possess density functions that can be modified
to use the (popular) Epanechnikov kernel and Silverman’s rule of
thumb for bandwidth selection. Thus, in practice, implementing
the method involves (1) calling the density function for each of
the C alternatives, and (2) scaling (i.e., multiplying) the resulting
density values obtained by the number of times the corresponding
alternative was chosen in the simulation. These scaled densities
serve as Eq. (2).

4. Comparing the models

To compare the relative fit of the two models to the data,
we will compute a total of four metrics: the Akaike information
criterion (AIC; Akaike, 1973), the Bayesian information criterion
(BIC; Schwarz, 1978), the Bayesian predictive information criterion
(BPIC; Ando, 2007), and the Bayes factor. The AIC measure is
obtained by calculating

AIC = −2 log(L(θ |D)) + 2p, (7)

where L(θ |D) represents the likelihood function evaluated at the
best-fitting parameterθ (i.e., the maximum likelihood value ob-
tained during estimation), and p represents the number of param-
eters. Lower values of AIC indicate a better model ‘‘fit’’, which is
defined by a balance of predictive ability and model complexity.

The BIC is obtained in a similar way as the AIC, specifically by
evaluating the following equation:

BIC = −2 log(L(θ |D)) + log(N)p, (8)

where N represents the number of data points. Eqs. (7) and (8)
differ only in the treatment of the penalization for number ofmodel
parameters. For the AIC, the number of parameters are multiplied
by two, whereas for the BIC, the natural logarithm of the number
of data points is used. Hence, when N > 7.39, a stronger penalty
is applied for the BIC relative to the AIC. In comparing the two
metrics, Kass, Eden, and Brown (2014) noted the following:

‘‘In practice, BIC is conservative compared to AIC in that it
imposes a larger penalty for dimensionality. Thus, BIC is used,
rather than AIC, when there is a strong preference for models of
lower dimensionality’’. (p. 297)
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The third metric is the BPIC. The BPIC was designed as a correc-
tion to the deviance information criterion (DIC; Spiegelhalter, Best,
Carlin, & van der Linde, 2002) on the grounds that the DIC tends to
prefer models that over-fit the data (c.f., Ando, 2007). To compute
the BPIC, we first define the ‘‘deviance’’ as V (θ) = −2 log(L(θ |D)).
We then evaluate the expectation V̄ of the deviance by taking the
mean of V over all sampled values of θ (i.e., V̄ = E(V (θ)), where E
denotes the expected value). Subtracting from this expectation the
best log-likelihood value obtained, V̂ = min(V ) (Celeux, Forbes,
Robert, & Titterington, 2006; Spiegelhalter et al., 2002), we arrive
at a measure of the effective number of parameters pV = V̄ − V̂ .
The effective number of parameters is based on the difference be-
tween the expected deviance and an estimate of the deviance at the
most likely value of the parameters (Dempster, 1997).2 The choice
of V̂ = min(V ) rather than V̂ = V (E(θ)) is justified here because
the posterior distributions are non-normal and are not symmetric
(Celeux et al., 2006). As pV increases, themodel becomesmore flex-
ible, making it easier for the model to fit the data. The BPIC value
is obtained by evaluating

BPIC = V̄ + 2pV (9)

(Ando, 2007). As with the AIC and BIC, models with smaller (i.e.,
more negative) BPIC values are preferred over models with larger
BPIC values.

4.1. Estimating Bayes factor

The final metric is the Bayes factor. For a givenmodel candidate
Mq, model parameters θq, and data D, the posterior distribution of
the model parameters can be expressed as

p(θq|D,Mq) =
L(θq|D,Mq)p(θq|Mq)
L(θq|D,Mq)p(θq|Mq)dθq

, (10)

where p(θq|Mq) represents the prior distribution of the parameters
θq, and L(θq|D,Mq) represents the likelihood function. The
denominator of Eq. (10) represents the degree of model evidence,
or in other words, the probability of observing the data D given a
candidatemodelMq. The degree ofmodel evidence is oftenwritten
as p(D|Mq), such that

p(D|Mq) =


L(θq|D,Mq)p(θq|Mq)dθq. (11)

We can use Bayes rule to evaluate the probability of a particular
model Mq among a set of Q models, conditional on the data, given
by

p(Mq|D) =
p(D|Mq)p(Mq)

Q
j=1

p(D|Mj)p(Mj)

. (12)

Eq. (12) implies that for Models q and r ,

p(Mq|D)

p(Mr |D)
=

p(D|Mq)p(Mq)

p(D|Mr)p(Mr)
. (13)

Within Eq. (13), the Bayes factor comparingModels q and r is given
by

BFq,r =
p(D|Mq)

p(D|Mr)
.

