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1. MATLAB getnet() and update() routines that constitute the core of all simulations 
 
The MATLAB routine getnet, computes the net input for each pool in the network. Specifically, 
for each pool, the getnet routine first accumulates the excitatory and inhibitory inputs from other 
units, then adds them to the scaled external input and scales them (by alpha or gamma) to obtain 
the net input. Refer to Section 3.2 of the manuscript. 
 
for i=1:numpools   
   pool(i).inhibition = zeros(1, pool(i).nunits); 
   pool(i).excitation = zeros(1, pool(i).nunits); 
    
   for p = 1:length(pool(i).sendingpools)  
      sp = pool(i).sendingpools(p);  
 
      positive_acts_indices =  find(pool(sp).activation > 0); 
       
      if ~isempty(positive_acts_indices)   
         for k = 1:length(positive_acts_indices)   
             index = positive_acts_indices(k); 
             wts = transpose(pool(i).proj(p).weight(:, index)); 
                  
             pos = find(wts>0); 
             neg = find(wts<0); 
 

pool(i).excitation(pos) = pool(i).excitation(pos) +       
pool(sp).activation(index) * wts(wts>0);  
  
pool(i).inhibition(neg) = pool(i).inhibition(neg) + 
pool(sp).activation(index) * wts(wts<0);   

 
   end   

      end 
  end 
 

pool(i).excitation = pool(i).excitation * alpha;   
pool(i).inhibition = pool(i).inhibition * gamma;   
 
pool(i).netinput = pool(i).excitation + pool(i).inhibition + estr * 
pool(i).extinput;  
                      
    

end 
 
The MATLAB routine update, updates the activation values for each unit. Refer to Section 3.2 of 
the manuscript 
 
 
 
for i = 1:numpools  
     
    pns = pool(i).netinput>0; 
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    if (~isempty(pns)) 
        pool(i).activation(pns) = pool(i).activation(pns)...   
            + (max- pool(i).activation(pns)).*pool(i).netinput(pns)...   
            - decay*(pool(i).activation(pns) - rest);   
    end 
     
    nps=~pns; 
    if (~isempty(nps)) 
       pool(i).activation(nps) = pool(i).activation(nps)...   
            + (pool(i).activation(nps) -min).*pool(i).netinput(nps)...   
            - decay*(pool(i).activation(nps) - rest);  
    end 
       
    pool(i).activation(pool(i).activation > max) = max;   
    pool(i).activation(pool(i).activation < min) = min;   
     
  
end 
 
Parameter values held constant for each simulation: 
 
max =    1.0; 
min =   -0.2; 
rest =  -0.1; 
decay =  0.1; 
estr =   0.4; 
alpha =  0.1; 
gamma =  0.1; 
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2. Algorithmic details supplementary to Section 3.2 
 

We present a quantitative account of competition between units that inhibit each other 

(McClelland & Rumelhart, 1989). As discussed above the feature units of the input pool, the 

hidden units, and the action tendency units are inhibitory. We seek to demonstrate that if two 

units mutually inhibit one another, the one with even slightly greater net input will dominate the 

other over time. 

Consider two mutually inhibiting units ui and uj with activations ai and aj greater than 

zero and ai > aj. Assume that the consolidated excitatory input into the two units is ei and ej, 

respectively. Recalling that gamma (γ) is the scaling factor inhibition we can write 

neti =  ei − γaj 

and  

netj =  ej − γai 

Since ai > aj, neti > netj. This will cause activation of ui to keep increasing relative to the 

activation of uj. This has been referred to as the “rich get richer” effect (Grossberg, 1976). 
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3. Simulation #4a: The Anchoring Effect Depends on Attention 
 
The experiment below (not in the value-based domain) shows that increasing levels of 

attention towards an incidental and irrelevant variable (a participant identification number) can 

result in increasing levels of influence of that variable. We used the same network structure and 

dynamics as described in Simulation 4 in the main text (which was used to simulate an anchoring 

empirical context in the value-based domain). 

