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Prominent theories of value-based decision making have assumed that choices are made via the
maximization of some objective function (e.g., expected value) and that the process of decision making
is serial and unfolds across modular subprocesses (e.g., perception, valuation, and action selection).
However, the influence of a large number of contextual variables that are not related to expected value
in any direct way and the ubiquitous reciprocity among variables thought to belong to different
subprocesses suggest that these assumptions may not always hold. Here, we propose an interactive
activation framework for value-based decision making that does not assume that objective function
maximization is the only consideration affecting choice or that processing is modular or serial. Our
framework holds that processing takes place via the interactive propagation of activation in a set of
simple, interconnected processing elements. We use our framework to simulate a broad range of
well-known empirical phenomena—primarily focusing on decision contexts that feature nonoptimal
decision making and/or interactive (i.e., not serial or modular) processing. Our approach is constrained
at Marr’s (1982) algorithmic and implementational levels rather than focusing strictly on considerations
of optimality at the computational theory level. It invites consideration of the possibility that choice is
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emergent and that its computation is distributed.
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What options do we prefer and how do we determine our
preferences? One common answer is that we review the available
options, calculate the expected value of each option, and then act
to maximize our expected value (Atkinson, 1957; Boureau, Sokol-
Hessner, & Daw, 2015; Eccles & Wigfield, 1995; Rangel, Cam-
erer, & Montague, 2008; Simon, 1986; Slovic, 1995).

This way of thinking about value-based decision making is both
intuitive and widespread. However, a growing body of empirical
results is inconsistent with this view, and this leads us to propose
an alternative. We refer to this as the interactive activation per-
spective. It is rooted in the parallel distributed processing (PDP)
tradition (Rumelhart & McClelland & the PDP Research Group,
1986), and more specifically, in the assumptions of the interactive
activation and competition (IAC) model introduced in McClelland
and Rumelhart (1981).
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Summary of the Argument

There are two interrelated questions that are central to the
value-based decision-making literature: what options do decision
makers prefer, and how do they compute their preferences? A
commonly accepted claim related to the “what” question is that
decision makers prefer options that maximize expected value. A
commonly accepted claim related to the “how” question is that for
each decision it faces, the brain represents the available options,
values them, and then acts to choose the option with the highest
valuation. These subprocesses are thought to be largely serial and
modular. We examine each of these claims in turn.

Maximizing Expected Value

Researchers in different eras and in different domains have
postulated that value-based decision making involves maximizing
expected value (Huygens, 1657; Laplace, 1814; Samuelson, 1937;
von Neumann & Morgenstern, 1944). The expected value of an
option is defined as the product of the net benefits offered by that
option (its value) and the probability of its realization (its expec-
tation). It represents the average value yielded by an option if it is
repeatedly encountered.

However, in many empirical studies, decision makers do not
always act to maximize expected value (Bell, 1988). In response to
these studies, researchers proposed that decision makers maximize
subjective expected value. Subjective expected value allows for
the subjective evaluation of the expectations and values of the
available options. Subjective variables (i.e., expectation and value)
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are thought to be functions of the corresponding objective vari-
ables. This insight informed Prospect Theory (Tversky & Kahne-
man, 1981), which proposed that (a) subjective representations of
probabilities were less extreme than corresponding objective prob-
abilities and (b) representations of subjective value were nonlinear
and asymmetric functions of objective value. Thus, Prospect The-
ory and related fields such as behavioral economics (Camerer,
Loewenstein, & Rabin, 2011) did not contest the assumption of
expected value maximization but did note that the representations
of expected value that people actually used were functions of
objective expected value.

Contemporary researchers have continued to embrace the notion
that subjective expected value is the common currency of value-
based decisions. Specifically, Bayesian decision-making theories
(e.g., Peterson, 2017; Pooseh, Bernhardt, Guevara, Huys, &
Smolka, 2018) have focused on the “expected” part of expected
value calculations, and psychologists interested in motivation have
focused on the role of needs and goals in shaping the “value” part
of expected value calculations (e.g., Locke & Latham, 2006).

However, there is a growing class of apparent anomalies in
which it appears doubtful whether decision makers are, in fact,
maximizing subjective value (or any systematic function of ex-
pected value). For example, in the anchoring phenomenon (Ariely,
Loewenstein, & Prelec, 2003; Orr & Guthrie, 2005), people are
known to be systematically influenced by irrelevant anchors intro-
duced prior to an estimate of the willingness to pay for a set of
items. In one such study, participants were asked to attend to the
last two digits of their social security number. Participants with
higher numbers (e.g., 93) had a greater willingness to pay than
participants with lower numbers (e.g., 15; Ariely et al., 2003; Orr
& Guthrie, 2005). Another example of an apparent anomaly fea-
tures the phenomenon of negative auto-shaping (Williams & Wil-
liams, 1969). In one such study, pigeons observed pairings be-
tween an illuminated key and the delivery of food. At first, they
ignored the illuminated key and pecked at the delivered grain.
Later in the experiment, the pigeons began to peck at the illumi-
nated key even though such behavior, in the context of the exper-
iment, prevented the delivery of food. In this article, we describe
and simulate several such anomalies.

There are two reasonable responses to such apparent anomalies.
The first is to propose that the above examples represent system-
atic—but as yet undiscovered—deviations in the computation of
subjective expected value from objective expected value. Thus
(subjective) expected value would remain the common currency of
value-based decision making—albeit its computation would be
even more complex than originally thought.

The second response is to consider the possibility that expected
value computations are not the common currency of value-based
decision making. Such a response would entail the development of
a framework that cannot only explain the types of anomalies
described above but can also include a viable explanation for the
instances of decisions in which decision makers do appear to be
maximizing expected value. In this article, our objective is to
develop the second of these two responses.

Serial and Modular Processing

Traditional models in economics limited their scope to explain-
ing an individual’s observable choice. They did not seek to address

the difficult to observe brain processes that produced a particular
choice. They allowed that in value-based decision making, humans
behaved as if they had valued all available options but remained
agnostic whether this “as if”” computation actually occurred in the
brain (Friedman & Friedman, 1953; Samuelson, 1937).

Modern neuro-economists and psychologists hypothesized that
the brain does indeed make subjective expected value calculations
(Kable & Glimcher, 2009). They proposed that this calculation is
made via a set of serially unfolding, modular processes (Opris &
Bruce, 2005; Rangel et al., 2008). The brain is thought to first
represent the variables that are relevant to the decision at hand.
Next, it is thought to compute value signals related to the variables
being considered, and then it is thought to act to select the action
possibility with the strongest value signal. Each subprocess is
thought to complete itself (i.e., it is modular) and then pass on
information to the next subprocess (i.e., it is serial). Although
some theorists do not insist on rigidity in serial and modular
processing (e.g., Rangel et al., 2008), serial/modular processing is
often thought to be a core feature underlying value-based decision
making.

The assumption of serial and modular processing has proved
conceptually useful. However, there are several anomalies in
which the brain does not appear to be following a serial and
modular process. For example, participants perceived an ambigu-
ous figure as either a horse or seal depending on whether a farm
animal or a sea creature led to more rewards (Balcetis & Dunning,
2006). Similar results were seen when participants viewed a figure
that could be perceived either as the letter “B” or as the number
“13.” In both these cases, the value of future outcomes appeared to
influence what they perceived—suggesting that the processing of
visual stimuli interacted with the rewards associated with those
stimuli (which were presumably processed in the valuation stage).
In this article, we describe and simulate this and other such
anomalies.

There are two reasonable responses to this and other such
apparent anomalies. The first is to propose that the brain makes
decisions in a serial and modular fashion as a fundamental design
principle—but does so imperfectly in practice. Any examples
featuring the dynamic interaction between putatively modular sub-
processes is an outcome of imperfect segregation or leakage
among the components.

The second response is to consider the possibility that value-
based decision making is an inherently interactive process whose
putative components can operate concurrently and influence each
other as a fundamental characteristic of their operation. In this
article, our objective is to develop the second of these two re-
sponses.

The Interactive Activation Approach

To accomplish our objectives, we will draw on the IAC frame-
work (McClelland & Rumelhart, 1981; McClelland, 1981) that
embodies a specific set of assumptions within the broader PDP
tradition (Rumelhart et al., 1986). The framework specifies that the
neuron-like processing units that constitute a network are orga-
nized into pools such that units within a pool are mutually excit-
atory and connections between pools are mutually inhibitory. The
framework adheres to the assumption that propagation of excit-
atory and inhibitory influences is fundamentally bidirectional; if A
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excites or inhibits B, then B excites or inhibits A to the same extent
(i.e., units are connected bidirectionally and have symmetrical
weights). An important principle of the network is that units
representing attributes of items and situations do not excite each
other directly; instead, the framework relies upon conjunction units
that bind together all of the units that represent the features of an
item or situation and mediates their influence on each other.

The principles of interactive activation have been applied in a
wide range of psychological phenomena (see the Situating the
Present Work in Prior Literature section). However, prior to this
work, they have not been applied to the development of an inte-
grated alternative to the view that value-based decision making
involves the maximization of expected value, and that it occurs via
a serial and modular process.

In our application of the framework to value-based decision
making, we retain the features of the framework described above.
Two extensions are required to address value-based decision mak-
ing. First, drawing on an extension to the framework introduced in
Kumaran and McClelland (2012) we provide for experience-
dependent strengthening of the bidirectional excitatory connec-
tions between the features of an item or situation and the conjunc-
tion unit for it. Second, to address value-based behavior itself, we
allow some (but not all) of the units corresponding to features of
a situation to be connected to output units representing approach or
avoid action tendencies. Similar units have been previously used in
the personality domain (e.g., Read et al., 2010).

These elements play a crucial role in enabling our model to
simulate situations where choice patterns are consistent with value
maximization, as well as situations in which choice patterns do not
appear to be consistent with value maximization. As an example of
the latter, we consider negative auto-shaping described above as a
pattern inconsistent with value maximization. We simulated this
phenomenon by assuming that repeated pairing between the illu-
minated key and the delivery of food caused the units representing
these events to be connected to each other via a conjunction unit
for the key-food pairing situation. After this connection was es-
tablished, activation in the illuminated key unit caused activation

(a) Emergentist Perspective

: Optimality
History and Context | «=i» Considerations

Process and
Representation Level

Biological Level

to flow to the food unit which, in turn, activated the approach
output unit (the key unit was not connected to the approach unit,
but the food unit was). This caused the pigeon to approach and
peck at the illuminated key—even though doing so ensured the
nondelivery of food (see Simulation 5).

The TAC framework instantiates an emergentist vision of value-
based decision making (and affect and cognition, more generally).
It focuses attention at the process and representation level, cap-
tured primarily in terms of proposed networks of units and the
activation processes that operate within them, with the possibility
that these units and processes can ultimately be related to their
underlying biological implementation, as illustrated in Figure la.

Although the framework is sensitive to optimality consider-
ations, we see it as distinct from, and as an alternative to, the
top-down approach to cognition and behavior advocated by those
who focus primarily on optimality considerations, or on the com-
putational level (similar to a focus on optimality) advocated by
Marr and other proponents, as illustrated in Figure 1b. Instead of
treating optimality considerations or what Marr (1982) called the
computational level as primary, we place the greatest emphasis at
the representation and process (algorithmic) level, while allowing
that the representations and processes at this level are interdepen-
dent with context and history, optimality/computational-level con-
straints, and constraints imposed by our biology. With its openness
to considerations other than optimization per se, we see our emer-
gentist interactive activation framework as in line with the ap-
proach advocated by Rahnev and Denison (2018) in the realm of
perceptual decision making, lowering the risk of deploying con-
structs that stipulate the target of explanation, and opening up a
broader consideration of the best way to understand all of the
factors that influence value-based decision making.

In reference to the two central “what” and “how” questions
about decision making, the IAC framework proposes that (a)
although decision making may sometimes be consistent with ex-
pected value maximization, at other times it may be nonoptimal
due to activation of contextual variables and/or due to associative
learning and (b) the process of value-based decision making fea-

(b) Top-down Perspective

Optimality
Considerations

}

Process and
Representation Level

}

Biological Level

History and Context | ===

Figure 1. Two ways of construing levels of description in value-based decision making (and other cognitive
and affective domains). In the approach illustrated in Figure la, the process and representation level importantly
informs and is informed by, other variables in the decision-making process. In the approach illustrated in Figure
1b, optimality considerations are the main driver of behavior. See the online article for the color version of this

figure.
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tures the reciprocal and interactive (i.e., not serial or modular)
influence of many variables acting in parallel.

The rest of this article fleshes out this summary of our argument.
We provide a high-level description of well-accepted accounts of
value-based decision making and highlight two sets of empirical
phenomena that challenge such accounts—that is, (a) examples of
choices that do not appear to be guided by expected value maxi-
mization and (b) processing that does not appear to involve serial
and modular processing. Next, we detail the IAC framework and
provide a simulation that illustrates the operation of our framework
which is consistent with expected value maximization. We use the
interactive activation framework to present simulations of empir-
ical phenomena in which expected value is not maximized and/or
whose processing was not serial or modular (i.e., the phenomena
described below). In Finally, we draw out several broader impli-
cations of the IAC model.

A Consideration of Two Key Assumptions of
Value-Based Decision Making

We define value-based decisions as decisions that involve sub-
jective preferences (e.g., Do I want an apple or an orange?). These
may be contrasted with perceptual decisions that involve decisions
related to an objective state of the world (e.g., Is this an apple or
an orange?; Polania, Krajbich, Grueschow, & Ruff, 2014). Impor-
tantly, preferences may sometimes influence choice and some-
times influence evaluations. We see both these processes—eval-
uations and choice—as flowing from a common set of principles
and consider them both to be relevant to the present work.

As described the Summary of the Argument section, value-based
decision-making theories from neuroeconomics, psychology, and
economics have been predicated upon two intuitively plausible
assumptions: objective function maximization and serial/modular
processing. Objective function maximization refers to the idea that
decision makers prefer options that maximize expected value.
Serial/modular processing refers to the idea that for each decision,
the brain, in turn, represents the available options, values them,
and then acts to choose the option with the highest valuation.
Although it remains difficult to adjudicate the final ground truth, a
gathering body of evidence is inconsistent with both these assump-
tions.

Evidence Inconsistent With the Objective Function
Maximization Assumption

Theories of decision making have often assumed that decision
outcomes have a set of values and expectations (i.e., beliefs about
the probability of an outcome being realized) associated with them,
and that the overall utility of a decision outcome is simply its
expected value—a probabilistically adjusted average value that
could be expected if an option was selected (Glimcher, 2008;
Samuelson, 1937; von Neumann & Morgenstern, 1944). It is often
further assumed that decision makers select options that maximize
their expected value. This view has been embraced and extended
by neuro-economists seeking to find the brain correlates of ex-
pected value (Glimcher, 2008; Glimcher, Camerer, Fehr, & Pol-
drack, 2009), decision scientists seeking to identify predictable
irregularities in expected value computations (Tversky & Kahne-
man, 1981), psychologists seeking to identify the affective sources

of value (Higgins, 2015), and theorists studying decision making
in the Bayesian tradition (Peterson, 2017; Pooseh et al., 2018).

In what follows, we review two sets of studies that jointly
suggest that decision makers do not always maximize an objective
function in order to make judgments and choices. In the first set,
we shall consider examples in which behavioral choice reflects
attending to contextual factors that are unrelated to the value of
the options at hand. Here, we will describe effects related to
anchoring to irrelevant variables, persistence with inferior default
states, and the influence of increased visual gazes on choice. In the
second set, we shall consider examples in which behavioral choice
appears to emerge from (learned) associative constraints, rather
than optimization related constraints. Here, we will describe ex-
amples related to negative auto-shaping, and associative learning
related to prior rewards.