We face two issues at this point. First, Eq. (11) is not analytically
tractable for the models we will examine in this article, and as

2 Given that this metric is based on the information in the posteriors themselves,
a direct comparison between the BPIC, BIC, and AIC is not straightforward.
a consequence, Eq. (11) must be estimated by using numerical
integration or approximated asymptotically. Second, because exact
equations to calculate the likelihood functions for each model are
unavailable, we must resort to an approximation. To approximate
the Bayes factor,we rely on amethod presented in Kass and Raftery
(1995) for estimating the Bayes factor through a comparison of
each model’s BIC (see Eq. (8)). Kass and Raftery (1995) show that
when comparing Models q and r , the difference in the BIC values
BICq − BICr asymptotically approximates −2 log(BFq,r) as the
sample size increases (i.e., asN → ∞). Hence,we can approximate
the Bayes factor by evaluating

BFq,r ≈ exp

−

1
2


BICq − BICr


. (14)

The approximation in Eq. (14) does produce more relative er-
ror in approximating the Bayes factor than other, Hessian-based
methods (e.g., De Bruijn, 1970; Kass & Vaidyanathan, 1992; Tier-
ney & Kadane, 1986), but in large samples Eq. (14) should pro-
vide a reasonable indication of model evidence (cf. Kass & Raftery,
1995) For the data we will examine in the present manuscript,
the number of data points N is around 400 per subject, which
increases the penalty term in the BIC calculation and improves
the accuracy of the Bayes factor. Additionally, because the mod-
els we investigate in this manuscript have intractable likelihood
functions, the Hessianmatrix is unavailable, making other approx-
imations to the Bayes factor infeasible (e.g., De Bruijn, 1970; Kass
& Vaidyanathan, 1992; Tierney & Kadane, 1986). Finally, as noted
in Kass and Raftery (1995), in the usual case where the precision
of the prior information is small relative to the information pro-
vided by the data (i.e., the likelihood function), the Schwarz crite-
rion (Schwarz, 1978) indicates that the model that minimizes the
BIC (see Eq. (8)) is themodelwith the highest posterior probability.
Furthermore, when the prior distribution is a multivariate normal
prior withmean at themaximum likelihood estimate and the vari-
ance is set equal to the expected information matrix for one ob-
servation of data (i.e., a prior called the ‘‘unit information prior’’),
the BIC approximation becomes more accurate (Weakliem, 1999).
Specifically, the Hessian-based method produces an error of or-
der O(N−1), the BIC approximation with the unit information prior
produces an error of orderO(N−1), and the BIC approximationwith
no explicit assumptions about the priors produces an error of order
O(1), where O(x) refers to a term bounded in probability to some
constant multiplied by x.

5. Models

In this article, we will compare two models inspired by neuro-
physiology. Both models were designed to embody certain charac-
teristics of actual neuronal functions, such as leakage, lateral and
feed-forward inhibition. The first model is the LCA model, and the
second is the FFImodel.Wewill nowdescribe each of thesemodels
in turn.

5.1. The Leaky Competing Accumulator model

The LCAmodelwas developed as a neurologically plausibleway
to describe the dynamics of response competition. For this model,
we denote the rate of accumulation for the cth accumulator as
ρc , the lateral inhibition parameter as β , the leakage parameter
as κ , and the degree of noise in the accumulation process as ξt ,
which when simulated is drawn from a normal distribution with
a mean of zero and standard deviation η. In other words, at each
time step t in the evidence accumulation process, ξt ∼ N (0, η).
The activation of the cth accumulator in the model is represented
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Fig. 1. Graphical depiction of models compared. The top row (i.e., Panels A and B) corresponds to the LCA model, whereas the bottom row (i.e., Panels C and D) corresponds
to the FFI model. The left column (i.e., Panels A and C) shows a graphical representation of how the stimulus input is mapped to the behavioral response. The right column
(i.e., Panels B and D) shows a representative simulation of each corresponding model in a two-alternative decision task.
by the stochastic differential equation