Target Experiment(a): In the anchoring conditions, experimenters (Wilson, Houston, 

Etling, & Brekke, 1996) assigned participants an (allegedly) unique participant identity number 

and then asked them to estimate the number of physicians listed in the local yellow pages. 

Almost all participants reported having no prior information helpful in making such an estimate 

and the few that did were not included in the study.  

The participant identity number was always between 1,928 and 1,935. It was not identical 

to prevent proximal participants from thinking they had the same number. No subsequent 

differences related to the small differences in identity numbers were noted. Using a cover story, 

one set of participants (color condition) was asked to identify the color of ink – red or blue – that 

the identity number was written in (it was written in blue for all participants). Another set of 

participants was asked to check whether the identity number had four digits (4-digit condition). 

A third set of participants were asked to identify whether the identity number was greater than 

100 or not (GT-100 condition). Still other participants were asked to determine either if their 

assigned number was greater than 1,920 or if it was less than 1,940. No differences were found 

between these participants and they were both grouped into the same condition (GT-1920:1940 

condition). A final condition asked participants to rewrite their identity number and compare it to 

the dependent variable – i.e. the number of physicians in the yellow pages (Write and Compare 
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or WC condition). There was also a control condition in which the participants did not have an 

identity number. 

The experimenters designed these conditions (except for control), with a purpose of 

ensuring varying levels of attention towards the identity number. They assumed that the color 

condition, the 4-digit condition, and the GT-100 condition required low levels of attention. In the 

GT-1920:1940 condition, participants had to attend to their identity number more carefully, 

because 1920 and 1940 were closer in value to their identity numbers; this required medium 

levels of attention. Finally, participants in the write and compare (WC) condition had to pay a 

high level of attention to their identity number, because they had to write their number again and 

focus on whether it was less than or greater than the number of physicians in the phone book – a 

judgment that presumably took more thought. 

Empirical Results(a): Participant estimates of the number of physicians were 

unmistakably affected by the presence and type of anchors. In the control condition, the mean 

estimate was 221. In the low attention conditions mean estimates were slightly higher than 

control: in the color-condition the estimate was 343; in the 4-digit condition the estimate was 

312; in the GT-100 condition, the estimate was 332. These estimates were not reliably different. 

In the medium attention GT-1920:1940 condition, the mean participant estimate was 527, and in 

the high attention comparison condition (WC) it was 755. 

Network Structure & Dynamics: We used the identical network as described in 

Simulation 4 in the main text. The experience-based estimate ‘est’, (221 physicians) represented 

the central value of the range represented in the experience pool. Units in the estimate pool 

represented the following ranges based on ‘est’, the unanchored experienced-based estimate: (0, 

0.5*est), (0.5*est, 0.9*est), (0.9*est, 1.1*est), (1.1*est, 1.5*est), (1.5*est, 3*est). The last unit 
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had a larger range to include the possibility of modeling high estimates. The units in the estimate 

pool represented identical quantities to corresponding units in the experience pool. The identity 

number (between 1,920 and 1,940) was assumed to activate the 5th unit in the anchor pool, since 

it is a large number compared to commonly encountered numbers in similar contexts (Dehaene 

& Mehler, 1992). 

The input activation in the 5th unit was assumed to be proportional to the level of 

attention elicited by the experimental manipulations: in the low attention conditions (color and 

GT-100), the input activation was 0.1; in the medium attention condition (GT-1920:1940), the 

input activation was 0.3; in the high attention condition (direct comparison to re-written identity 

number), the input activation was 1. In the control condition there was no activation to any unit 

other than the central estimate unit (in particular, no anchor units were activated). 