Attending to contextual factors influences choice. The first
set of studies relates to the influence of attention to factors irrel-
evant to optimality. A well-known effect concerns the anchoring
heuristic. In the classic demonstration by Tversky and Kahneman
(1974; not in the domain of value-based decision making), for
example, participants were asked whether the percentage of Afri-
can countries in the United Nations was more or less than 10%
(low anchor) or 65% (high anchor). Both anchors were understood
by participants to be random, generated by a spinning wheel
(rigged to stop at either 10 or 65). Results indicated that the
arbitrarily selected number on the wheel affected estimates. Those
whose spin had yielded a 10 provided a median estimate of 25%
and those who spun a 65 provided a median estimate of 45%.
Similar effects were seen in a value-based decision-making con-
text when participants were asked to estimate whether the prices of
several items were more or less than the last two digits of their
social security numbers (Simulation 4, Ariely et al., 2003).

Some researchers have argued (Barkan, Ayal, & Ariely, 2016)
that such examples may be thought of in terms of objective
function maximization. It is possible that participants started off
with an incidental anchor and then updated the anchor, trading off
between the utility of being accurate and the effort of mentally
iterating through considerations related to improving the quality of
the estimate. However, such accounts do not address why a com-
pletely incidental number could serve as an anchor in an unrelated
decision in the first place.

Parallel issues arise in the consideration of default effects (Sim-
ulation 3). Individuals are known to frequently persist with default
options that appear to have inferior valuations to other possible
actions in that particular context (Samuelson & Zeckhauser, 1988).
Default preferences have been observed in diverse decision con-
texts such as organ donation (Johnson & Goldstein, 2003), savings
behavior (Choi, Laibson, Madrian, & Metrick, 2004), voting pat-
terns (Gow & Eubank, 1984), and choices in utility and insurance
providers (Samuelson & Zeckhauser, 1988). Why do such default
effects occur? To date, explanations consistent with the assump-
tion of utility maximization have sought to argue that there are
subtle benefits that increase the valuation of the default option
and/or subtle costs that decrease the valuation of the nondefault
options. Past research (Dinner, Johnson, Goldstein, & Liu, 2011;
Kahneman, Knetsch, & Thaler, 1991; Samuelson & Zeckhauser,
1988) identified three such valuation-based factors: costs of eval-
uating the available options, an implied recommendation, and loss
aversion associated with leaving a default state.
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Although accounts based on these three factors successfully
explain some behaviors that may appear counterintuitive or anom-
alous, there is growing evidence that default effects persist even
when none of these three factors is present. In one such study
(Suri, Sheppes, Schwartz, & Gross, 2013), when participants were
asked to proactively press an easily accessible button to reduce the
probability of being painfully shocked (if they did nothing they
would be shocked), participants pressed the shock-probability-
reducing button in only about half the trials. Postexperiment
debriefing revealed that participants universally understood that
button pressing was in their interest (thus decision costs were
minimal), understood that experimenters were indifferent to
whether they pressed the button or not (thus implied recommen-
dations were minimal), and understood that there were no losses
associated with leaving the default state of receiving an undesir-
able shock (thus loss aversion was unlikely to be an influencing
factor). And yet, participants persisted with inferior default states
for approximately half the trials. Similar effects were reported in a
picture switching context (Suri & Gross, 2015) in which partici-
pants could avoid watching undesirable pictures (e.g., pictures
featuring horrific mutilations), simply by pressing a button. How-
ever, they frequently did not avail themselves of this opportunity.
Interestingly, drawing attention (via a flashing red border) to a
message that stated image switching was possible via a button
press, more than doubled switching rates—even though 100% of
participants were fully aware that they had this option.

A final group of examples highlighting the importance of con-
textual factors concerns the influence of increased visual gazes and
instructional cues on choice. Researchers have demonstrated that
merely increasing the amount of time an option is available to view
increases the rate at which that option is chosen. For example, a
slightly less-liked item displayed for 900 ms was frequently cho-
sen over a more liked item displayed for 300 ms (Simulation 10,
Armel, Beaumel, & Rangel, 2008). Similarly, when asked to
choose the more attractive of two faces, manipulation of gaze
duration systematically biased observers’ preference decisions
(Shimojo, Simion, Shimojo, & Scheier, 2003). This gaze effect
was also present when participants compared abstract, unfamiliar
shapes for attractiveness. Relatedly, increasing the salience of
particular features (e.g., health or taste of food items) has been
shown to increase the influence of those features on ultimate
choice (Hare, Malmaud, & Rangel, 2011). For example, in the
presence of health-related instructions, participants were more
likely to choose healthy items, even when the instructions empha-
sized that they should always make the decision that they prefer,
regardless of the instruction (Simulation 9).

Behavioral choice can emerge from (learned) associative
constraints. A second set of studies highlights how nonoptimal-
ity may arise due to learned associations. A well-known effect in
which a learned associative constraint influences choice has been
demonstrated in experiments involving negative auto-shaping. As
described in the Summary of the Argument section, in a classic
demonstration (Williams & Williams, 1969) placed pigeons in a
box with a food hopper (which could deliver food) and an illumi-
nated key (which the pigeons could peck on). One of the most
important empirical conditions involved the illumination of the
key and the delivery of food provided the pigeon did not pick on
the illuminated key. Naive pigeons, who did not have any prior
associations between the illumination of the key and the delivery

of the food, at first performed this task effortlessly. They did not
pick on the illuminated key and were rewarded with the delivery of
food. However, after a few trial blocks, the pigeons spontaneously
began to peck on the illuminated key—a behavior that was pre-
cisely nonoptimal since it caused the nondelivery of food.

Presumably, this behavior occurred because the pigeons associ-
ated the illuminated key with the delivery of the food in the initial
trials in which they were not pecking on the illuminated key. After
the association was established, the illuminated key caused ap-
proach behavior (due to its association with food), which led to
pecking. This example suggests that behavior need not exclusively
be shaped by valued reinforcements; rather associative constraints
can and do shape behavior as well (Simulation 5).

A second example illustrating the impact of associative con-
straints concerns associations with prior rewards. Rats were placed
in a T maze choosing between two courses of action that differed
in their energetic demands and consequent reward sizes (Walton,
Kennerley, Bannerman, Phillips, & Rushworth, 2006). Energetic
demands were varied based on barriers of different heights (e.g.,
no barrier, a 30-cm barrier, or a 40-cm barrier). Food rewards were
varied based on the number of pellets available to the rat (they
varied between two and six pellets). For example, one arm of the
maze (the high reward [HR] arm) may offer four pellets and
feature a 30-cm barrier, and the other arm (the low reward [LR]
arm) would offer two pellets and feature no barrier. The HR side
and the LR side were kept the same throughout the experiment. In
early blocks, rats, consistent with optimality, preferred arms with
more food pellets and lower (or no) barriers.

However, associative (not optimality) constraints came to the
fore in the last block of trials. In this block, the HR side featured
two pellets and a 30-cm barrier, and the LR side featured (as it did
on most prior blocks) two pellets and no barrier. In this block, the
rats preferred the HR block (60% for the HR side vs. 40% for the
LR side) even though they had to climb a barrier to get two pellets,
which were also on offer on the LR side without the barrier.
Presumably, this occurred because the rats associated the HR side
with a greater number of food pellets, even though this was not the
case in the final block of trials. Prior associative learning related to
the arm of the maze offering higher rewards prevented the rats
from choosing the optimal option (Simulation 6).

Evidence Inconsistent With Seriality/Modularity in
Value-Based Decision Making

The process of value-based decision making is often assumed to
consist of serially unfolding, modular subprocesses that include
perception, valuation, and action (Gibson, 1979; Kable & Glim-
cher, 2009; Opris & Bruce, 2005; Rangel et al., 2008). According
to these accounts, the value-based decision-making process begins
with a subprocess in which the different available options in the
decision-making process are perceived and represented (percep-
tion and representation). This is followed by a subprocess in which
the different action outcomes are valued (valuation). Next, the
outcome of the valuation process is implemented (action selec-
tion).

Proponents of serial and modular processing do allow for the
possibility that the modularity of the subprocesses involved in
decision making is not rigid, and that some subprocesses may
proceed in parallel. However, at the core of their proposals is the
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assumption that the subprocesses are qualitatively and computa-
tionally distinct. Each subprocess is thought to accept certain
primitives and act on them via a set of ordered rules, to produce
outputs that are accepted by the next subprocess. These computa-
tions continue until an action or an option is selected. Thus, in
some respects, value-based decision making is assumed to be akin
to symbolic, serial, and modular processes that are common in
cognitive science (Fodor, 1983).

Although the serial and modular view of decision making has
provided conceptual benefits, an increasing number of empirical
studies suggest that decision making consists of richly interactive
processing—so that processing corresponding to one function is
constantly influencing and being influenced by processing related
to other functions. Collectively, these empirical studies present
evidence inconsistent with serial or modular processing between
functionally distinct units. Importantly, such studies are not incon-
sistent with representational modularity (e.g., by brain region) but
are inconsistent with process level modularity.

For example, several nonserial/modular effects have been noted
in the motivational influences in visual processing literature. As
described in the Summary of the Argument section, in one of the
best known such studies (Balcetis & Dunning, 2006), participants
perceived an ambiguous figure as either a horse or seal depending
on whether a farm animal or a sea creature led to more rewards for
them (Simulation 7). Related studies have demonstrated that val-
ued objects (i.e., those that can fulfill immediate goals such as
thirst), are perceived to be closer than they actually are (Balcetis &
Dunning, 2010). Similarly, distances that require more effort to
traverse are often judged to be longer (Hajnal, Bunch, & Kelty-
Stephen, 2014). Relatedly, the probability of successfully perform-
ing an action has been shown to influence perceptual estimates of
the target’s size and speed (Lee, Lee, Carello, & Turvey, 2012;
Witt & Sugovic, 2010, 2012). In these cases, participants’ percep-
tion, valuation, and choices appeared to proceed in parallel and
dynamically interact with one other. Finally, gathering neural
evidence suggests simultaneous processing of perception-related
and valuation-related elements (Hunt et al., 2018).

The IAC Framework for Value-Based
Decision Making

In this section, we develop the IAC framework for value-
based decision making that, in addition to allowing for choices
in which expected value is maximized, also allows for choices
that are not consistent with expected value maximization, and
allows for processing to occur in an interactive (i.e., not serial/
modular) fashion.

The TAC framework embodies a specific set of principles de-
veloped within the PDP tradition (Rumelhart et al., 1986). Neural
networks in the PDP tradition assume that all processing occurs
within neuron-like elements called units. These units influence
each other via weighted connections. All knowledge is resident
within these weighted connections. Learning in the network occurs
either by creating new connections between units or by updating
existing connection weights. The IAC framework for value-based
decision making makes these basic assumptions and is additionally
constrained by further specifications described below.

The IAC Network for Value-Based Decision Making

In the TAC network, units are organized into input, hidden, and
output pools (see Figure 2). If units in a pool can receive input
from sources outside the network, the pool is classified as an input
pool; if the activation of the units in a pool is entirely determined
by the activation of other units in the network, the pool is classified
as a hidden pool. An output pool has units that provide activation
into units outside the network. Although an input unit can receive
activation from outside the network, its subsequent activation is
influenced by the activation of other units that it may be connected
with.

As shown in Figure 2a, each unit has inhibitory connections to
other units in its pool and excitatory connections to units in
different pools. The horizontally inhibiting and vertically exciting
organization mimics the structure found throughout the mamma-
lian nervous system (e.g., Kisvdrday, Téth, Rausch, & Eysel,
1997). This implements a competition among the units such that
the unit or units in the pool that receive the strongest activation
tend to drive down the activation of the other units. Further and
importantly, each connection is reciprocal and has weights in both
directions. This makes the processing interactive in the sense that
processing in each unit both influences and is influenced by
processing in other units.

Units in input pools represent features of items.
interactive activation network in a particular context of value-
based decision making, we use the units of the input pool of the
network to represent features of items that are relevant in the
decision. For example, in the context of decisions involving
choosing between Coke or V8 (shown in Figure 2b), the units
of the input pool could represent properties of these two bev-
erages such as sweetness, taste, health, and name (i.e., “Coke”
or “V8”). Each feature (input) pool contains units representing
different levels of the feature. For example, the feature pool
representing taste may have units representing the levels “high”
and “low.” The feature pool representing health may have units
representing “healthy” and “unhealthy.” The units within each
feature pool are inhibitory (e.g., the units for taste are inhibitory
with units representing other tastes but have no connections
with units representing health).

Units in hidden pools represent a summary of an item. The
item hidden pool contains units that represent an approximate
summary of instances of items relevant to a choice. For example,
in the case of choosing between a Coke and a V8, the item hidden
pool would contain units representing “Coke” and “V8” (note that
these units represent the item, whereas the “name” input units
represent what the item is called). Units in the feature pools that
are consistent with a hidden representation have bidirectional
excitatory links to it. For example, the healthy unit in the health
feature pool may have a reciprocal connection with V8 but not
with Coke. Importantly, it is not required for a feature to be a
physical property of some underlying stimulus; rather an event
may be coded as a feature associated with a stimulus if it happens
to co-occur with that stimulus.

Having hidden units allows for the network to infer features,
even when it does not receive perceptual evidence supporting
those features. For example, the network may infer that a cola

To use the
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Figure 2. An interactive activation network. a: Simple processing elements, called units, represented by black
circles are organized into different pools. Units within a single pool have inhibitory connections between them
(represented by red lines with circular terminals). Units across pools have reciprocal excitatory connections
(represented by blue lines with arrow-shaped terminals). The number of units in each pool is illustrative. Not all
feature units need be connected to output units. b: An illustrative instantiation of the interactive activation
network, consisting of hidden pools representing Coke and V8, feature pools representing features of Coke and
V8. Features consistent with the drink are connected with corresponding hidden units (e.g., the Coke hidden unit
and the Sweetness feature are connected). In this illustration, the name feature pools not connected to the action
tendency pool—potentially because the decision maker has no preferences evoked by the ‘name’ feature. This
need not always be the case. See the online article for the color version of this figure.

drink it is not familiar with is likely to be sweet because most prior
instances of such drinks have been sweet.

Units in output pools represent an approach or avoid action
tendency. Finally, there is a pool of action tendency units in the
network. Units in this output pool may represent the action ten-
dency of approaching or avoiding a particular stimulus. Units in
feature input pools may be connected with action tendency units
with specific high or low weights. For example, activation in the
“sweet taste” feature unit may result (depending on decision maker
preferences) in more activation in the approach action tendency
unit, and activation in the “high” price unit may result in activation
in the “avoid” action tendency unit. However, there may be fea-
tures that are not connected to either “approach” or “avoid” units.
These units may exert their influence indirectly—via conjunctive
connections to feature units that are directly connected with the
output approach/avoid units. The approach and avoid units are
mutually inhibitory.

Activation. The activation coming into each unit is summed
algebraically, using a weighted average, constrained by maximum
and minimum values, to yield a net input. The net input is com-
bined with the existing activation to produce a new activation
value. Activation of each unit decays at a rate specified by a model
parameter (full quantitative details are provided in the Algorithmic
Details of the IAC Network section). The output function of each
unit is zero if the activation is below a specified threshold and is
equal to the difference between the activation value and threshold

if the activation is above threshold. The activations of the units in
an IAC network evolve gradually over time. The model updates
activation in discrete steps called cycles, but by assuming each
cycle to be a small unit of time, the activations in the model
approximate a continuous updating process.

Algorithmic Details of the IAC Network

As in most neural networks, the net input to a particular unit, say
u; in the IAC network, is the sum of the influences of all of the
other units in the network plus any external input e, from outside
the network. The influence of some other unit (say, u;) is the
product of that unit’s activation, a;, times the strength or weight of
the connection to unit i from unit j, designated by w;;. Thus the net
input, net; to unit u;, is given by

net; = estr X ¢; + 2 wii X a
i

where estr is a parameter that scales the contribution from external
input relative to internally generated inputs to the unit.