dxc =


ρc − κxc − β


j≠c

xj


dt
∆t

+ ξt


dt
∆t

xc → max (xc, 0) ,

where ∆t is a time constant parameter. Once the degree of evi-
dence for any accumulator reaches a threshold α, the process is
terminated and a response is elicited. Similar to most models of
choice RT, the LCA model assumes a non-decision time parameter,
which we will denote τ . Although other choices can certainly be
made, we assumed that the accumulation dynamics start at zero
by setting xc = 0 for both c = {1, 2}.

Although in Turner and Sederberg (2014) we fit a hierarchical
version of the LCAmodel to a small subset of the data, here wewill
fit each subject independently to better assess eachmodel’s ability
to fit data from different individuals. To satisfy mathematical
scaling properties, we constrained the drift rate parameters to
sum to one (i.e.,


c ρ(c)

= 1) for each subject. The sum-to-one
assumption is a simplifying assumption that is commonly used, but
can have an influence on model discriminability (cf. Teodorescu &
Usher, 2013). We fixed dt = 0.01 (with the unit of seconds), and
∆t = 0.1. In fitting the model to data, we specified the following
uninformative priors:

α
(k)
j ∼ U(0, 25),

ρ
(1)
j ∼ U(0, 1),

ηj ∼ U(0, 25),
κj ∼ U(0, 1),
βj ∼ U(0, 1), and

τj ∼ U

0,min


RT j


,

where k ∈ {A,N, S}, the accuracy (A), neutral (N), and speed
conditions (S), respectively, and min(RT j) is the minimum of the
observed response times for the jth subject. We use the uniform
distribution to enforce the constraint that β, κ ∈ [0.0, 1.0], which
preserves themodel’s neurological plausibility. Specifically, values
of β and κ greater than 1.0 would imply that the effect of lateral
inhibition and/or leak would be greater than the activation of the
accumulator itself (recall that the drift rates are bound by ρ ∈

[0, 1]), a parameter regime that we felt was at odds with the
underlying motivation of the LCA model.

Panel A in Fig. 1 shows a graphical diagram of the LCA model in
a two choice decision task. The bottom nodes represent the input
of the stimulus, which are connected to the observer’s internal be-
lief state (i.e., middle nodes) by the drift rates ρ. In the LCA model,
the stimulus input only affects the corresponding belief state. At
the belief state level, a competition ensues between the alterna-
tives. The dynamics of the competitive process is dependent on
the amount of evidence that has been accumulated as well as the
lateral inhibition parameter β . Essentially, as more evidence is ac-
cumulated for a particular alternative, the influence of the com-
petition becomes more pronounced, and the leading alternative
gains even more of an advantage. In addition, the belief state is
‘‘leaky’’, meaning that some of the accumulated evidence is lost at
a rate proportional to κ . Similar to the competition process, the
amount of leakage also depends on the current state of accumu-
lated evidence such that a larger amount of evidence is lost asmore
evidence is accumulated. Finally, the internal belief state level is
mapped to an overt response once a threshold amount of evidence
α has been accumulated.

Panel B in Fig. 1 shows a representative simulation of the LCA
model in a two-choice task. At stimulus onset, the evidence for
each of the alternatives is equivalent. As the trial continues, one
alternative gains an advantage, and due to the competitive process,
the leading alternative gains even more of an advantage and
accumulates evidence at a faster rate until the leading alternative
reaches the threshold.

5.2. The Feed Forward Inhibition model

The FFI model assumes no leakage and uses a different
competitive mechanism where inhibition is based on the average
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input to the other alternatives, such that

dxc =


ρc −

ν

C − 1


j≠c

ρj


dt
∆t

+ ξt


dt
∆t

(15)

xc → max (xc, 0) ,

where ν is the feed-forward inhibition parameter, ρc represents
the rate of evidence accumulation for the cth alternative, ξt ∼

N (0, η) represents the within-trial variability, and C represents
the number of choice alternatives (i.e., C = 2 here). We again
constrained the drift rates to sum to one, as in the LCA model, to
satisfy mathematical scaling properties. As in the LCA model, we
again fixed dt = 0.01 (with the unit of seconds), and ∆t = 0.1.
As in the LCA model above, we assumed that the accumulation
dynamics start at zero by setting xc = 0 for both c = {1, 2}.