Simulation Results: The winning unit (i.e. the unit in the estimate pool with the largest 

activation) was used to determine the range of the final estimate (e.g. if the second unit was the 

winner, then the final estimate was assumed to be between 0.5 and 0.9 times the original, 

experience-based estimate). To compute the precise estimate value within the range, we 

calculated the cumulative density function (cdf) of the activation value of the unit on a normal 

distribution (mean 0.2, standard deviation 0.05) kept fixed for all estimates in the present 

experiment and in the anchoring experiment described in the main text. For example, a cdf value 

of 0.5 in the winning second unit represented a value equal to 50% of the range represented by 

the second unit (i.e. 0.7*est).  

In the control condition, the simulation estimate was 218 (vs. 221 in the empirical data). 

In the low attention condition, the simulation estimate was 346 (vs. an average of 330 in the 

empirical data). In the medium attention condition, the simulation estimate was 564 (vs. an 
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empirical estimate of 527), and in the high attention condition, the simulation estimate was 663 

(vs. an empirical estimate of 775). 

Significance: This simulation captured an important element of the anchoring 

phenomenon: increased attention toward an anchor increases its effect on an estimate. This was a 

consequence of increased input activation. This element was demonstrated using the same 

network used in the main text to simulate an occurrence of anchoring in the value-based domain.  
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4. Simulation #9: Instructional Cue Effects 

Target Experiment: In a behavioral task, experimenters manipulated taste and health cues 

related to food items (Hare, Malmud, & Rangel, 2011). Participants rated and made decisions on 

180 different food items, including junk foods (e.g., chips and candy bars) and healthier snacks 

(e.g., apples and broccoli). On every trial, subjects were shown a picture of one of the food items 

and were given up to three seconds to indicate whether they wanted to eat that food at the end of 

the experiment. Participants indicated their responses using a four-point scale: Strong No, No, 

Yes, and Strong Yes. At the end of the experiment, choices from a random trial were used to 

determine whether the participant was required to eat the food item or not. 

Participants were asked to make choices in trials preceded by three visual-cue conditions. 

In the health condition (HC), they were asked to consider the healthiness of the food before 

choosing. In the taste condition (TC), they were asked to consider the taste of the food before 

choosing. In the control or natural condition (NC), they were asked to consider whatever features 

of the food came naturally to mind. Importantly, the instructions emphasized that subjects should 

always make the decision that they prefer, regardless of the condition. 

Empirical Results: Affirmative responses (strong yes or yes) for each item/cue 

combination are shown in Figure SM1: first, without cues (i.e. in the NC condition), un-tasty 

items were valued considerably less than tasty items regardless of their healthiness. Second, the 

effect of the health cue increased selection rates for healthy-untasty items and decreased 

selection rates for unhealthy-tasty and unhealthy-untasty items. No effect of the health cue was 

observed for the healthy-tasty condition. Third, there were no significant effects of the taste-cue.  

Network Structure: We used the following network structure specified in Figure SM1a 

The hidden pool had four units corresponding to items that are unhealthy-untasty (UH-UT), 
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healthy-untasty (H-UT), unhealthy-tasty (UH-T) and healthy-tasty (H-T) (A1). The feature pools 

corresponding to high/low health and high/low taste were connected to their corresponding 

hidden units with excitatory (+1) weights (A5). Weights from the features to the action tendency 

units were excitatory for high taste and high health, and inhibitory for low taste and low health 

(A6). Taste weights (+1) were set to be higher than health weights (+0.5) (corresponding to the 

finding that many taste preferences are innate, but health goals are learned and more variable 

(Ventura & Mennella, 2011)). All weights were reciprocal and were kept identical through-out 

all conditions. 

Network Dynamics: The perception of an item involved external input into the network. 

The perception of the tastiness and healthiness of an item without cues was assumed to be higher 

for taste features (equal to 0.5 input) than for health features (equal to 0.1 input). We made this 

assumption based on results showing that taste related features are processed more quickly than 

health related features and therefore attract greater attention (Sullivan, Hutcherson, Harris & 

Rangel, 2015). We also assumed that the health cue increased input into units in the health pool 

from 0.1 to 1, whereas the taste cue increased input into units in the taste pool more modestly – 

from 0.5 to 0.6 (A7). We made this assumption based on results showing that taste features are 

generally processed more automatically compared to health related features; the latter often 

require attention to be processed and may thus be more influenced by external cues (Marteau, 

Hollands, & Fletcher, 2012). Thus, a taste cue may not have a large incremental effect, but a 

health cue might. 