Parameters alpha (o) and gamma () similarly scale the influ-
ence of excitatory and inhibitory inputs. If alpha is equal to gamma
(as it is in many IAC implementations), then the above equation
becomes:
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net; =estr X ¢; +a X iji X a
i
Our parameter values in this work follow the values chosen by
McClelland and Rumelhart (1989) for prior IAC implementations.
In particular, we’ve set ‘estr’ to 0.4, and set both alpha and gamma
to 0.1. We also use four other parameters in our network imple-
mentations: max, min, rest, and decay; max and min are the
maximum and minimum activation, respectively, that any unit can
take. Their values are set to 1.0 and —0.2, respectively. At rest, a
unit has an activation of —0.1 (thus “rest” = —0.1), and the decay
rate parameter “decay” is set to 0.1. All parameter values are kept
unchanged across all simulations in this work.
If the net input, net; > 0, then the change in activation Aa, is
given by the following equation:

Aa; = (max — a;)net; — decay(a; — rest)
Substituting the parameter values, we get:
Aa; = (1 — ap)net; — 0.1(a; — (—0.1))

Thus, if activation is near or equal to the maximum value, then
Aa; may be a negative value, even though net, is positive. How-
ever, when g, is not to close to the max, then increases in net; lead
to approximately linear increases in a;. In the absence of net input,
the decay parameter drives down the activation of a unit toward
rest.

A similar equation applies when net; < 0:

Aa; = (a; — min)net; — decay(a; — rest)

A unit is said to converge when Aa; = 0. When a; > 0, this
implies that

0=(1— apnet; — 0.1(a; — (—0.1))
Ignoring the 0.01 term, this simplifies to

neti

%~ et + 0.1

Analogous results are obtained when a; < 0. Additional details
related to calculations pertaining to competition between units are
provided in the online supplementary materials.

Unit convergence does not imply network convergence. How-
ever, it is known (Perfetti, 1993) that any neural network with
reciprocal weights does converge. When it converges, we may
infer that the activation values of each unit are less than 1 (the
maximum value allowed) and greater than min.

The activation update equations provide the backbone of the
algorithm underlying the interactive activation network (Matlab
code provided in online supplementary materials). The algorithm
consists of two main routines: getnet, which computes the net input
for each pool in the network based on the activations at the end of
the previous cycle, and update, which updates the activation values
for each unit based on the net inputs computed by getnet. Specif-
ically, for each pool, the getnet routine first accumulates the
excitatory and inhibitory inputs from other units, then adds them to
the scaled external input and scales them (by alpha or gamma) to
obtain the net input. The update routine uses the net input value
from the getnet routine and uses the above equation to update the
activation levels for each unit in the network. A single getnet and
update routine constitutes a cycle. The interactive activation net-

work may execute many cycles until convergence (if the time to
make a decision is not of interest), or it may be terminated when
an action tendency unit (output layer) crosses a threshold. The
number of cycles is then considered to be proportional to the
amount of time it takes to make the decision.

Assumptions and Rationale

We next describe a set of assumptions related to structuring and
using the network to simulate value-based decisions. Our goal is to
use the assumptions presented here—and only these assump-
tions—to simulate a range of phenomena described in A Consid-
eration of Two Key Assumptions of Value-Based Decision Making
section. We begin by summarizing the assumptions and their
sources in Table 1 below.

Many of the above assumptions were made in the original
interactive activation model (McClelland & Rumelhart, 1981),
others have frequently been made in papers using the IAC model
(and other related papers), and a few assumptions related to value-
based choice are new to this work. Certain assumptions in Table 1
(those entries italicized in Column 1) require a more detailed
description of rationales and implications. We present these below.

(A1) Hidden units. As described in the IAC Network for
Value-based Decision Making section, we have assumed that our
networks have hidden pools. The units of these pools often repre-
sent an approximate summary of past experiences with instances
of some type of item in the world. For example, a “Coke” hidden
unit represents a summary of past experiences with instances with
this drink; it acts as a hub through which various properties of
Coke are connected to each other.

In line with exemplar models in use in many domains of
psychology (e.g., Hintzman & Ludlam, 1980; Medin & Schaffer,
1978), the IAC model is based on the idea that there is a separate
hidden unit for each experience someone has had with an item,
even though we use a single hidden unit in the model to approx-
imate the collective activity of the population of experience-
specific hidden units that all share a presented property (e.g., the
name Coke). On this way of thinking, a new hidden unit arises
from associative conjunctions between co-occurring properties,
each time an item is experienced. For example, we may frequently
experience the name Coke along with sweetness, bubbliness, red
packaging, and several other, perhaps less reliably co-occurring
features. Each such encounter binds all of these elements together
via its own experience-specific conjunction unit. The hidden unit
for Coke that we use in our simulations represents an approximate
summary of all of these conjunction units pertaining to Coke.
Features that consistently co-occur with Coke (e.g., the color red)
are strongly connected to the summary hidden unit (because they
have many experience-specific conjunction units); features that
may inconsistently co-occur with Coke (e.g., where it is pur-
chased) will be weakly connected to the hidden unit (because they
have fewer experience-specific conjunction units).

Connecting features to each other via conjunctive hidden units
affords the opportunity to exploit malleability and context-
sensitive associativity. Related to malleability, consider the case of
a hypothetical decision-maker who has encountered many in-
stances of drinks that are bubbly and unhealthy (e.g., Coke, Pepsi,
and Sprite). On observing that an unknown drink is bubbly, the
decision-maker is likely to conclude that it is unhealthy. In the IAC
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Table 1

Assumptions of the Interactive Activation and Competition (IAC) Model for Value-Based Decision Making

No. Assumption Role in model Source

Al Hidden units represent an approximate Hidden units allow for context sensitivity and McClelland & Rumelhart (1981)
summary of past experiences with malleability in value-based decision making.
instances of some type of item in
the world.

A2 Feature units represent summary Feature units are the only units that can receive input McClelland & Rumelhart (1981)
representations of an item’s activation from outside the network. They
cognizable property influence and are influenced by hidden units and

action-tendency units.

A3 Action tendency units represent Action tendency units are the output units of IAC Read et al., 2010
common elements of approaching networks. Their activation represents approach/
or avoiding items avoid tendencies and are used to identify choice.

Importantly, they are not valuation units as they
can receive activation that is value-related or
otherwise.

A4 Units within an input pool, hidden Inhibitory connections ensure that processing in a McClelland & Rumelhart (1981)
pool or action tendency pool have network is mutually competitive. For example, if
bidirectional inhibitory connections item feature units represent the property of ‘red’
with each other. and ‘blue’, competition ensures that both units are

not concurrently highly activated.

A5 Weights between hidden units and Feature unit—hidden unit weights represent the McClelland & Rumelhart (1981)
feature units are positive if a extent of association between a property
property represented by a feature represented by a feature unit and an item
unit is consistent with an item represented by a hidden unit. They are always
represented by a hidden unit. between 0 and 1, and always bidirectional.

A6 Feature units may influence action (a) Innate feature/output connections correspond to (a) New to current model; (b)
tendency units as follows: (a) innate evolutionary-conserved tendencies related to McClelland & Rumelhart
connections, (b) indirect influencers certain features (e.g. food, physical pain). (b) (1981); (c¢) New to current
via hidden units, (c) learned direct Features that are not directly connected to action model
connections over a broad range of tendencies (e.g. a brand name) can exert indirect
experiences. influence on action tendency units via their

connection with hidden units, which in turn are
connected to other feature units with direct
connections. (¢) Some features (e.g. money) may
often co-occur with approach or avoid tendencies.
Such associations can lead to direct feature-action
tendency connections that are not innate.

A7 Input into the network may only enter Increased network input may correspond to three Adapted from IAC input usage
the network via the feature pools. situations: (a) any empirical manipulation that

increases exogenous attention (e.g. a beep), (b)
direct experimental instruction, and (c) increased
presentation time.

A8 Activation at convergence in approach In go/no-go decisions an action is assumed to occur New to current model
and avoid units determines choice. if, and only if, activation in the approach unit
Convergence is defined as exceeds a threshold parameter. In the multi-
activation values stabilizing within alternative choice context, two or more instances
an interval of +10"* for ten of the model (one with the inputs appropriate for
consecutive network cycles. each option) are run in parallel, and the approach

output unit with the highest activation at
convergence is selected. The approach units of
each network have an inhibitory weight (—1) with
each other.

A9 The cumulative density function (cdf) Each activation value represents a point on a normal New to current model
is used to capture probabilistic distribution, and the corresponding cdf value is
processing in the network. used to determine the associated probability. The

cdf is mathematically equivalent to the Softmax
function, which in turn is equivalent to the Luce
Choice rule (McClelland, 2013)
Al0 Inter-trial effects learning effects Repeated experiences with the same associative Kumaran & McClelland, 2012

within a single experiment are
captured by increased connection
weights.

relationship result in a strengthening of connection
weights between a hidden unit encoding the
associative relationship and the elements that are
involved in the association. Here, we assume the
increase in connection weights without specifying
a particular learning algorithm.
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framework, this occurs because the “bubbliness” feature activates
the Coke, Pepsi, and Sprite hidden units. These units are, in our
hypothetical network, all associated with the unhealthy feature
unit, which is likely to receive strong activation. However, this
association is malleable: imagine that the decision-maker next
encounters several other drinks that have the bubbliness feature,
but are also healthy (e.g., mineral water). In these drinks, bubbli-
ness is associated with the healthy feature (via new conjunction
units). Now the bubbliness features would activate conjunction
units that vote for healthy (as well as earlier conjunctions voting
for unhealthy). This would weaken the association between bub-
bliness and unhealthiness. With enough new conjunctions, bubbli-
ness may even become associated with healthiness. Hidden units
thus play the role of casting top-down votes that determine the
effective associative strength between different features.

Related to context-sensitive associativity, associations involving
hidden units are also subject to selective activation based on
combinations of cues (Medin & Schaffer, 1978; McClelland,
1981). Increasing specificity of input can alter the pattern of
activated conjunctions in the hidden pool. Continuing with our
bubbly drinks example, providing input into the “sweet” and
“bubbly” feature units will activate hidden units corresponding to
Coke, Pepsi, and Sprite; this activation may in-turn activate the
unhealthy feature unit. On the other hand, input into the nonsweet
and bubbly feature units will activate the hidden unit correspond-
ing to mineral water; this activation may in-turn, activate the
healthy feature unit.

Exactly what summary representations should we posit when we
formulate simulations of specific situations? Our approach to this
is based on the idea that behavior in accordance with summary
representations at different granularities is an emergent property of
our brain-based associative learning systems, and that it is there-
fore justifiable to choose a granularity appropriate for the specific
situation. For example, if someone sometimes drinks Coke from a
soda machine and other times from a can, and the ones from the
soda machine are often flat, then activating the name Coke and
“from a soda machine” will have the effect of weighting the
resulting pattern of activation in accordance with the features of
experiences with Cokes from the soda machine, so that the feature
“flat” would be active instead of bubbly. In that case, we might
simulate a choice between a coke from a soda machine and a coke
from a can using separate hidden units for the two types of cokes,
each approximating the collective experiences with the appropriate
subset of Cokes. Other times, when simply simulating the choice
between Coke and V8, we can approximate the influence of the
entire ensemble of Coke experiences with a single summary hid-
den unit.

(A2) Feature units. As described above, feature units repre-
sent properties of the world. Examples of feature properties in the
context of drinks may include the name of a drink, its sweetness,
bubbliness, packaging, and the extent of its healthiness. Feature
units can receive input from outside the network, as well as
excitatory activation from hidden units and inhibitory activation
from other units within the same pool.

Similar to hidden units, feature units are best conceptualized as
summary representations of a property. A property may be gener-
ally specified involving a range of subcomponents (e.g., healthi-
ness) or it may be tightly specified (e.g., the particular shade of red
used by Coke). For our purposes, features are not necessarily

simple values on a dimension but can be any cognizable property
(Collins & Loftus, 1975).

Whether two intersecting features (e.g., different shades of red)
are separated or joined in the feature units will depend on whether
there are items to be distinguished within the setting of the exper-
iment that differ in that particular feature (e.g., an experiment
involving two slightly different shades of red). In both cases, the
underlying network is assumed to be the same—the approximation
to it that comes to the forefront in an experiment is the only thing
that changes.

(A6) Weights between feature units and action tendency
units. These weights represent the action tendencies associated
with certain features. Activation in some features may result in
increased activation in the ‘approach’ action tendency unit,
whereas activation in other features may result in increased acti-
vation in the ‘avoid’ action tendency unit. Not all features need be
connected to either output unit.

We assume that features may influence output in three ways:
First, some features may be innately connected to approach and
avoid action tendencies. We assume that there are only a small set
of such feature units with direct, evolutionarily conserved, con-
nections to action tendency units. These may include units repre-
senting features related to food (connected to the approach action
tendency unit), physical pain (connected to the avoid action ten-
dency unit), and particular bodily states—such as feeling energetic
or sluggish.

A second set of features may influence approach units indirectly—
mediated by conjunctions. For example, let us say that a tone
reliably precedes the delivery of food for an animal. Here we
assume that food-related features are innately connected to that
approach unit, but that the tone unit is not innately connected to the
approach unit. However, in the IAC perspective, the tone and
the food are connected to a common hidden unit, and activation in
the tone unit would elicit increased approach behavior via the
food-approach connection. Thus, the tone feature would elicit
approach behavior even though it is not directly connected to it. A
brand name (e.g., Coke) may also exert its influence in this
manner.

A third possible way for feature units to influence output units
occurs when features (e.g., money, or pushing a button to obtain a
desired item) co-occur with approach behavior over a broad range
of experiences. We assume that this repeated co-occurrence can
directly bind certain features with output units.

All feature-output weights are excitatory and bidirectional.
Greater weights between one feature and an action tendency unit
(compared to weights between another feature unit and that action
tendency unit) indicate a relatively greater influence of that feature
with respect to that action tendency.

(A7) Network input. Input into the network may only enter
the network via the feature pools. When modeling empirical data,
increased input activation may correspond to one or more of the
following three scenarios:

* Any empirical manipulation that increases exogenous at-
tention (Theeuwes, 1991): for example, a loud tone, or a
flashing red border around a stimulus would result in more
input for that stimulus compared to a situation in which the
stimulus is not accompanied by a tone or a flashing red
border (Glockner & Herbold, 2011). Similarly, requiring
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participants to interact with an experimental feature will
increase activation related to that feature. For example,
asking participants to make a judgment about a feature
(e.g., its color or size) will increase input activation related
to that feature proportional to the level of interaction
observed by the experimenter.

e Direct experimental instruction: for example, instructions
from the experimenter to focus on a particular feature
(e.g., the healthiness of a food item) would result in more
network input compared to a situation in which the stim-
ulus is not accompanied by experimenter instructions.

* Increased presentation time: for example, presentation of
good features for 900ms would result in a (3X) longer
duration of network input than presentation for 300 ms.

(A9) Transforming activation values into probabilities for
comparison with empirical data. Empirical variables over mul-
tiple trials and participants are inherently probabilistic. Although
we believe mental processes are inherently stochastic (Usher &
McClelland, 2001), we have simulated the activation process as
deterministic, for simplicity. To capture probabilistic processing,
we used the cumulative density function (cdf) of a normal distri-
bution to translate activation values into response probabilities. For
example, in the go—no-go context we used the activation value of
the approach unit as the mean of a normal distribution (with a fixed
standard deviation) and calculated the area under the curve (i.e.,
the cdf) greater than a threshold parameter to estimate the propor-
tion of the time an action would occur. In the context of experi-
ments involving multiple variables we used a single normal dis-
tribution (with a mean and standard deviation kept fixed
throughout the simulation), and used the cdf for output activation
value corresponding to each variable to estimate its probability.
This method has the benefit of simplicity and is mathematically
equivalent to other commonly used methods such as the SoftMax
function, which in turn is equivalent to the Luce choice rule
(McClelland, 2013).

Simulation #1: Coke Versus V8. Illustrating Usage of
the IAC Network to Simulate Choice

We will next demonstrate several properties of the interactive
activation network using an illustrative model involving prefer-
ences between beverages. The assumptions used in setting up and
using this network are indicated in parentheses (e.g., Al indicates
a reference to Assumption 1 from the Assumptions and Rationale
section).