In fitting the model to data, we specified the following
uninformative priors:

α
(k)
j ∼ U(0, 25),

ρ
(1)
j ∼ U(0, 1),

ηj ∼ U(0, 25),
νj ∼ U(0, 1), and

τj ∼ U

0,min


RT j


.

As in the LCA model above, we constrained νj ∈ [0, 1] to preserve
the model’s neurological plausibility.

Panel C in Fig. 1 shows a graphical diagram of the evidence
accumulation process in the FFI model. Similar to the LCA model
above, the internal belief state is primarily affected by the stimulus
input, again regulated by the parameters ρ. Unlike the LCA model,
however, the stimulus input for each alternative also affects the
input for the remaining alternatives (shown in the diagram as
the crossing arrows) by way of a feed-forward inhibition process
regulated by the parameter ν. At the internal belief state level,
there is no internal competition between the alternatives as in the
LCA. Finally, the belief state is mapped to the overt response once
a threshold amount of evidence α has been reached. In contrast
to the LCA model, the FFI model assumes that the mapping to
the response state is not subject to imperfections such as leakage.
Furthermore, the competitive mechanisms assumed by the FFI are
never dependent on the amount of accumulated evidence, as in the
LCA model.

Panel D in Fig. 1 shows a representative simulation of the FFI
model in a two-choice decision task. On stimulus presentation,
evidence accumulates for each alternative and they race to the
threshold α. In this case, one particular alternative gains a slight
advantage and that advantage prevails until it eventually reaches
the threshold first. Note that the advantage gained by the (eventu-
ally) winning alternative does not increase its win margin as evi-
dence accumulates, as in the LCA model.

5.2.1. A constrained FFI model
In addition to the LCA and FFI models, we also examined a con-

strained version of the FFI model that resembles the popular drift
diffusion model (DDM; Ratcliff, 1978). Specifically, we examined a
version of the FFI model that constrained ν = C − 1 = 1, which
wewill refer to as the constrained FFI (CFFI). In the two-alternative
case, this constraint modifies the accumulation process to be com-
pletely anticorrelated, turning Eq. (15) above to

dxc = (ρc − ρ−c)
dt
∆t

+ ξt


dt
∆t

xc → max (xc, 0) ,
where ρ−c represents the drift rate for the opposing decision al-
ternative with respect to c. In this parameter regime, the CFFI
behaves much like the classic DDM with a few exceptions. First,
the CFFI does not have trial-to-trial variability in either the non-
decision time, drift rate, or starting point. Second, the CFFI still
maintains a floor on evidence accumulation such that neither ac-
cumulator can ever be negative. Finally, if starting points are ma-
nipulated, the twomodels are not equivalent (Teodorescu & Usher,
2013).

6. Results

6.1. Estimating the posterior

To estimate the posterior distributions for each model, we used
the PDA method for mixed data types (Turner & Sederberg, 2014).
For each parameter proposal, we simulated the model J = 50,000
times to forma stable approximation of the likelihood function (see
Eqs. (2) and (5)). For these models, some parameter combinations
lead to model simulations that could, in theory, take an infinitely
long time to finish. To avoid this issue, we set a threshold of 10 s
for the response times. If the model had not crossed a boundary at
that point, we recorded the response time as 10 s with the choice
being randomly selected. Because these model simulations led to
poor fits to the data, these particular parameter combinationswere
never observed in the joint posterior distributions. The bandwidth
parameters h were calculated for each proposal by means of Eq.
(4). To increase the accuracy of the Epanechnikov kernel density
approximation, we applied a log transformation to the simulated
RTs, which helped produce more normally-distributed data. As
described above, we scaled the approximate density functions for
each choice by the corresponding proportion of total responses out
of the J simulations to determine the defective distribution for each
choice.