The model ran through 300 cycles, before which all unit activations had converged (A8). 

We used output unit (i.e. ‘like’ output unit) activation levels to compute the probability of an 

item being rated as liked.  
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Simulation Results: In each condition-cue combination we treated activation of the ‘like’ 

output unit as a point on a normal distribution (mean = 0.4; standard deviation = 0.3), and used 

the point’s associated probability density functions to compute the probability of being liked. 

(Figure SM1b) (A9). The simulation captured the main features of the empirical results: items 

that were both healthy and tasty were the most likely to be liked, and items that were neither 

were least likely to be liked. Untasty-healthy items were liked in the presence of the health cue, 

but not otherwise; tasty unhealthy items were liked – but the liking level decreased in the 

presence of the health cue. 

 

Figure SM1: The network and simulation results for Simulation 9: Attention Towards Features Increases their Impact. Panel (a) 
depicts the network structure in which a taste feature pool and a health feature pool are connected to a hidden pool (with uniform 
weights) and an output pool with respective weights of +1 and +0.5. All connections within the pool were inhibitory (not fully 
shown in the hidden pool to promote readability). Panel (b) depicts the percentage probability that a food item would be liked. 
The same model was able to simulate all four conditions of the experiment – Unhealthy-Untasty, Healthy-Untasty, Unhealthy-
Tasty, and Healthy Tasty. The effect of the health and taste cue was modeled as an increase in external activation into the health 
and taste pools. 
 

Significance: In this experiment, participants were encouraged to select items according 

to their preferences – and only their preferences. Yet, health cues unambiguously affected 

decisions. This simulation shows a mechanism by which activation in input units (caused by the 
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presence of cues), can change patterns of choice without any changes to the action-tendency 

related knowledge represented by the connections between feature units and output units. 
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5. Simulation 10: Longer visual fixation increases choice rates 
 

Target Experiment(s): Experiments that exogenously and explicitly manipulated fixation 

durations during the process of choice have shown that the willingness-to-pay for items increases 

significantly with increased fixation. In a typical such experiment (Armel, Beaumel & Rangel, 

2008, Study 3), participants were asked to provide liking ratings for posters (on a 100 point 

scale). A computer algorithm then chose two items that had liking ratings within five points of 

each other. The pictures of the two items then alternated, one at a time, with one presented for 

300ms, and the other for 900ms on each alternation. Alternations were repeated six times. The 

participant was then asked to choose one of the two items. The participant was awarded her 

choice from a randomly chosen trial.  

Empirical Results: Liking differences varied between -5 and +5. In particular, the item 

shown for 900ms could be more liked (by up to +5 points) or less liked (by up to -5 points) than 

the item shown for 300ms, and vice versa. Across all liking levels, items that were viewed for a 

longer time, were more likely to be chosen than items that were viewed for a shorter time (Table 

SM1). For example, when an item was disliked by -5 points, it was chosen in 25% of trials when 

it was viewed for 900ms, but only in 17% of trials when it was viewed for 300ms. When items 

were neither liked nor disliked relative to their choice, items shown for 900ms were chosen in 

55% of trials, but items shown for 300ms were chosen in 45% of trials. When liked by +5 points, 

the respective choice rates were 65% to 47%.  