Network structure. The network corresponds to the structure
displayed in Figure 3a: A hidden pool contains two units corre-
sponding to Coke and V8 (Al). There are four feature pools for
sweetness, taste, health, and name. The sweetness pool consists of
two units corresponding to high and low sweetness; the taste pool
consists of two units corresponding to cola taste and vegetable
taste; there are two health units corresponding to high health and
low health; there are two name units corresponding to Coke and
V8. The name units are activated only by the perception of the
name “Coke” or the name “V8.” This is akin to a unit that is
activated by hearing the name “John” but whose activation does
not represent the sum of cognitions about the person John (A2).
The action tendency pool contains two units corresponding to

approach and avoid action tendencies toward the option under
consideration (i.e., Coke or V8; A3).

As in all networks in the present work, the feature pools can
receive input from outside the network (i.e., they are input pools;
A7), and the action tendency pool can provide output outside the
network (i.e., it is the output pool; A3).

The units within each pool have bidirectional inhibitory weights
of strength —1 (A4). The units in each feature pool bidirectionally
connect (with excitatory weights of strength 1) to consistent units
in their corresponding hidden pool (AS5). For example, the hidden
unit for Coke has bidirectional excitatory weights (+1) to the
“high” sweetness unit, the “cola” taste unit, the “low” health unit,
and the “Coke” name unit. The hidden unit for V8 has bidirectional
excitatory weights (+1) to the “low” sweetness unit, the “vege”
taste unit, the “high” health unit, and the “V8” name unit.

Each unit in the feature pool bidirectionally connects with units
in the action readiness pool with varying weights shown in Table
1 (A6). These weights are assumed to reflect the preferences of a
hypothetical decision maker. Such a decision maker prefers more
sweet things over less sweet things, the cola taste over the vege
taste, and healthy items over unhealthy items. Here, we are as-
suming that the connections between the sweetness pool, taste
pool, and the action tendency pool are direct and innate (A6i). The
direct connection between the health pool and the action tendency
pool is associative formed by a preference to eat healthily over a
broad range of experiences (A6iii)

Many features either have an approach connection, or an avoid
connection, but this need not always be the case. For example, the
vege taste unit has both approach and avoid connections. The name
“Coke” and the name “V8” are assumed not to be linked to the
output units (i.e., have zero weights). However, the name units can
exert their influence indirectly via the hidden units (A6ii)

We describe three aspects of the IAC network in the context of
this illustrative model. First, we will use the model to illustrate
decision-making—both in the multialternative choice context and
the go/no-go context. Our simulation will show that choice be-
tween two options can be modeled via levels of activation in the
action-tendency units, and choice involving go—no-go decisions
can be modeled by using a threshold level in the action tendency
unit. Second, we will illustrate the ability of the model to infer
properties from incomplete information. We will input certain
features into the model (e.g., high health), and examine how the
model generalizes these features to other likely features (e.g.,
whether the beverage has a cola taste or a vegetable taste). Third,
we shall examine the consequences of competition in competing
networks, and in competing units in feature pools.

Simulating decisions using interactive activation. The deci-
sion maker in the illustrative model depicted in Figure 3a prefers
features associated with Coke to those associated with V8. This
preference is captured by more features associated with Coke
being connected with the approach unit with greater weight (see
Table 2). The features associated with V8 (other than calories
“low”) are associated with the approach unit with less weight and
are associated with the avoid unit with greater weight.

In this simulation, we first consider two decision making
contexts: Two-alternative choice and go/no-go choice (A8). To
model the choice between Coke and V8 we ran two parallel
instances of the model, activating the Coke hidden unit via its
name unit, and the V8 hidden unit via its name unit. Activation
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Figure 3. Network structures and activations in Simulation 1: Coke versus V8. Panel a shows two identical
networks. The left network gets activation for the “Coke” name unit, and the right network gets activation for
the “V8” name unit. In each network, feature and hidden units with greater activation are shaded darker. Panels
b—d show activation levels related to the approach unit for Coke and V8 in Simulation 1. Panel b shows the
resulting difference in approach activation when there are clear differences in weights between Coke (+) related
features and V8 (o) related features (in favor of Coke; the weights are shown in Table 2). Panel ¢ shows the effect
of minimizing the weight differences and removing competition between the approach units in the two networks.
This makes the activation in the approach Coke and V8 units become nearly identical. Panel d shows the effect
of introducing inhibition between the two approach units while keeping all other weights unchanged from Panel
c. Panel a does not represent mutual inhibition between the approach units of the two units since it is operational
in Panels b and d, but not in c. See the online article for the color version of this figure.

flowed from the name units to their respective hidden units, and
then in-turn into the feature units representing each drink. Activa-
tion in the feature units then propagated to the action tendency
units. The action tendency units for each network inhibited each
other (i.e., the approach unit in the Coke network competed with
the approach unit in the V8 network and the avoid unit in the Coke
network competed with the avoid unit in the V8 network).

At convergence for the Coke network, the activation in the
approach action tendency unit is 0.66 and the activation in

Table 2

the avoid action tendency unit is —0.14. For the V8 network, the
activation in the approach unit is —0.12 and the activation in the
avoid unit is 0.55, showing that all else equal (e.g., actions required
to procure the drink), the network would approach Coke and avoid
V8 (Figure 3b shows activations in the approach units).

In our simulation, we elected to input the name unit, but this
need not always be the case. For example, the network input
corresponding to a situation in which a decision-maker attends to
something sweet would be provided into the high unit in the

Feature-Action Tendency Weight Matrix for a Hypothetical Decision Maker

Action SwHigh SwLow TasteCola TasteVege HealthHigh HealthLow NameCoke NameV8
Approach 1 0 1 75 1 0 0 0
Avoid 0 1 0 5 1 0 0
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sweetness pool. This would activate the respective hidden units
(for sweet drinks encountered in the past) which in turn would
activate the feature units for the drinks in the consideration set.

Go-no-go decisions (i.e., where the decision is about either
obtaining the item, or doing nothing) may be simulated by assum-
ing a threshold in the action tendency units (A8). For example,
assuming a threshold of 0.65 in the approach unit would cause a
no-go decision for V8 and a go decision for Coke. Here there is
only one network processing activation, not two, as was the case
for two-item choice.

Inferring features from incomplete information. A second
performance aspect of the interactive activation network is that it
can infer feature properties of newly encountered items based on
prior knowledge. Consider the scenario in which the network
encounters a mystery drink that has vege taste, but an unknown
health level. To examine network behavior in this context, we
provide input to the vege taste feature unit. This unit causes
activation in the V8 hidden unit (this activation represents the prior
knowledge of the network). The activation in the V8 hidden unit
in-turn activates the high health unit over the low health unit (0.64
vs. —0.14 at network convergence). Thus, the network assumes
that the mystery drink is healthy. This may not actually turn out to
be the case, but it represents the network’s estimate of likely
properties. If the network later encounters healthy beverages with
a cola taste, it would update its estimates.

Competition. A third performance aspect of the interactive
activation network concerns competition between units. Imagine
that V8 has the weights shown in Table 2, except the decision
maker has a weight of 0.90 from the vege taste unit to the approach
unit and has zero weight to the avoid unit (instead of the 0.75 and
0.5 weights in Table 2). Under these conditions, the weights from
the Coke features into the output pools are nearly identical to the
weights from the V8 features. (The sweetness pool in favor of
Coke is canceled out by the symmetrical health pool in favor of
V8, and the taste weights are now nearly identical). Further,
imagine that (unlike in the original simulation above) there is no
mutual inhibition between the approach units for Coke and V8.
This results in a nearly identical approach unit activation for Coke
and V8 (Figure 3c).

Reintroducing inhibition between the approach units results in
clear separation (Figure 3d) even though the weights in the Coke
network are only very slightly more favorable than the weights in
the V8 network. This separation occurs because the two approach
units are mutually inhibiting each other and even a small advan-
tage for one of the units (Coke in this case) is amplified over time.

Competition similarly enables mutually inhibiting units in a
feature pool to have clearly differentiated activation levels. Imag-
ine for example that the input activation for a drink is nearly
identical for the high health and low health units, except that the
high health unit receives slightly greater activation. This initial
difference will be amplified over time (i.e., network cycles) until
the network represents features related to high health.

Significance. In Simulation 1, preference emerges via the
interaction of features (e.g., taste, health) that have a direct bearing
on utility. In this case activation in the output units precisely
represents the value of the drink (Coke or V8). More generally, if
a network only includes features related to the utility of the item
represented in the conjunction unit, then the activation level in the
output units represents the overall value of that item. However, if

the network includes features and connections reflecting the influ-
ence of items unrelated to utility, then the output units do not only
represent value-related activation. Thus, the IAC framework can
account for all patterns of choice observed in models that are based
on the computation of value and it can also account for patterns of
choice created by activations unrelated to value. Later simulations
will show that IAC networks can also simulate contexts in which
choice is not consistent with expected value maximization.

In addition, and notably, Simulation 1 did not include serial or
modular processing. All units participated in influencing each
other from the very start, and there were no separable submodules
related to perception, valuation, and action selection.

Situating the Present Work in Prior Literature

Beyond its initial application to context effects in perception, the
IAC framework has been used to capture a wide range of psycho-
logical phenomena, including perception (McClelland, Mirman,
Bolger, & Khaitan, 2014) emergent category formation and
category-based inference (McClelland, 1981), social cognition
(Freeman & Ambady, 2011), memory (Kumaran & McClelland,
2012), social behavior (Ehret, Monroe, & Read, 2015; Read &
Miller, 1998), legal judgments (Simon, Stenstrom, & Read, 2015),
emotional consciousness (Thagard, 2008), and probabilistic infer-
ence (Glockner, Betsch, & Schindler, 2010). Unsurprisingly, we
are sympathetic to these efforts and consider their contributions to
be substantial and useful.

However, there are also some important differences between our
work and prior approaches. First, we have extended the IAC
framework to examine two core questions in value-based decision
making: whether such decisions are always in the service of
maximizing expected value, and whether they follow a serial/
modular process. Although these points have not been generally
emphasized, we note that the absence of seriality/modularity has
also been observed by others (e.g., Simon, Snow, & Read, 2004).
Second, although we share some assumptions with the papers
above, we do have a unique set of assumptions and those assump-
tions do have a unique set of implications with respect to value-
based decision making. For example, we do not have units that are
solely tasked with evaluating stimuli. This assumption has gener-
ally not been made in the value-based decision-making domain
(but a similar approach has been taken in the motivation and
personality domains, e.g., Read et al., 2010). As we discuss in the
General Discussion, the parsimony of not assuming units exclu-
sively dedicated to computing value invites consideration of the
possibility that value-based choices may involve variables other
than value and they may not unfold in a serial and modular
process.

Simulations of Empirical Findings Using IAC

In reference to the two central what and how questions about
decision making, the IAC framework makes two proposals: First,
although decision making may sometimes be consistent with ex-
pected value maximization (e.g., in Simulation 1), at other times it
may be nonoptimal. This may occur because of attention to irrel-
evant contextual variables or because of learned associative con-
straints. Second, the process of value-based decision-making fea-
tures the reciprocal (nonserial) and interactive (nonmodular)
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influence of many variables acting in parallel. Next, we will
feature simulations of empirical phenomena (previously described
in A Consideration of Two Key Assumptions of Value-Based De-
cision Making section) that lend support to these proposals.

Overview of the Simulations

We selected experimental targets for simulation based on the
following three criteria: (a) The empirical phenomenon should
pertain to (1) a violation of optimality due to attending to contex-
tual factors and/or (2) a violation of optimality due to constraints
caused by associative learning and/or (3) interactive effects of the
type that are unlikely to feature in processes that are serial/
modular. Together the chosen simulations should span these cat-
egories. (b) The mechanistic rationale offered by the IAC simula-
tion for the empirical phenomenon should advance the current set
of explanations in the field, and should richly leverage the assump-
tion set underlying the IAC model. Phenomena that can be simu-
lated by a simple assumption related to free parameters in the
model and/or ones that do not amplify existing analysis in the field
would not be ideal simulation targets. (¢c) The underlying empirical
phenomenon should be well-known in the value-based decision-
making literature.

First, related to nonoptimality, we showcase empirical phenom-
ena that are not consistent with expected value maximization. We
begin with examples in which nonoptimality effects may be at-
tributed to the activation of units representing contextual variables
that are irrelevant to utility. These include the Halo Effect (Sim-
ulation 2), default effects (Simulation 3), and anchoring (Simula-
tion 4). Simulations related to instructional cue-effects (Simulation
9 and Simulation 10) also rely on activation of incidental stimuli

and are detailed in the online supplementary materials. Second, we
simulate examples in which nonoptimality effects may be attrib-
uted to learned associative constraints. These include negative
auto-shaping (Simulation 5) and reward and path associations
(Simulation 6). Third, related to the absence of serial/modular
processing, we showcase a phenomenon in which processing ap-
pears to be interactive and reciprocal (Simulation 7). Fourth, and
finally, we propose that in addition to providing new viewpoints on
the what and how questions described above, the IAC framework
can provide a plausible mechanism for dynamic process in goal-
directed behavior (Simulation 8)—a key component of value-
based decision making. The list of all simulations is summarized in
Table 3.

Simulation #2: Halo Effect

This simulation was designed to showcase how the interactivity
of the IAC model is not consistent with choices that are optimal or
with decision making processes that are serial/modular. The em-
pirical structure in this classic demonstration of the Halo Effect
invited evaluation and not choice. However, since evaluations in
this experiment were shaped by preferences, and preferences are a
part of value-based decision making, we consider this demonstra-
tion of the Halo Effect to be an important part of the present work
even though participants were not invited to make a choice.

Target experiment. The Halo Effect (Nisbett & Wilson,
1977) is generally defined as the tendency for an impression
created in one area to influence opinion in another area. To specify
this effect, researchers videotaped two different interviews that
were staged with the same individual—a college instructor who
spoke English with a European accent. In one of the interviews, the

Table 3
List of Simulations
Number Section Topic Phenomenon Purpose
1 34 Mlustrative Choice of Coke vs. V8 Functionality consistent with optimality
(also: illustrate basic IAC
mechanisms)
2 42 Halo effect The attractiveness of one feature influences Nonoptimality due to context variable
perceptions of other unrelated features activation & absence of serial/modular
processing
3 43 Default effects Valued actions remain unchosen until Nonoptimality due to context variable
attention is directed towards them activation
4 44 Anchoring (a & b) Estimates of number of (a) physicians in a Nonoptimality due to context variable
city biased by incidental ID# and (b) activation and attentional effects
prices via social security number
5 4.5 Negative auto-shaping Associative constraints between an Nonoptimality due to associative
illuminated key and food delivery can constraints
cause non-optimal behavior
6 4.6 Reward and path associations Prior associations cause animal to Nonoptimality due to associative
undertake extra costs for rewards constraints (also, effect of action
costs)
7 4.7 Motivated influences on The classification of a visual stimulus is Interactive and reciprocal (not serial/
visual stimulus dependent on the outcomes associated modular) processing
categorization with each classification
8 4.8 Dynamic processes in goal- Prior goals can bias activation towards the Extension: Influence of goals
directed choice option they are associated with
9/10 SM Instructional cue effects Cuing taste/health features of food items Nonoptimality due to context variable
and input duration amplifies their activation and input duration
influence on choice
Note. IAC = interactive activation and competition.
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instructor was warm and friendly, in the other, cold and distant.
Participants were assigned to separate conditions—and viewed one
of the two videos in each condition. They were then asked to
classify the instructor’s appearance, mannerism, and accent on a
scale that ranged from very appealing to very irritating.

Empirical results. The participants who saw the warm in-
structor rated his appearance, mannerisms, and accent as appeal-
ing, whereas those who saw the cold instructor rated these attri-
butes as irritating. Seventy percent of the participants who had
seen the “warm” interview rated the instructor’s appearance as
appealing (the rest rated it irritating); 62% rated his mannerisms as
appealing (the rest rated it irritating) and 48% rated his accent
as appealing (the rest rated it irritating). Of the participants view-
ing the “cold” interview, the ratings were generally flipped: 68%
rated the instructor’s appearance as irritating, 60% rated his man-
nerisms as irritating, and 81% rated his accent as irritating.