As shown in Turner, Sederberg et al. (2013), the parameters
of choice RT models can be highly correlated, which makes con-
ventional sampling algorithms such as Markov chain Monte Carlo
(MCMC; Robert & Casella, 2004) inefficient to use. As such, we used
a genetic algorithm called differential evolution (DE) with MCMC
(DE-MCMC; Ter Braak, 2006; Turner & Sederberg, 2012; Turner,
Sederberg et al., 2013). DE-MCMC is a population Monte Carlo al-
gorithm that generates proposals on every trial based on the in-
formation learned in the current estimate of the posterior. The
communication between the ‘‘chains’’ in the algorithm allows DE-
MCMC to generate proposals to match the shape of the posterior,
regardless of how correlated the parameters may be. Furthermore,
theDE-MCMCalgorithm iswell-designed for high-dimensional pa-
rameter spaces (see, e.g., Turner & Sederberg, 2012). For each of
the four different likelihood evaluation methods, we implemented
our DE-MCMC sampler, with 50 chains for 2000 sampling itera-
tions following 500 burn-in iterations, producing 100,000 samples
of the joint posterior distribution. For each DE proposal, we ran-
domly sampled the scaling factor γ ∼ (0.5, 1.0). We set the ran-
dom perturbation parameter b of the uniform distribution equal
to 0.001. Convergence was assessed through visual inspection and
the R package coda (Plummer, Best, Cowles, & Vines, 2006). Ad-
ditional implementation details of the sampler can be found in
Turner, Sederberg et al. (2013).

6.2. Comparing the models

Once the posteriors had been estimated,we could then evaluate
the relative merits of the models by calculating the three model fit
statistics discussed above. We calculated the AIC by Eq. (7), the BIC
by Eq. (8), and the BPIC by Eq. (9). Table 1 shows these calculations
for each of the three models and each of the 20 subjects. The



B.M. Turner et al. / Journal of Mathematical Psychology 72 (2016) 191–199 197
Table 1
Fit statistics comparing each of the three models.

Subject AIC BIC BPIC
CFFI FFI LCA CFFI FFI LCA CFFI FFI LCA

1 688.63 349.60 351.68 718.57 384.53 391.59 708.55 373.68 378.85
2 221.60 135.62 137.16 251.56 170.57 177.11 237.85 163.53 148.75
3 419.59 292.29 267.36 449.52 327.21 307.27 441.66 309.50 277.29
4 729.23 479.79 480.41 759.18 514.73 520.34 745.36 495.07 500.09
5 647.98 498.69 502.24 677.95 533.65 542.19 664.74 521.38 521.02
6 −91.45 −87.22 −147.55 −61.49 −52.27 −107.60 −71.72 −70.10 −104.17
7 330.10 135.13 137.32 360.07 170.09 177.28 348.69 150.70 150.67
8 447.04 385.67 373.75 477.00 420.63 413.69 460.37 411.59 390.63
9 504.84 426.29 428.49 534.79 461.23 468.43 520.64 450.46 450.44

10 191.18 152.64 122.32 221.12 187.57 162.24 210.14 174.20 138.42
11 330.83 186.96 189.42 360.80 221.92 229.38 346.66 202.58 200.65
12 316.75 238.60 191.91 346.72 273.56 231.86 330.96 262.31 223.14
13 652.74 479.10 455.68 682.66 514.01 495.58 670.47 495.19 475.08
14 585.37 372.59 371.70 615.33 407.55 411.65 606.02 399.22 402.18
15 559.09 398.26 401.50 589.03 433.19 441.43 583.58 422.57 417.26
16 335.53 196.47 204.75 364.32 230.06 243.13 365.33 227.32 239.98
17 704.30 396.27 400.70 734.27 431.23 440.65 737.31 425.81 423.63
18 373.31 314.61 309.46 403.26 349.55 349.39 391.31 332.05 325.70
19 568.36 403.12 364.51 598.28 438.04 404.41 592.36 423.10 381.54
20 636.17 437.08 437.44 666.12 472.02 477.38 659.55 455.59 460.31

Wins 0 11 9 0 12 8 0 5 15
table is arranged so that the three metrics are grouped together to
facilitate a comparison across the threemodels. The last row in the
table summarizes the results by calculating for each column, the
number of times the model in the corresponding column provided
the best fit (i.e., lowest value) in the dataset. Interestingly, the three
metrics do not tell the same story. Specifically, while the AIC and
BIC measures put the FFI model slightly ahead of the LCA model,
the BPIC measure heavily favors the LCA model. The CFFI model
clearly performs worse than all of the other models, regardless of
the fit statistic.