Network Structure: We created a network with a hidden pool, a feature pool, and an 

output pool. Th hidden pool consisted of 5 inhibiting units that represented items that were very 

liked, liked, neutral, disliked, and very disliked. The feature pools consisted of 2 sub-pools. One 

pool consisted of 5 features that were more or less liked. The first of these units was connected to 
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the ‘very liked’ hidden unit, the second to the ‘liked’ hidden unit, the third with the ‘neutral’ 

hidden unit, the fourth with the ‘disliked’ hidden unit, and the fifth with the ‘very disliked’ 

hidden unit. Each of these weights was set at +1. These feature units were also connected with a 

single approach output unit with the following respective weights: 0.5, 0.4, 0.3, 0.2 and 0.1 (least 

liked). These weights represented differences in liking ratings between items.  

The second feature sub-pool consisted of a single unit that was connected to all hidden 

units representing the common features across all items (weight +1). It was connected with the 

output unit with a weight of 0.5. 

Network Dynamics: The short presentation level (300ms) was simulated by providing 

feature input for 15 cycles, whereas the long presentation level (900ms) was simulated by 

providing feature input for 45 cycles. For items seen for 900ms, increased input, caused by 

longer presentation times, increased the activation build-up in the approach unit resulting in an 

overall preference for these items over items seen for 300ms at the same liking level.  

Table SM-1. Empirical and simulated choice rates for selected liking rating differences  

Liking -5 -2 0 +2 +5 

 Empirical 

% 

Sim. 

% 

Empirical 

% 

Sim. 

% 

Empirical 

% 

Sim. 

% 

Empirical 

% 

Sim. 

% 

Empirical 

% 

Sim. 

% 

900ms 30 31 47 44 58 57 60 69 65 80.1 

300ms 18 20 38 30 47 43 50 56 49 69 

 

Simulation Results: We ran parallel copies of networks at different levels of liking. For 

example, corresponding to a liking disadvantage of -5 points for the longer-viewed items, we ran 

one network with input into the least liked feature unit, and the common unit for 45 cycles, and 

another network with input into the most liked feature unit, and the common unit for 15 cycles. 
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We then compared the difference in activation in the respective approach units. For other liking 

differences we averaged across all possible combinations corresponding to that particular 

difference. Simulation results matched the pattern seen in the empirical data. Table SM1 

summarizes the empirical results and simulation data for liking differences of +5, +2, 0, -2, and -

5.  

Significance: The simulation provides an activation-based mechanism that is consistent 

with the empirical observation that increased viewing time increases choice rates at all levels of 

liking. Increased viewing time was simulated by increased activation.  
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6. Alternative network topologies for Simulation 8 
 

The IAC model specifies separate categories for high and low quantities of features, 

rather than a single unit that activates more or less strongly for a given dimension. Here we 

briefly describe the reason a single unit architecture is not a viable model in the context of the 

IAC framework. 

A core principle of all IAC networks is that a feature unit can receive activation from 

other feature units (via hidden units) that it frequently co-occurs with (Assumption 1). For 

example, a ‘high health’ unit may get indirect activation from the ‘low sugar’ feature unit and a 

‘vegetable logo’, because those properties may frequently travel together. In this example, all 

three feature units (high health, low sugar, and vege logo) would be connected to a common 

hidden unit.  

This principle makes an architecture that relies on different activation levels in a single 

unit incompatible with the principles of interactive activation. If there were a single unit for 

health, for example, it could not co-activate with units representing co-occurring features. In 

particular, assume that such a unit is connected with the ‘vege logo’ unit but not the ‘cola logo’ 

unit. In this case, evidence for the drink being a cola would not provide evidence for the property 

of low health. Conversely, if such a unit was connected with the ‘cola logo’ unit but not the 

‘vege logo’ unit, the sight of a logo featuring vegetables would not provide evidence for the 

property of high health.  

This feature of the IAC framework may explain why single-cell recordings in putative 

value circuits often show co-mingling of neurons with "on" responses to value (i.e. higher 

response to increasing value) and neurons with "off" responses to value (higher responses to 

decreasing value) (Morrison & Salzman, 2009). It is possible that such neurons could be 
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representing two ends of a continuum in order to enable feature associations that are context 

sensitive. 

 
 