Network structure. We used a network consisting of a hidden
pool and a set of input feature pools (see Figure 4). The network
structure corresponds to the idea that over time we develop favor-
able impressions of people who are warm, attractive, and with
appealing mannerisms and accents and unfavorable impressions of
people who are not. The former set is represented by the favorable
hidden unit, and the latter by the unfavorable hidden unit. These
units are connected to features of people we generally find favor-
able or unfavorable. There are four such feature pools each with
two units, as follows: a warmth feature pool (two units varying
between warm and cold), an attractiveness feature pool (two units
varying between attractive and unattractive), a mannerisms feature
pool (two units varying between appealing and irritating), and an
accent feature pool (two units varying between appealing and
irritating).

Weights between units in the same pool are competitive (equal
to —1). Weights from the features to the hidden pool units are
excitatory—the positive units (e.g., attractive, appealing) are con-
nected to the favorable unit and the negative units (e.g., unattract-
ive, irritating) are connected to the unfavorable unit. Each favorable
weight was assumed to be equal to its unfavorable counterpart. Since
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humans are most used to making judgments about attractiveness, we
assumed those weights to be the highest (+1); we assumed man-
nerism weights were lower (+0.8) and accent weights—since they
are less frequently perceived—to be the lowest (+0.7). All weights
were reciprocal.

Network dynamics. In the “warm and friendly” condition, the
external activation for the warm feature unit was set to 1, and
the external activation for the cold feature unit was set to 0. In the
“cold and unfriendly” condition the external activation for the cold
feature unit was set to 1, and the external activation for the ‘warm’
feature unit was set to 0.

Further, we set the inputs units related to the participant’s
attractiveness and mannerisms to 0. This was equivalent to assum-
ing that the instructor was seen to be neither attractive, nor unat-
tractive, and his mannerisms neither appealing nor unappealing.
However, because most unfamiliar accents are perceived slightly
negatively (Gluszek & Dovidio, 2010), we gave the “unappealing”
unit in the accent pool a small external activation (equal to 0.09)
in both the favorable and unfavorable conditions.

In the warm and friendly condition, activation from the warm
feature unit flowed to the favorable hidden unit. The activation in
the favorable hidden unit in turn activated the “attractive,” “ap-
pealing mannerism,” and “appealing accent” feature units. In the
cold and unfriendly condition, the unfavorable unit received acti-
vation from the cold feature unit. This activation in the avoid unit
in turn activated the “unattractive,” “unappealing mannerism,” and
“unappealing accent” feature units.

Values in the feature pool units were measured after 400 net-
work cycles by which time all network units had converged.

Simulation results. After convergence, we measured the ac-
tivations in the feature pools related to attractiveness, mannerisms,
and accents. The activation level for the winning unit (i.e., the unit
with the greater activation in the pair of units representing a trait)
was assumed to be a point on a normal distribution with mean of
0.2 and standard deviation of 0.5. The cumulative density function
corresponding to the activation level was used to calculate the
probability estimate for that activation level. The losing unit in the
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Figure 4. Structure and network dynamics for Simulation 2: The Halo Effect. The left panel depicts the
network structure and activation flows. The black arrows in the figure (partially) depict the early activation flows
in the network. Initially, the observed “warm” feature unit activates the “favorable” unit in the hidden pool.

These units in-turn reciprocally activate the “attractive,

<

appealing mannerism,” and the “appealing accent”

units (depicted by the dashed black arrows). Similar activation flows emanate from the “cold” feature units. The
right panel depicts the activation in the attractiveness unit in the warm and cold conditions. See the online article

for the color version of this figure.
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pair was assigned the complement of the percentage assigned to
the paired winning unit. As shown in Table 4, simulation results
matched the pattern of the empirical data.

Significance. The Halo Effect simulation highlights the im-
portance of interactivity in our network. Features that were neither
perceived as positive or negative received a favorable or unfavor-
able cue since activation from a single feature pool activated a
hidden unit (either favorable or unfavorable), which in-turn acti-
vated other (corresponding) feature units. This showcases a mech-
anism in which perceptions about a particular attribute (e.g., how
appealing an accent is) are made in parallel with, and are influ-
enced by, judgments about other attributes (e.g., warmth). This is
not consistent with decision-specific optimality or with a serial/
modular process.

Simulation #3: Default Effects

As described in the Evidence Inconsistent With the Objective
Function Maximization Assumption section, people retain default
states for a number of reasons that are consistent with utility
maximization. However, there is a growing list of empirical con-
texts in which leaving a default state appears to have positive
utility, and yet the participant does not initiate actions to leave the
default. In such cases, changing the level of attention toward a
previously understood cue changes behavior. We next simulate an
experiment demonstrating this effect.

Target experiment. Participants were shown either a negative
image or a neutral image (Suri & Gross, 2015; Suri, Sheppes, &
Gross, 2015; Suri, Shine, & Gross, 2018) from a database of
affective images, classified into positive, neutral, and negative
categories. In each of 40 trials, they were shown a negative or
neutral image as a default. If they did nothing, they viewed the
default image for the 15-s duration of the trial. However, they were
given the option to press a button to switch from the default image
to a higher-valenced image. For example, participants could switch
from viewing a negative image to viewing a neutral image, or from
viewing a neutral image to viewing a positive image. A caption
under each default image reminded participants that they could
switch away from the current image to a higher-valenced image.
Postexperiment debriefing confirmed that 100% of participants
understood (from the caption as well as from instructions and
practice trials at the start of the experiment) that they could switch
away from the default image. Prior studies had also demonstrated
that when given a (two-alternative) choice, participants over-
whelmingly chose to view neutral images over negative ones, and
positive images over neutral ones. However, in the context of a
go—no-go choice, where pressing a button could have enabled

Table 4
Simulation #2: Halo Effect, Results

participants to leave the inferior default, they often did not do so
(switching rate was 29%). In postexperiment debriefings, partici-
pants did not identify any utility maximizing consideration that
could have driven their inaction.

To test whether attention was a factor in participant nonpresses,
participants were randomly assigned to a high-attention group and
a low attention group. Participants in both groups were shown a
caption below the picture stating that a button press enabled the
lower-valenced image to be replaced by the higher-valenced im-
age. In the high-attention group (if the participant had not elected
to switch images), a red-border around the caption was shown 5 s
after the commencement of each trial; if the participant had still
not pressed the button 10 s into the trial, the red border was briefly
flashed. In the low attention group, no red border was shown.

Empirical results. In the low-attention group participants
switched images in only 29% of the trials. In the high attention
group, participants switched images in 50% of trials. Notably, the
rate of switching in the first 5 s (prered border) of the high
attention group was indistinguishable from the low attention
group. High attention group participants switched images for 17%
(6.76 out of 40) trials within the first 5 s compared with 19% (7.4
out of 40) switches in the low-attention group within the first 5 s.

Network structure. We used the network structure shown in
Figure 5 to simulate the above results. There were two units in the
hidden pool—one representing an instance of a negative-to-neutral
trial (Neg2Neut), and the other representing an instance of a
neutral-to-positive trial (Neut2Pos). There were three feature pools
where the first pool represented the current image. It had two units;
one unit represented a default negative image, and the other
represented a default neutral image. The second pool represented
the caption stating that the participant can press a button to switch
images. The third feature pool was activated by the expected
features of the alternative future image. It had one unit for a
potential neutral image, and one for a potential positive image. The
currently viewed negative image and the positive potential future
image had weak (+0.1) associations with the (button press) action
unit. The caption unit had a strong (+1) connection with the
action unit. These weights referred to weak associations be-
tween viewing a low-valenced image (or having the opportunity
to view a higher-valenced image) and the action of pressing a
button to switch images. The caption was a direct cue, learned
over time, and therefore had a stronger weight with the action
unit (A6 iii, Table 1).

Network dynamics. We simulated the probability of a button
press in any given trial by computing whether the activation in the
output unit exceeded the threshold activation (a free parameter, set

Warm condition

Cold condition

Empirical data Simulation Empirical data Simulation
Features Appealing Irritating Appealing Irritating Appealing Irritating Appealing Irritating
Appearance 70 30 72 32 68 27 73
Mannerism 62 38 69 40 60 30 70
Accent 48 52 48 19 81 24 76
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Figure 5. Network structure for Simulation 3: Default effects. The hidden pools correspond to the trial type:
There are two competing units for each trial type. The feature pools correspond to representations involving the
current image, the image-switching caption and the future image (the nature of which is known to the
participant). Image features are linked with the “press button” output action with weak weights (+0.1), whereas
the connection between the caption feature and the ‘press button’ action are strong (+1). Increasing the
activation (with red border/flashes) in the caption feature increases button-pressing rates. See the online article

for the color version of this figure.

equal to 0.38) at any time in the 15-s trial (represented by 60
network cycles). We simulated a total of 1,000 trials (each with
varying levels of input activation—drawn from a random distri-
bution—into the switch cue feature unit) to capture variance re-
lated to the fluctuations of attention. In each simulation run, we
recorded whether activation in the output unit exceeded the thresh-
old parameter. This was assumed to correspond to a button press.
Simulation runs in which the activation in the output unit did not
exceed the threshold parameter for 60 network cycles were as-
sumed to correspond to nonpresses.

The external input into the units representing the (viewed)
negative and the (potential) positive image feature units was as-
sumed to be 1. This activation reflected the salience of the affec-
tive images. The external input in the switch-cue unit was assumed
to vary with varying levels of attention toward it. In the low-
attention condition, input was assumed to be constant throughout
the trial. It was drawn from a normal distribution centered at —0.1
with a standard deviation of 1. In the high-attention condition, the

input prior to the display of the red square (5 s or 20 network
cycles) was assumed to be identical to the input in the low
attention condition. After the introduction of the red-border how-
ever, the level of input was increased. It was drawn from a normal
distribution centered at 0 with a standard deviation of 1.

Simulation results. In the low-attention group, the network
activation in the output unit corresponded to a switch in 31% of the
trials (compared to 29% in the empirical data). In the high attention
group, network activation in the output unit corresponded to a
switch in 48.8% of the trials (compared to 50% in the empirical
data). Unsurprisingly, the rate of switching in the prered border
period of the high attention group was identical to switching in the
same time frame in the low attention group (both groups had a
switch rate of 19.5% in the first 5 s of the trial, compared to an
average of 18% in the empirical data).

Significance. Importantly, this simulation sought to explain
persistence with inferior default states not by finding hidden vari-
ables that impact the valuation calculus, but by assuming differing
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levels of input activation into the switch cue unit. This in-turn
produced differing activation levels in the action-tendency unit
enabling the action (i.e., button press) to occur or not occur. In
cases of insufficient input into the caption unit the action was less
likely to occur; when input was higher (in the high-attention
condition), the action was more likely to occur.

Simulation #4: Anchoring

While using the same network, we simulate two experiments
related to anchoring. The first experiment (in the value-based
domain) shows that comparing price estimates to an irrelevant
quantity (the last two digits of one’s social security number), can
influence willingness to pay. The second experiment (not in the
value-based domain), and described in the online supplementary
materials, shows that increasing levels of attention toward an
incidental and irrelevant variable (a participant identification num-
ber) can result in increasing levels of influence of that variable.

Target experiment. In a widely cited study (Ariely et al.,
2003), participants were shown six products (computer accesso-
ries, wine bottles, luxury chocolates, and books), which were
briefly described without mentioning their market price. After
introducing the products, participants were asked whether they
would buy each good for a dollar figure equal to the last two digits
of their social security number. After this Accept/Reject response,
they stated their dollar maximum willingness-to-pay for the prod-
uct. Experimenters ensured that participant responses were incen-
tive compatible (i.e., they had to actually complete the transaction
from a randomly chosen trial).

Empirical results. The willingness-to-pay numbers were ex-
amined by quintiles of the social security number distribution. The
values of the top quintile participants were typically greater by a
factor of three. For example, subjects with social security numbers
in the top quintile were willing to pay $37.55 on average for a
bottle of wine, compared with $11.73 on average for subjects with
bottom quintile numbers. In general, there was an unmistakable
correlation (approximately 0.4) between the quintile of a partici-
pant’s social security number and their willingness-to-pay (see
Table 5).

Network structure. We used the network structure in Figure
6. The hidden layer had two hidden pools with five units each,
representing five quintiles of encountered quantities from low to
high. These pools represent two sets of conjunctions between
feature units. The input layer had three feature pools, each with
five units. The first pool contained units representing evaluations

Table 5

derived from prior experiences related to the estimate at hand. In
the present experiments, these estimates were assumed to be noisy.
The second pool contained units representing the estimates of the
quantity (i.e., prices of various goods). The third pool contained
units representing the value of an anchor—relative to other values
that the anchor might take. Units in the estimate pool were influ-
enced by activations in the experience pool and in the anchor pool.

The experience-based estimate “est” (the price estimate corre-
sponding to the 3rd quintile in Experiment 2) represented the
central value of the range represented in the experience pool. Units
in the estimate pool represented the following ranges based on est,
the unanchored experienced-based estimate: (0, 0.5%est), (0.5"est,
0.9%est), (0.9%est, 1.1%est), (1.1%est, 1.5%est), (1.5 est, 3 est). The
last unit had a larger range to include the possibility of modeling
high estimates. The units in the estimate pool represented identical
quantities to corresponding units in the experience pool.

The units of the anchor pool represented the relative size of the
contextual number relative to other potential numbers in the same
category. In the context of the last two digits of social security
number, we assumed that each unit represented a quintile of the
range between 0 and 100. For example, a social security number
ending 12 would activate the first anchor unit, and a social security
number ending in 94 would activate the fifth unit.

The bidirectional weights between units in each pool were
inhibitory (—1). The ith unit in the experience pool was connected
to the ith unit of the first hidden pool (with excitatory +1 weights)
and its immediate neighbors (with excitatory +0.5 weights). For
example, the 3rd unit in the experience pool was connected to the
3rd unit in Hidden Pool 1 with weight +1, and to the second and
fourth units with weigh +0.5. Weights from Hidden Pool 1 to the
estimate pool followed an identical scheme. The +0.5 weights to
neighboring units reflected the noisiness of the representation of
experience-based evaluations. Further, the ith estimate unit and the
ith anchor unit were connected to the ith unit in Hidden Pool 2 for
1 =1 = 5. These bidirectional weights were all excitatory (+1).

Network dynamics. The external input in the central experi-
ence unit was assumed to be proportional to the extent of relevant
experience a decision maker could bring to bear regarding an
estimate (e.g., equal to +1 for estimates that the decision maker
had a great deal of information about). The decision maker esti-
mates were noisy and we assumed the activation into the central
(third) estimation unit to be equal to 0.1. Neighboring units (i.e.,
Units 2 and 4 also received activation equal to 0.05, again reflect-

Comparison of Simulated Values and Empirical Price Estimates in Simulation #4

Cordless trackball Cordless keyboard Average wine Rare wine Design book Belgian chocolates

SS Simulated Observed Simulated Observed Simulated Observed Simulated Observed Simulated Observed Simulated Observed

quintile value value value value value value value value value value value value
1 5.63 8.64 12.26 16.09 525 8.64 7.57 11.73 6.62 12.82 5.21 9.55
2 12.10 11.82 26.34 26.82 11.29 14.45 16.28 22.45 14.24 16.18 11.20 10.64
3 14.79 13.45 32.20 29.27 13.81 12.55 19.90 18.09 17.40 15.82 13.70 12.45
4 20.17 21.18 43.90 34.55 18.82 15.45 27.13 24.55 23.73 19.27 18.67 13.27
5 37.07 26.18 80.67 55.64 34.59 2791 49.85 37.55 43.60 30.00 3431 20.64
Note. SS = social security.
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Figure 6. The network structure in Simulation 4: Anchoring. All weights within the same pool are inhibitory
(—1) and every unit is connected to every other unit in the same pool (in order to promote clarity, not all
inhibitory connections are shown). Connections between the pools are excitatory. Solid lines denote a weight
of +1, and dashed lines denote a weight of 0.5. Each unit in the experience pool activates its corresponding unit
in Hidden Pool 1 with a connection of weight + 1, and its immediate neighbors with a weight of 0.5. Similar
connections are present between the “Estimates” feature pool and Hidden Pool 1. See the online article for the

color version of this figure.

ing the noisiness of the estimates.). Units in the anchor pool
received an input activation of 0.6.