6.3. Bayes factors

Once an approximation for each of the posterior distributions
had been obtained, we evaluated the BIC values according to Eq.
(8), and subsequently used the BIC values to approximate the Bayes
factor for each possible model comparison by evaluating Eq. (14)
for each individual subject. Table 2 shows the estimated Bayes
factors comparing the FFI to the CFFI (second column), the FFI to
the LCA (third column), and the LCA to the CFFI (fourth column).
Table 2 shows that the FFI provides the best fit for 12 out of the 20
subjects, and the LCAmodel provides the best fit for the remaining
8 subjects. The constrained FFI model did not provide the best fit
to any subject in this particular suite of models.

Fig. 2 illustrates a comparison of the FFImodel to the LCAmodel
(see column 3 in Table 2). The figure shows the Bayes factor for
each subject, ranked according to increasing evidence for the FFI
model. The point of indifference for the two competing models is
shown as the dashed black horizontal line at zero. As a reference,
other gray lines are plotted to show differing amounts of model
evidence. From the point of indifference, regions are color-coded
to illustrate greater degrees of evidence for either the FFI model
(top) or the LCAmodel (bottom). Fig. 2 suggests that when the LCA
model is the preferred model, the evidence greatly outweighs the
evidence for the FFI model. However, when the FFI model is the
preferred model, there is a smaller degree of evidence for the FFI
model over the LCA model.

7. Discussion

In this article, we used the recently developed probability
density approximation (PDA) method to fit two neural network
Table 2
Bayes factors comparing each of the three models.

Subject FFI/CFFI FFI/LCA LCA/CFFI Winner

1 3.43 × 1072 34.13 1.01 × 1071 FFI
2 3.86 × 1017 26.26 1.47 × 1016 FFI
3 3.63 × 1026 4.67 × 10−5 7.77 × 1030 LCA
4 1.20 × 1053 16.54 7.28 × 1051 FFI
5 2.15 × 1031 71.62 3.01 × 1029 FFI
6 9.97 × 10−3 9.67 × 10−13 1.03 × 1010 LCA
7 1.79 × 1041 36.31 4.93 × 1039 FFI
8 1.75 × 1012 0.031 5.59 × 1013 LCA
9 9.40 × 1015 36.53 2.57 × 1014 FFI

10 1.93 × 107 3.16 × 10−6 6.10 × 1012 LCA
11 1.43 × 1030 41.54 3.45 × 1028 FFI
12 7.69 × 1015 8.81 × 10−10 8.73 × 1024 LCA
13 4.19 × 1036 9.92 × 10−5 4.22 × 1040 LCA
14 1.32 × 1045 7.78 1.69 × 1044 FFI
15 6.92 × 1033 61.37 1.13 × 1032 FFI
16 1.43 × 1029 690.48 2.07 × 1026 FFI
17 6.35 × 1065 110.93 5.73 × 1063 FFI
18 4.62 × 1011 0.93 4.98 × 1011 LCA
19 6.26 × 1034 5.00 × 10−8 1.25 × 1042 LCA
20 1.41 × 1042 14.56 9.69 × 1040 FFI

Fig. 2. The Bayes factors comparing the FFI model to the LCA model for each
subject. Subjects have been ranked in increasing order, where a higher Bayes factor
corresponds to greater evidence for the FFImodel. Thepoint of indifference between
the two models is represented as the dashed horizontal line at zero.
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models to the data presented in Forstmann et al. (2011). The
first model, the Leaky Competing Accumulator (LCA; Usher &
McClelland, 2001) uses neurally plausible mechanisms such as
competition via lateral inhibition, and leakage. The second model,
the Feed-forward Inhibition (FFI; Shadlen & Newsome, 2001)
model, assumes that competition between alternatives follows a
feed-forward inhibition process, and assumes that leakage is not
present in the network. Both models are neurally inspired and
have been shown to account for many enriched experimental
manipulations (e.g., Bogacz et al., 2006, 2007; Gao et al., 2011;
Shadlen & Newsome, 2001; Teodorescu & Usher, 2013; Tsetsos
et al., 2011; Usher & McClelland, 2001; van Ravenzwaaij et al.,
2012).