We ran the network to convergence and used the settled acti-
vation values in the units to calculate the model’s willingness to
pay.

Simulation results. The winning unit (i.e., the unit in the
estimate pool with the largest activation) was used to determine the
range of the final estimate (e.g., if the second unit was the winner,
then the final estimate was assumed to be between 0.5 and 0.9
times the original, experience-based estimate). To compute the
precise estimate value within the range, we calculated the cdf of
the activation value of the unit on a normal distribution (M = 0.2,
SD = 0.05) kept fixed for all estimates. For example, a cdf value
of 0.5 in the winning second unit represented a value equal to 50%
of the range represented by the second unit (i.e., 0.7"est). Table 5
describes the simulated and empirically observed value for each
item.

Significance.
anchor is proportional to its impact on the estimate of interest. This
resulted from interactivity between the anchor pool and the esti-
mate pool. The simulation had an additional notable element: the
value of the anchor not only altered the estimate but also had the
potential to alter the recollection of experiences that the decision
maker may have used to generate an unanchored estimate. For
example, let us examine the case in which the unanchored estimate
corresponded to 0.1 input of the third unit and 0.07 activation of
the fourth unit (in the experience pool), and the anchor corre-
sponded to 1 unit of input in the 5th unit (of the anchor pool). Upon
convergence, we observe not only a changed estimate but also a
changed recollection of the experiences that were relevant to the
unanchored estimate: upon convergence the winning experience
unit is the fourth unit (activation 0.19 vs. 0.14 for the third
unit)—even though the third unit had more external input to start
with. This feature of the model suggests a mechanism for how
events in the world may cause some memories to be more acces-
sible than others in that they are more likely to come to mind
(Radvansky, 2017).

This simulation showed that the size of the

Simulation #5: Negative Auto-Shaping

This simulation featured a context in which intertrial learning
effects between previously associated features could result in be-
havior which was not consistent with expected value maximiza-
tion.

Target experiment. Based on prior work (Brown & Jenkins,
1968), it was known that if a response key was regularly illumi-
nated for several seconds before food was presented, pigeons
would reliably peck at the key after a moderate number of pairings,
especially if the delivery of food was contingent on the birds
pecking at the illuminated key. This behavior was seen as a robust
example of instrumental learning in which the pigeons acted in a
way to maximize their rewards. Williams and Williams (1969)
sought to determine whether the pecking behavior would be main-
tained even when pecks on the illuminated response key prevented
the delivery of food.

They created two groups of pigeons: the first group (the rein-
forced group) was initially trained via auto-shaping trials in which
an illuminated key (displayed for 6 s) was followed by the pre-
sentation of the food hopper. By pecking on the illuminated key
prior to 6 s, the pigeons could make the food tray appear instantly.
The pigeons in the reinforced group were then additionally trained
to actively peck at an illuminated key for food delivery to occur.
In (an average of) two sessions consisting of 50 trials each, the
pigeons were shown an illuminated response key. If they pecked at
the key, they were rewarded with the delivery of food via a grain
containing hopper. However, if they did not peck at the illuminated
key, then the food delivery did not occur. After these sessions,
these pigeons were placed in a negative response condition. Now,
food delivery was contingent upon the pigeon not pecking at the
illuminated key. If they did nothing, they were rewarded at the end
of every trial. However, if they chose to peck at the illuminated
key, the food delivery did not occur. A second group of pigeons
(the naive group) was directly placed in the negative response
condition.

Empirical results. Pigeons in the reinforced group (that as-
sociated pecking at a lighted key with delivery of food), pecked in
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~80% of the trials in the first two sessions of the negative
response condition (all data in this simulation has been inferred
from figures in the original paper; exact numbers of pecks per
session were not provided). After that, most pigeons showed a
pattern of recovery (in which the extent of their pecking de-
creased), and regressions (in which pecking went backup to the
early rate of ~80%).

Pigeons in the naive group did not initially tend to peck on the
illuminated key. Across all pigeons in this group, pecking in the
first two sessions of the negative response condition was less than
~2%. The surprising result of the experiment concerned the be-
havior of the naive group after the first two sessions. Their press-
ing rate increased (from almost completely absent) to ~50%. This
result was particularly noteworthy since pecking led to the absence
of food reward, and the optimal behavior for these pigeons was to
not peck on the illuminated key (as they had not been doing), and
simply wait for the food to arrive. Yet, the pigeons pecked at high
rates.

Network structure. We separately describe the network
structures (prior to the start of the negative response condition) for
the reinforced and naive groups (see Figure 7). The structure for
the reinforced group (Figure 7a) involved two hidden units, the
first representing a conjunction between an illuminated key and
food availability, and the second representing a conjunction be-
tween a dark (nonilluminated) key and the absence of food avail-
ability. There were two feature pools: a food pool (consisting of
food available unit, and a food not available unit), and a key pool

(a) Reinforced Group

Hidden Pool
lluminated- Dark-

Food . (o Food

(consisting of a unit representing an illuminated key, and a unit
representing a nonilluminated key). A single action tendency unit
represented the approach tendency toward the environment. The
prototypical pigeon’s approach action in the context of food is a
particular type of pecking, and this pecking action—directed at the
food or at the illuminated key—was represented by the approach
unit. Weights between units in the same pool were competitive
(equal to —1). The feature units were connected to corresponding
hidden units with weight +1. We assumed this connectivity was
established in the training phases (auto-shaping and reinforce-
ment). Only the food availability unit was connected to the ap-
proach action tendency unit with an excitatory connection (+1).

The initial network structure for the naive group (Figure 7b) was
identical to the reinforced group except the features were not
associated with each other, since there were no conjunction (hid-
den) units. Only the food availability unit was connected to the
approach action tendency unit with an excitatory connection (+1).

Network dynamics. In the Reinforced group input in the
illuminated key unit (corresponding to the perception of the illu-
minated key), flowed into the unit representing food availability.
This in-turn caused activation in the approach action tendency unit
(representing pecking). No such interactive activation occurred for
the naive group network since there were no conjunctions between
feature units at the start of the negative response trials.

In the first two sessions, the pigeons in the naive group gained
experience with trials in which an illuminated key was associated
with (i.e., preceded) the delivery of food (provided they did not

(b) Naive Group

Dark ood No Food
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Figure 7. The network structure in Simulation 5: Negative Auto-shaping. In Panel a the pigeons in the
reinforced group had an association of food availability with the illuminated key, and an absence of food
availability when the key was dark (these associations were via the hidden units). In Panel b the key and the food
units were not associated with each other. In Panel a activation in the “illuminated” key unit caused activation
to flow to the “food” unit. This caused approach behavior in the form of pecking. In Panel b activation in the
“illuminated” key unit did not cause any activation in the approach unit. After a few blocks, the network for
the naive group resembled the reinforced group because of associative learning (A10). See the online article for

the color version of this figure.
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peck at the key—which was the case in most initial negative
response trials). After the first two sessions, this joint activation
resulted (Assumption A10) in experience-based connections be-
tween the feature pairs (food and illuminated; no food and not
illuminated)—albeit via hidden units. This updated the initial
network for the Naive group to become structurally similar to the
Reinforced group network depicted in Figure 7a. There was one
important difference, however: since the experience resulting in
associations between the feature was less than the experience of
pigeons in the Reinforced group, we assumed that feature unit/
hidden unit connections had a weight of 0.25 (less than the
corresponding weights of +1 in the reinforced network).

The gradually increasing connection strength between feature
units representing food and feature units representing the illumi-
nated key led to a gradual increase in pecking rates in the Naive
group until it eventually resembled the reinforced group. This
transition occurred even though it resulted in behavior that did not
maximize expected value.

Simulation results. To calculate the percentage of trials in
which a pigeon pecked at the illuminated key, we calculated the
cumulative density function of the activation value of the approach
unit using a normal distribution with a mean (0.515) and standard
deviation (0.025) that was kept fixed across all trials, sessions and
conditions. These assumptions resulted in (a) simulated pecking
rates of 84% in Sessions 1 and 2 for the reinforced group for
negative response trials (compared to the empirically observed
value of ~80%), (b) simulated pecking rates of 0% in Sessions 1
and 2 for the naive group for negative response trials (compared to
the empirically observed value of ~2%), and (c) simulated peck-
ing rates of 50% in Sessions 3 and following for the naive group
for negative response trials (compared to the empirically observed
value of ~50%).

Significance. This simulation proposed a plausible mecha-
nism that could cause naive and untrained pigeons to begin peck-
ing at the illuminated key, even though that action was not optimal
(rather, not-pecking was the optimal action). The mechanism re-
lied on experience-based conjunctions developing between the unit
representing an illuminated key and the unit representing food
availability. Once such conjunctions developed, interactive activa-
tion caused approach behavior to occur when the illuminated key
unit was provided external input. Associative constraints led to
nonoptimal choice.

Simulation #6: Reward and Path Associations

In the present simulation, our goal was to simulate an empirical
context in which the presence of associative constraints led to
decision makers not maximizing expected value. Specifically, rats,
who had previously learned to associate a high reward with a

Table 6
Empirical Data and Simulation Results for Simulation 6

particular arm in a maze continued to prefer that arm, even when
doing so was no longer optimal.

Target experiment. Using a simple T maze, researchers ex-
amined the decisions of rats choosing between two courses of
action that differed in their respective energetic demands and
consequent reward sizes (Salamone, Cousins, & Bucher, 1994;
Walton et al., 2006). One arm of the T maze (counterbalanced
between rats) was designated the high cost/high reward (HR) arm
and the other the low cost/low reward (LR) arm. The location of
these arms was kept fixed throughout the experiment. Rewards
varied based on the number of food pellets. The cost of obtaining
the reward was manipulated by requiring rats to scale a wire-mesh
barrier to reach the food.

Empirical results. Various configurations of costs and re-
wards were used to measure rat choices. In a first series of tests,
the researchers measured the effects of placing barriers in arms of
a maze. In Test 1, there was a 30-cm barrier in the HR arm while
the LR arm was unoccupied; in Test 2, an identical 30-cm barrier
was present in both arms; in Test 3, the LR arm was again vacant
(i.e., did not have a barrier) but the HR now contained a 40-cm
barrier. In all three tests, there were four food pellets in the HR arm
and two in the LR arm.

In Test 1, the rats selected the HR arm in an average of 67% of
trials, and the LR arm in the remaining 33% of trials. In Test 2 (in
which both arms had equal barriers), the HR arm was selected in
approximately 86% of trials. In Test 3, the increased barrier
resulted in the preference for the HR arm dropping to approxi-
mately 31% (See Top row of Table 6). The same set of rats
participated in all tests

In a subsequent second series of tests, researchers tested the
effects of different rewards. Rats chose between climbing a 30-cm
barrier in the HR arm or selecting the unoccupied LR arm. How-
ever, the reward in the HR arm varied across tests, with the ratio
between the HR and LR decreasing from 6:2 (Test 4), to 3:2 (Test
5), and finally to 2:2 (Test 6). In this series of tests, the obstacle
was only used in the HR arm. The preference for the HR arm in the
three Series 2 tests was approximately 80%, 72%, and 60%,
respectively.

There are two notable features of these results: First, it is clear
(see Table 6) that both rewards (number of pellets) and action costs
(height of barrier) have a profound influence on choice. In all tests,
except the last, rats preferred greater rewards to lesser rewards and
lower barriers to higher barriers. Second, the rats did not always
maximize reward and minimize cost: in the last test, rats frequently
chose to climb up a barrier to get 2 pellets, when they could easily
have obtained 2 pellets in the LR arm without barriers.

Network structure. This simulation featured the structure
shown in Figure 8. In the hidden pool, four units represented

Condition 4/30 vs 2/0 4/30 vs 2/30 4/40 vs 2/0 6/30 vs 2/0 3/30 vs 2/0 2/30 vs 2/0
Empirical: Preference for HR option .67 .86 31 8 72 .60
Simulation: Preference for HR option .64 .80 .20 73 57 .63

Note. HR = high reward.
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Figure 8. The network structure for Simulation 6: Reward and path associations. Panel a depicts the network
for Test 1 (a similar network was used for Test 2-5). Increased rewards (i.e., more food pellets) and lower costs
(i.e., lower barriers) increase the probability of choice. In Panel b, memory of prior results captured via the
“time” feature pool leads to the effect of rats preferring the high reward (HR) option even though it has a barrier
to collect two pellets that are available in the left reward (LR) option without the barrier. See text for details. See

the online article for the color version of this figure.

conjunctions between the available reward (HR and LR) and
temporal aspects related to the trials (Current and Previous). The
current units were mutually competitive with each other (—1), and
the past units were mutually competitive with each other (—1).

There were four feature pools. The first pool represented the
position of the HR and LR arms. Within each block, these posi-
tions were kept fixed for each rat (though varying between rats). In
nonchoice trials, rats had acquired knowledge of the location of
each arm (e.g., HR arm on the left). The second pool (food pellets)
had six units corresponding to six, five, four, three, two, or one
food pellets. The third feature pool consisted of three units that
represented barriers that were either 30 cm or 40 cm tall, or the
absence of a barrier. The fourth feature pool represented time, in
which one unit represented the current test, and the other unit
represented the influence of past tests. All units in the same feature
pool were competitive with each other, units within a *2 neigh-
borhood had a competitive connection of —0.5, and units further
away had a competitive connection of —1.

The input units were connected to an approach and an avoid unit
in the output action-tendency pool with the following weights: the
six pellet unit had a +0.8 wt with the approach unit and the 5, 4,
3, and 2 pellet units had connections with the approach unit with
positive weights of +0.65, +0.5, +0.35, and +0.2, respectively (a
reduction of 0.15 connection weight per food pellet). On the cost
side, the 40-cm barrier unit had a connection with the avoid unit
of +0.6, the 30-cm barrier unit had a connection with the avoid
unit of +0.2, and the “no barrier” unit was not connected to the
approach or avoid unit.

Figure 8a displays the connection units relevant to Test 1 (four
pellets/30-cm barrier vs. two pellets/O-cm barrier). Because this
was the first test, there were no connections with the feature unit
representing the influence of past trials. The high reward-current
conjunction (hidden) unit was connected to the four food pellet

unit and the 30-cm barrier (corresponding to the four of 30 con-
dition). The low reward-current conjunction (hidden) unit was
connected to the two food pellet unit and the no barrier unit
(corresponding to the two pellets/0-cm barrier condition). A sim-
ilar network was used for Tests 2—5 with the appropriate linking of
foods and costs to the options being tested.

Figure 8b displays the connection units relevant to Test 6 (two
pellets/30-cm barrier vs. two pellets/O-cm barrier). This was the
final test, and associations from prior tests were assumed to exert
an influence on the current choice. We acknowledge that it is
possible that some prior test effects influence Tests 4-5, but the
design of the experiment does not afford the testing of such
possibilities. In Test 6, relevant to the current test (i.e., two
pellets/30-cm  barrier vs. two pellets/O-cm barrier), the high
reward-current conjunction (hidden) unit was connected to the two
food pellet unit and the 30-cm barrier (corresponding to the 2/30
condition). The low reward-current conjunction (hidden) unit was
connected to the two food pellet unit and the no barrier unit
(corresponding to the two pellets/0-cm barrier condition). Relevant
to the influence of past tests, the high reward-past conjunction
(hidden) unit was connected to the four food pellet unit and the
30-cm barrier (corresponding to the four pellets/30-cm barrier
condition which was the most common HR condition in prior
tests). The low reward-current conjunction (hidden) unit was con-
nected to the two food pellet unit and the no barrier unit (corre-
sponding to the two pellets/O-cm barrier condition that was the
most common LR condition in prior tests).

Network dynamics. We discuss the dynamics corresponding
to Test 1 (Figure 8a) and Test 6 (Figure 8b) separately. Tests 2—5
had dynamic very similar to those described for Test 1.

In Test 1, consistent with the discussion in Simulation 1, we
used two identical, competing networks corresponding to the two
options being tested. Thus, for the HR arm in Test 1 (four pellets/
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30-cm barrier vs. two pellets/0-cm barrier) we provided input into
the current and 30-cm feature units in one network and into the
current, no obstacles unit in the competing network. The output
action tendency of each approach unit was mutually competitive
(as described in Simulation 1).

For the HR network, activation poured into the four pellet unit
(no food unit received input since the number of pellets was not
observable by the rat) via the HR-current hidden unit. For the LR
network, activation poured into the two pellet unit via the LR-
current hidden unit. The greater connection weight between the
four pellet unit and the approach unit in the HR network, helped
the HR option overcome the disadvantage induced by the connec-
tion weight between the 30-cm barrier, and the avoid unit. Thus the
four pellets/30-cm barrier option was preferred over the two
pellets/O-cm barrier option. In Test 2 (four pellets/30-cm barrier
vs. two pellets/30-cm barrier), the increased avoid activation in the
LR arm increased the proportion of the trials in which the HR arm
was selected; this pattern was reversed in Test 3 due to high
connection weight between the 40-cm barrier and the avoid unit.
Test 4 and Test 5 simulation results (see Table 6) are attributable
to the strength of the connection weight between the food pellet
units and the approach unit.

The simulation dynamics of Test 6, in which a two pellet reward
in the HR condition (featuring a 30-cm obstacle) was preferred
over a two pellet reward in the LR condition (with no obstacle),
bear a closer look. Here the influence of past tests (represented by
the past feature unit) proved influential. In this simulation, the HR
arm feature unit, and the 30-cm barrier feature unit activated the
HR past hidden unit. This unit, in turn, activated the four pellet unit
(and the pas’ feature unit). The current hidden units were also
activated (similar to Test 1), but the activation of the four pellet
unit via the HR-past unit was enough for the rats to prefer the HR
condition, even though they had to scale a 30-cm barrier to get 2
pellets of food, which were available in the LR condition without
the presence of a barrier.

Simulation results. The cumulative density function of pos-
itive activation of output units (of a normal distribution, with a
mean of 0.25 and a standard deviation of 0.4, kept fixed for all six
tests) was used to calculate the choice rates shown in Table 6.

Significance. This simulation highlights how associative
learning related to prior rewards can lead to nonoptimal decision
making in new contexts. It also shows how actions and their
associated features— often involving costs—can be integrated into
the interactive activation framework.

Simulation #7: Motivational Influences on
Information Processing

This simulation was designed to showcase how the interactivity
of the IAC model is not consistent with decision making processes
that are serial/modular.

Participants were asked to complete a task ostensibly about
differences in predictions of and actual taste experiences (Balcetis
& Dunning, 2006). They were shown pictures of two categories of
animals worth positive and negative points. In one typical study
(Study 2), for half of the participants, farm animals were worth
positive points, whereas sea creatures were worth negative points.
For the other half of the participants, this was reversed.

If participants ended the experiment with a positive score, they
would consume candy, but if their score at the end was negative,
participants would consume less desirable canned beans. Partici-
pants completed several trials in which one type of animal pro-
vided positive points, and the other type of animal provided
negative points. As the game progressed, the last three rounds
brought increasingly negative point totals and it became ever more
suggestive that participants would consume the canned beans. By
the final trial, there was precisely one animal who could bring the
cumulative points to positive territory. For half of the participants,
this animal was a horse (in the farm animal condition); for the
other half, it was a seal (in the sea creature condition).

In the final trial, participants were shown an ambiguous image
that could be interpreted as either the head of a horse or the full
body of a seal (Figure 9b). The experimenters sought to determine
whether participants who would benefit from seeing a horse were
more likely to see a horse and whether participants who would
benefit from seeing a seal were more likely to see a seal.

Empirical results. Participants’ interpretations depended on
what category of animal was worth positive points. When hoping

a Hidden Pool b
Horse m
Feature - o
Figic .
é_‘/ ' N
Horse Seal

Figure 9. a: Network structure for Simulation 7: Motivational Influences on Information Processing. The
network shown here is for a participant in the farm animal condition. The connection between points and the
hidden horse unit is developed in the last three trials. A similar structure would apply in the sea creature
condition, except the points feature unit would be connected to the seal hidden unit. b: The ambiguous horse/seal
figure used by Balcetis and Dunning (2006). From “Ambiguity of Form: Old and New,” by G. H. Fisher, 1968,
Perception & Psychophysics, 4, p. 191. Copyright, 1968 by the Psychonomics Society. Figure used with
permission. See the online article for the color version of this figure.
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to see a horse, 66.7% of participants saw the ambiguous figure as
a horse, and 33.3% saw a seal. However, this bias reversed when
participants were hoping to see a seal. Only 27.3% of this group
saw a horse, but 72.7% reported a seal.

Network structure. Figure 9a shows the network structure
used in the farm animal condition. Two competing input feature
units in the feature pool were activated with evidence consistent
with either a horse or a seal. There was also a single unit repre-
senting the possibility of points. Two units in the hidden pool
corresponded to a horse or seal. In the farm animal condition, the
points unit developed a connection to the horse hidden unit (and
similarly to the seal in the sea creature condition). These associ-
ations were developed in the three penultimate trials in which it
became clear that only one animal would be worth sufficient points
to bring the points total to positive territory.

Network dynamics. At the time of input, equal external ac-
tivation (0.2) was given to features corresponding to both the horse
and the seal. The points unit was also provided activation (1). In
the farm animal condition, this activation flowed into the horse
feature unit and increased visual processing related to a horse.
Corresponding flows occurred in the sea animal condition.

Simulation results. As shown in Table 7, activation in the
feature unit for the horse was high (0.63) when the horse could
provide the desired points; conversely, when recognizing a seal
provided points, activation in the feature unit for the seal was
symmetrically high. The probabilities in Table 7 were obtained by
calculating the cumulative distribution function of each activation
level on N (0.4, 0.4).

Significance. This experiment and the mechanism described
in the simulation suggested that perception and valuation-related
processing may interact with each other and value-based decision
making need not be serial or modular. Participants preferred to
consume jelly beans over canned beans (a value-based decision).
This preference motivated them to end the empirical game with
positive points, which in turn influenced how they processed the
ambiguous image. If perception and valuation were serial and
modular processes, one would not expect (putatively down-
stream) value-related preferences to influence (putatively up-
stream) perception-related processes.

Simulation #8: Dynamic Processes in
Goal-Directed Choice

The prior simulations developed computational evidence to sug-
gest that value-based decision making need not always maximize
expected value, and its associated processes need not be serial/
modular. In this simulation, we sought to demonstrate that the
IAC, as constructed, can also uncover dynamic mechanisms un-

Table 7
Simulation 7, Motivational Influences on Visual
Processing: Results

Empirical data Simulation
Condition Horse Seal Horse Seal
Farm animal — points 66.7% 33.3% 71.7% 28.3%
Sea creature — points 27.3% 72.7% 28.3% 71.7%

derlying goal-directed choice, and thus have the potential of serv-
ing as a general framework for value-based decision making.

We sought to examine whether effects consistent with the IAC
framework could be observed in participant mouse-tracks as they
decided between tasty and healthy (goal congruent) food items.
Experimenters have frequently used mouse tracking paths to detect
dynamic patterns in the choice process (Freeman & Ambady,
2011). Mouse tracking experiments provide insight into the un-
folding of the choice process (in addition to recording the choice
itself). For example, the degree of curvature in the mouse-track is
thought to represent the spatial attraction toward the nonchosen
option (Freeman & Ambady, 2011; Gillebaart, Schneider, & De
Ridder, 2016; Spivey & Dale, 2006).

Target experiments. Mouse tracking trials in the domain of
food choice required participants to choose between a tasty item
and a healthy item by dragging their mouse toward their selection
(Sullivan, Hutcherson, Harris, & Rangel, 2015). Such choices were
recorded over multiple food pairs in multiple trials. Experimenters
wished to measure speed with which the decision-making circuitry
processes basic attributes like taste, versus more abstract, goal-
related attributes such as health.

Empirical results. Many mouse tracks in which the healthy
option is accepted revealed a pattern in which the decision maker,
starting from a neutral position, initially swung toward the tasty
item (or toward a response button indicating liking of the tasty
item), and then veered toward the healthy item (or toward a
response button indicated disliking of the tasty item). In cases
where the tasty item was selected or preferred, this veering did not
take place and the decision maker tracked a direct path from the
neutral position to the tasty item/preference.

Across all trials, the influence of the healthy option was detected
later than the influence of the tasty option (using a regression
featuring the trajectory of the mouse track), even when the healthy
option was preferred.

Simulation approach. We sought to determine whether we
could model the empirically observed phenomenon of the earlier
influence of taste-related variables and the later influence of goal-
congruent health-related variables. To do this we constructed a
model in which a decision-maker had to choose between a tastier
but less healthy item (hamburger), and a less tasty but healthier
item (salad).

Network structure. Some feature units (e.g., flavor, taste, and
nutrition) represent properties of the food item (i.e., hamburger or
salad) and are connected to their corresponding hidden represen-
tations and to appropriate output approach/avoid action tendencies.
Importantly, as shown in Figure 10, some of these units (e.g., those
representing high nutrition, but not those representing low nutri-
tion) are connected with the abstract representation of healthy.
Importantly, the abstract representation of healthy is a hidden unit
in a pool of a separate subnetwork (i.e., not a direct part of the
network representing the choice between the hamburger and the
salad). This hidden unit healthy may be connected to features such
as “optimal weight” or “feeling energetic,” both of which may
have connections with the approach action tendency unit (for
consideration of an alternative structure, please see online supple-
mentary materials).

Network dynamics. As in choice-related simulations in-
volving two separate options, we used two copies of the net-
work. In each copy of the network, we input one unit of
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Figure 10. The network structure and dynamics for Simulation 8: Dynamic processes in goal-directed
choice. We simulate the choice between a tasty/less healthy hamburger and a less tasty/healthy salad. Two
copies of the network run in parallel; one network copy receives input in the hamburger unit of the name
pool and the other copy receives input in the salad unit of the name pool. In both cases, activation flows
into the respective hidden units (hamburger or salad) and then into the corresponding features. Only in the
salad network, activation flows from the “high” nutrition unit to another subnetwork related to the abstract
goal of health. In principle, there may be other connections between the two subnetworks (e.g., between the
low nutrition unit and the unhealthy unit), but we focus on one for simplicity. See the online article for the

color version of this figure.

activation into one of the “name” units (either hamburger or
salad). This activation flowed—via the hidden units—to the
respective feature units, including into the taste and nutrition
pools. Initially, because of the higher weight between the high
taste/flavor units and the approach unit (compared to the weight
between the high nutrition unit), the preference for hamburger
(i.e., more favorable weights to output units compared to
weights between salad features and output units) made ham-
burger the more preferred choice over salad.

However, the extended network related to the healthy unit
made its presence felt later in the process. Activation from the
salad high nutrition feature unit flowed into the healthy hidden
unit (see Figure 10). This unit activated the optimal weight unit
and the energetic bodily state unit; these units in-turn strength-
ened the approach unit. The hamburger feature units were not
connected to the healthy unit and thus did not receive a corre-
sponding activation boost in its approach unit. This activation
flow enabled activation into the approach unit of the salad
network to overcome its early disadvantage.

Importantly, this activation pattern only occurred for networks
in which the connection between the high nutrition unit and the

healthy unit had sufficient weight. When this connection was
absent or had a low weight, the early advantage of the hamburger
over the salad was never overcome, and the decision maker chose
the hamburger. Related proposals have highlighted the asymmetry
of temptation-related associations and goal-related associations
(Fujita, 2011; Fujita & Sasota, 2011).

Simulation results. As shown in Figure 11, a connection
strength of +1 between the nutrition feature unit and the healthy
hidden unit was enough for salad to be preferred over hamburger.
For connection strengths less than or equal to 0.5, the hamburger
was chosen. In cases in which the healthy item (salad) was chosen,
its approach activation initially lagged the approach activation for
the hamburger but overtook it later (the crossover occurred at cycle
number 79).

Significance. The simulation captured two important ele-
ments of health-related goal-directed behavior: first, it offered
an explanation of why such behavior occurs in some cases, but
not in others (i.e., due to differences in weights between health-
goal-related units and feature units); second, it offered a mech-
anism to explain why health-goal-related features may come
online later than more salient taste related features (i.e., due to
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Figure 11. Activation related to approaching the hamburger and salad for low and high nutrition-feature/
healthy unit connection weights. At a connection weight of 0.5, hamburger is preferred over salad (higher
activation for the hamburger approach unit). At a weight of 1.0 salad is preferred hamburger (higher activation
for salad approach unit). In the latter case, even though salad has a higher activation at convergence, the
activation for hamburger is higher in earlier network cycles. There is a cross over at Cycle #79. Thus, consistent
with empirical data, features related to taste and health come online sooner than features related to health. See

the online article for the color version of this figure.

indirect activation into the ‘healthy’ unit). Importantly, the
representation related to the goal of being healthy in this
simulation did not require the computation of a desired state
(which presupposes the capability to calculate value and/or
stipulates the target of its explanation). On our account, any
representation, if appropriately connected to feature units, can
result in goal-directed behavior.

Contributions of the Simulations

Collectively, our simulations offer a concrete mechanism related
to how decisions may be nonoptimal and how their process is not
serial/modular. This is their central purpose.

In some cases, the simulations also make counterintuitive
predictions about behavior, and these predictions are supported
by gathering evidence. We next highlight three such examples:
First, unlike prior literature (Dinner et al., 2011), our model
(Simulation 2) proposes that many default effects are not caused
by factors such as loss aversion or implied recommendations of
the experimenter; rather, on our account, default effects often
occur due to insufficient attention toward the available nonde-
fault option. Our model predicts that increasing activation to-
ward the nondefault option should decrease default effects.
Gathering evidence supports this view (Suri & Gross, 2015).
Second, our framework, for the first time to our knowledge,
provides a mechanistic account of how prior estimates of a
certain quantity and levels of attention to unrelated anchors
interact with each other to produce the anchoring effects (Sim-
ulation 4). Finally, Simulation 8, for the first time to our
knowledge, provides a mechanistically explicit, neural network-
based account of how some goal-related behaviors might be
activated by particular features of one of the items being
evaluated. These features may in-turn activate a goal-congruent

subnetwork (see Figure 10). There is emerging evidence for this
view of goal-directed behavior (e.g., Fujita & Sasota, 2011).

General Discussion

In this article, we have described an IAC framework for value-
based decision making. In this section, we first summarize the key
features of this framework and highlight its important benefits. We
will then consider how the IAC framework implies that choice
may be emergent. Next, we will outline two opportunities for
extending the scope of the IAC framework. Finally, we will
discuss important limitations and future directions related to our
approach.

A General Framework for Value-Based
Decision Making

We began this work to consider alternatives to the view that
value-based choices are governed solely by their utility and are
made via a serial and modular process. We specified the IAC
framework in which choice emerges via the reciprocal interaction
between units of the network. In this framework, utility-related
variables can play a part in shaping choice outcomes—but so can
context variables that are unrelated to utility. The process by which
choice emerges in this framework is not serial; rather all units can
interact with each other and influence each other throughout the
decision-making process.

Because the IAC framework spans the key elements of value-
based decisions—that is, option benefits, action costs, contextual
variables, and goals—we propose that the IAC framework may be
considered as a viable framework for the domain of value-based
decision making as a whole.
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Benefits of the IAC Approach

Marr (1982) famously posited three distinct levels of analysis of
information-processing systems. This first, the computational
level, is a description of what information processing problem is
being addressed. The second, the algorithmic level, is a description
of what mechanistically explicit steps are being carried out to solve
the problem. The third, the implementational level, is a description
of the physical characteristics of the information processing sys-
tem (e.g., the brain).