On fitting the models to data, we then compared the models
by calculating several statistics, namely the Akaike information
criterion (AIC; Akaike, 1973), the Bayesian information criterion
(BIC; Schwarz, 1978), the Bayesian predictive information criterion
(BPIC; Ando, 2007), and the Bayes factor. The AIC and BICmeasures
provided evidence that the FFI model was preferred over the LCA
model, but only for 11 of 20 (for the AIC) or 12 of 20 (for the
BIC). However, when using the BPIC measure, the LCA model
provided the best fit to 15 out of 20 subjects, with the FFI model
capturing the remaining five. Given the discrepancies among the
metrics, it is clear that more extensive analyses are needed to fully
differentiate these particular models. We could also compare the
models by aggregating across the three metrics. For four subjects
(i.e., Subjects 1, 4, 16, and 20) the FFI model provided the best fit
on all three metrics, whereas for eight subjects (i.e., Subjects 3,
6, 8, 10, 12, 13, 18, and 19) the LCA model provided the best fit.
Examining Table 2 in this way suggests that the decision making
processes used by these particular subjects are best described by
the LCA model.

We also compared the models by approximating the Bayes fac-
tor through the Bayesian information criterion (see Eq. (14); Kass
& Raftery, 1995; Schwarz, 1978).We first determined that the con-
strained version of the FFI model, which maintained that ν =

C − 1 = 1, performed substantially worse than either the full FFI
or the LCA models. We then compared the LCA model to the FFI
model for each subject. In total, the FFI model outperformed the
LCAmodel for 12 of the 20 subjects. However, we noted that when
the LCAmodel outperformed the FFI model, it did so in an extreme
way. This aspect of our resultsmay indicate that there is something
unique about the decision processes used by a subset of the sub-
jects in our data. For example, the decision process for these sub-
jects may be prone to a leaky mapping of the internal belief state
to the response state, or it may be that the competition between
the decision alternatives resembles a time-dependent process (as
assumed by the LCAmodel) rather than a time-invariant one (as as-
sumed by the FFI model). Another possible explanation is that the
simplifying assumptions used hindered the LCA model’s ability to
fit the data for some subjects.

While in this manuscript, we have relied on the BIC approxi-
mation to the Bayes factor, there are other choices available in the
likelihood-free context. One approach is to treat the model selec-
tion problem as a hierarchical modeling problem (Grelaud, Marin,
Robert, Rodolphe, & Tally, 2009; Toni & Stumpf, 2010; Turner &
Van Zandt, 2014), and estimate the model probabilities using a
specific sampling algorithm such as sequential Monte Carlo (Toni
& Stumpf, 2010; Toni, Welch, Strelkowa, Ipsen, & Stumpf, 2009),
Gibbs approximate Bayesian computation (Turner & Van Zandt,
2014), or random forests (Pudlo et al., 2014). However, thesemeth-
ods require certain conditions on the statistics that characterize the
observed data for the approximation to hold (Didelot, Everitt, Jo-
hansen, & Lawson, 2011; Robert, Cornuet, Marin, & Pillai, 2011).
Namely, the models must be nested and statistics must be chosen
that characterize the data in a sufficient manner for the entire col-
lection of models under examination (Didelot et al., 2011). In our
case, the problems associated with approximate Bayesian model
choice do not apply because we consider the entire set of data,
which is guaranteed to be a sufficient statistic (cf. Toni et al., 2009;
Turner & Sederberg, 2014; Turner & Van Zandt, 2012). However,
future work could build on our approach by estimating the model
evidence explicitly.

In conclusion, for the data tested here (Forstmann et al., 2011),
the metrics AIC, BIC, and Bayes factor provided a small amount of
evidence to support the FFI model, whereas the BPIC provided a
strong amount of evidence in favor of the LCAmodel.Wenoted that
for some subjects, one model was preferred when all four metrics
were considered together. Amore extensive analyses of themodels
would examine other important factors such as the number of
decision alternatives, stimulus types (e.g., stationary versus time-
varying evidence), and payoff manipulations.
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