Some theories of value-based decision making, such as those
in the Bayesian tradition (e.g., Solway & Botvinick, 2012),
have advanced theories predicated upon objective function
maximization. These theories have used biologically plausible
neural networks (at the algorithmic level) that are geared to-
ward satisfying the core constraint of objective function max-
imization at the computational level. They therefore effectively
assume that their proposals at the computational level can be
implemented unchanged at the algorithmic level. As such, these
approaches assume a “triumphant cascade” (Dennett, 1987, p.
227) through Marr’s three levels so that constraints identified at
the computational level (via the objective function) are the main
constraints at the algorithmic level and implementational level.
We propose that there is no reason that specifications at the
computational level should be privileged over specifications
from other levels, and assuming so may lead to frameworks that
are incomplete or require post hoc just-so stories to provide an
explanation purportedly grounded in an optimization frame-
work. Although this approach can lead to insights into previ-
ously neglected factors that could be subject to optimization, it
can also, we argue, obscure recognition of the importance of
other factors that could contribute to behavior.

Unlike many other approaches to value-based decision mak-
ing, the interactive activation approach is based on a fully
specified process that resides in a network that is biologically
informed. It is thus at-least partially constrained at all three
levels of analysis. Although the IAC model is fully specified at
the algorithmic level, its constraints at the biological level are
weaker. It is not intended to fully capture the biological pro-
cesses underlying value-based decision making. Rather, it is an
exploration of ideas about how choice develops. In this explo-
ration, simplification is essential, because simplification en-
ables a closer look at the consequences of the central ideas
being put forward.

Constraints at multiple levels of analysis offer several advan-
tages. First, the assumptions underlying our framework are less
reliant on a set of phenomenological intuitions (e.g., maximization
of value) because, in addition to being computationally specified,
these assumptions must also satisfy the requirements of the spec-
ified algorithm and the physical system in which the processing
takes place. With fewer degrees of freedom, such sets of assump-
tions are more likely to be more parsimonious and have explana-
tory power at multiple levels of analysis.

Second, our approach is less likely to stipulate what we’re
trying to explain as part of the explanation. Some theories
implicitly smuggle in new constructs that explain value-based
decision making using constructs of parallel complexity. For
example, value-based decisions are often said to be made in the
pursuit of valued goals (e.g., Austin & Vancouver, 1996). This

begs the question of why (and how) some goals are deemed
valuable in the first place. The IAC approach proposes a mech-
anism for goal pursuit that does not rely on the prior overall
valuation of a desirable end state. In the context of Simulation
8, for example, one need not represent the overall idea of eating
a salad to become healthy to pursue a health-related goal.
Rather interactive activations between activated features can
lead to behavior congruent with goal pursuit.

Finally, the incorporation of algorithmic constraints reduces
opportunities to implicitly rely on a homunculus that makes
trade-offs, is sensitive to transient states, and pursues goals.
Postulating a homunculus is universally recognized as unscien-
tific, and no scientist explicitly refers to a homunculus in
explain behavior. However, as Hazy, Frank, & O’Reilly (2006)
have noted, psychological models that exclusively stay at a
computational level often tacitly evoke a homunculus since the
capabilities they assign to the mind (at the computational level)
are unconstrained. The interactive activation model, with its
transparent assumptions, makes it less likely for a homunculus
to be inadvertently used to understand value-based decision
making.

Implications of Interactive Activation: Choice Is
Emergent and Value May Not Be Represented

An important implication of the interactive activation approach
is that the action of choosing one alternative over another, or of
deciding whether or not to take a particular action, is a conse-
quence of the input into the network and the nature of connections
between the units of the network. Choice emerges via a distributed
interactive process among diverse populations of units that are
subject to multiple influences and is, therefore, an emergent prop-
erty of the system (Chialvo, 2010). Furthermore, there is no
separate computation of value, in that no units in the network are
making calculations exclusively related to the calculation of value
independent from other influences.

The units for approaching and avoiding a choice alternative that
we use in our models may initially appear to represent value, and
they are indeed influenced by value-related variables, but they do
not represent value alone. Indeed, in our simulations, they are
influenced by other factors, such as the recent activation of the
particular choice response associated with an option. Thus, in our
models, there is no pure representation of value.

The observation that there are many parts of the brain that are
active in choice situations, and whose activation may be associated
with some measure of value is consistent with this view since these
activations may not represent value per se or may be affected by
variables other than value. These regions may, for example, code
representations related to features of items, features of actions
required to obtain those items, active needs, goal representations,
and action tendencies—all of which are related to value, but
separable from it.

Even brain regions previously thought to code for a ‘pure’ value
signal such as the ventromedial prefrontal cortex and the orbito-
frontal cortex may in fact be subject to influence by an array of
alternative nonvalue related factors and processes, such as
outcome-identity coding, informational coding, and encoding of
autonomic and skeletomotor consequences, and may also be sub-
ject to salience or attentional effects (Knutson, Taylor, Kaufman,
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Peterson, & Glover, 2005; O’Doherty, 2014). Further, consistent
with the IAC framework in which many units participate in the
emergence of preference-based choice, there are numerous corre-
lates of aspects of value in many other brain regions including the
insula, the dorsal striatum, the anterior and posterior cingulate
cortices, the ventrolateral and dorsolateral parts of the prefrontal
cortex, the sensory cortex, the motor cortex, and the Intra Parietal
Sulcus (IPS) (Hunt & Hayden, 2017). For example, an fMRI study
using multi-voxel-patterns-analysis (MVPA) showed that 30% of
all voxels showed a statistically significant ability to decode value,
and that value related signals were observable in the gray matter of
nearly every region of the brain (Vickery, Chun, & Lee, 2011)
consistent with the proposition that the brain makes value-related
decisions via an activation-fueled distributed consensus, rather
than by computing and maximizing value per se.

Importantly, we are not claiming that distributed processing
implies a complete lack of specialization. On the contrary,
certain brain regions likely do specialize in certain preference-
related tasks, and this specialization may be a function of the
anatomical inputs received by a region (Neubert, Mars, Sallet,
& Rushworth, 2015). For example, OFC neurons may specialize
in food-related stimulus features (Padoa-Schioppa, 2011),
whereas neurons in the anterior cingulate may specialize in
processing related to action features such as physical effort
(Hosokawa, Kennerley, Sloan, & Wallis, 2013). Although the
inputs and therefore the factors affecting activations in different
regions may differ, our theory holds that these activations
nevertheless reflect a range of factors, and indeed the evidence
is consistent with this, as indicated above.

Some brain areas such as the vmPFC do often show a linear
relationship between the choice of an item on offer and BOLD
activation related to it. However, this need not imply that the vimPFC
codes for explicit value representation. For example, if the vmPFC
coded for action tendencies in value-based decisions (corresponding
to the approach/avoid units in the IAC network), then in situations in
which value-related constraints determined action tendencies, the
vmPFC would appear to code for a value signal. However, in situa-
tions in which other variables influenced action tendencies, the
vmPFC would best be viewed as coding for an action integration
signal which would be distinct from a value signal (since it would
include the influence of contextual variables). Consistent with this
view, evidence implicates the vmPFC in an integrative role that
includes value related factors such as reward, as well as contextual
factors such as recent behavior and fatigue (San-Galli, Varazzani,
Abitbol, Pessiglione, & Bouret, 2018).

Opportunities for Extending the IAC Framework

The interactive activation approach may provide at least two
opportunities for extending its breadth of application. First, future
computational evidence may make it possible to include goal-
directed and habitual behavior under a single integrated frame-
work. Second, it may be possible to use the IAC principle of
conjunctive association to include the effects of physiological
needs on decision making. We consider each of these two points in
turn.

Goal-directed and habitual behaviors unfold within the
same system. Several prior accounts have proposed that there
are qualitatively different types of decisions and valuation systems

(Balleine & O’Doherty, 2010; Dickinson, 1985; Kahneman, 2011).
Furthermore, different valuation systems are thought to separately
process goal-directed and habitual behaviors and actions (Dolan &
Dayan, 2013; Rangel et al., 2008). An underlying assumption of
such accounts is that many behaviors fit into one category—they
are either goal-directed or habitual.

In the interactive activation approach, goal-directed behaviors
occur because of weights between feature units and action ten-
dency units, or the influence of goal representations in memory.
Habitual behaviors occur because deepening experience of two
associated representations is manifested via increasing weights
between units. For example, in Simulation 6, rats traversing a maze
tended to prefer larger pellet rewards over smaller ones. This was
an instance of goal-directed behavior and was driven by connec-
tions between units representing food pellets and units represent-
ing ‘approach’ tendencies. At the same time, rats showed a ten-
dency to return to the previously highly rewarding arm of the
maze, even though it was no longer optimal to do so. This is an
example of habitual behavior and was driven by associativity
between the representation of the high-reward arm and a larger
number of food pellets. In Simulation 6, both goal-directed behav-
ior and habitual behavior unfolded within a single, interacting
system.

Development of the IAC approach may more generally show
that goal-directed and habitual behaviors unfold in the context of
the same framework and are guided by the same set of assump-
tions. They may not require processing via different valuation
systems.

Physiological needs. Ubiquitous everyday experiences dem-
onstrate that our decisions vary with our physiological needs. In a
very thirsty state, we may choose water over any other item, but in
a nonthirsty state this may not be the case at all. For present
purposes, we constrain the set to include only those needs that are
intrinsic (i.e., present from birth in some form), evolutionarily
conserved across species, and unmistakably influential in an ani-
mal’s value-based decisions.

We believe that it is possible to use the principles of interactive
activation to include the effect of such physiological needs. This
could be enabled via associating features with units representing
active physiological needs via a conjunctive pool (similar to the
hidden pool). This would cause weights between feature units and
action tendency units to vary depending on whether or not a
physiological need is active (see Read, Smith, Droutman, &
Miller, 2017 for a similar approach).

Limitations and Future Directions

Despite its explanatory power, the IAC framework, as described
above, has some important limitations. We believe that future
work pertaining to these limitations (and their potential mitiga-
tions) will deepen and broaden the applicability of the interactive
activation approach in the domain of value-based decision making.
In this section, we will consider three limitations of the interactive
activation network: (a) its localist (as opposed to distributed)
nature, (b) the requirement that multiple instances of the net-
work—one corresponding to each available option—must run in
parallel to simulate multiitem choice, and (c) the fact that in the
model we stipulate the values of connection strengths, rather than
specifying processes whereby they might be acquired through
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experience. In each case, we will propose a future research direc-
tion that may help mitigate this limitation.

Localist nature of the interactive activation network. A
localist network has the property that its units can represent a
cognizable concept. In contrast, a distributed network represents
concepts as patterns of activity over a collection of units—and
therefore more than one unit is required to represent a concept.
Further, each unit participates in the representation of more than
one concept (Hinton, McClelland, & Rumelhart, 1986; Plate,
2002).

Individual connections between units in a localist network me-
diate meaningful associative relationships. In distributed models,
however, the situation is more complex. In such systems, if one
wishes to associate, for example, the taste of pizza with the sight
of pizza, and if the taste and sight are each represented as a pattern
of activation over a set of units, then the connection weight
changes required to store the association may involve many, or
even all, of the weights involved in other associations (McClelland
& Cleeremans, 2009; McClelland & Rumelhart, 1985).

Some have argued that the brain relies on localist representa-
tions (Bowers, 2009) especially in the medial temporal lobe (Roy,
2012), while others argue that representations in the brain are
generally distributed (Plaut & McClelland, 2010). Our perspective,
shared with others (e.g., Kumaran, Hassabis, & McClelland,
2016), is that representations fall on a continuum of degree of
overlap, with ‘localist’ representation being a simple and intui-
tively graspable approximation that can be useful as a guide for
explanation.

The interactive activation network is a localist network and
therefore does not directly rely on distributed representations.
However, the mechanisms crucial to the operation of our net-
work—including interactive activation, competition, and reciproc-
ity—are applicable in distributed networks in a manner similar to
how they operate in the network developed in this work. For
example, very early work by Anderson and colleagues (1977)
illustrates how competition between entire patterns of activation
can occur in networks of densely interconnected neurons.

In a sense, localist networks (including the interactive activation
network) may be thought of as approximate characterizations of
more complex distributed networks. They provide the convenience
of being able to render all of the dynamics in terms of conceptual
entities, rather than in terms of the individual neuronal-level dy-
namics (Smolensky, 1986). They are therefore easier to compre-
hend than essentially equivalent distributed networks. For some
purposes, localist networks may not be the best way to capture a
phenomenon of interest, however: as modelers, we choose a par-
ticular level of description to suit a particular purpose. In our
context, the special strengths of distributed networks (e.g., capac-
ity to simulate gradual degradation of cognitive capacity) were
unnecessary; further, the relative conceptual and computational
simplicity of a localist network supported our objective of expo-
sitional clarity. We therefore chose the localist approach, despite
its limitations.

Nevertheless, we acknowledge that the brain is unlikely to
follow purely localist representations. Future research should en-
deavor to build fully distributed models. Such models are likely to
be constrained by implementation level considerations to a greater
extent than the present work.

Multiple instances of the same network. When simulating
choice, say between a Coke and a V8, our approach requires the
instantiation of two copies of the same network. In this example,
one copy of the network receives and processes the input features
of Coke and the other receives and processes the input features of
V8. The network that converges to higher activation in its action
tendency represents the “winning option.”

We do not think it likely the brain literally contains multiple
copies of the same network. One prior approach to solve a similar
issue (in the reading domain), known as the programmable black-
board, McClelland (1986), focused on creating a central repository
of knowledge that could be made available for processing different
stimuli presented at different locations in the visual field. How-
ever, it is unclear whether proposals similar to the programmable
board can in fact be implemented in the brain. Another possibility
is that alternatives are evaluated in alternation, and there is some
evidence consistent with this possibility. For example, ensembles
of choice-encoding neurons (e.g., in the OFC) appear to alternate
in the evaluation of each of the two items, shifting activity patterns
as the network evaluates each option (Rich & Wallis, 2016). An
exploration of how such alternation could mimic parallel instanti-
ation, as well as a consideration of other implementations that
might capture the activation and competition processes we have
modeled by instantiating multiple copies of the same network,
remain to be more fully explored.

A nonlearning network. Our account has not addressed the
learning processes that lead to establishing and adapting the
strengths of the connections between network units. In most cases,
we have stipulated connections that might plausibly have been
established either by developmental programs or experience-
dependent learning processes, whereas in others we have assumed
that connections between neurons that are active at the same time
increase the strengths of their mutual connections (in accordance
with Hebb’s (1949) postulate), without actually implementing an
activity-dependent learning rule. The details of the rules of syn-
aptic plasticity remain a rich and ongoing area of research both in
the computational (LeCun, Bengio, & Hinton, 2015) and the
biological sciences (Bliss, Collingridge, & Morris, 2003). Our
underlying assumption has been that the brain can and does flex-
ibly develop excitatory and inhibitory weights of varying strengths
between neurons, and our focus in the present work has been to
offer an existence proof that it is possible to construct a framework
with simple, transparent, and biologically informed assumptions
that can simulate the outcomes and dynamics of a broad range of
behavior related to value-based decision making. Our simple ap-
proach here is a limitation, however, even for the goal of account-
ing for overt behavior. The details of synaptic plasticity rules will
be important for understanding the exact conditions under which
prior activation results in strengthening versus weakening of con-
nections, and these conditions will affect the details of the patterns
of behavior that are observed when people make choices in value-
based decision-making settings. Although we do not yet know
exactly the rules the brain uses for connection weight changes, we
note that negative auto-shaping and many of the other phenomena
we have simulated support the view that co-occurrence, and not
simply outcome maximization, contributes to the strengths of the
connections that influence the value-based choices we and other
organisms make.
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Another limitation of the present work related to learning con-
cerns experiments in which decision makers must rapidly react to
changing contingencies. Complementary learning systems (CLS)
theory (Kumaran et al., 2016) suggests one mechanism by which
rapid contingency adjustments may occur in frameworks featuring
interactive activation. According to CLS, there are two comple-
mentary learning systems, one instantiated primarily in the neo-
cortex and the other in the medial temporal lobes. The first
gradually acquires structured knowledge representations while the
second quickly learns the specifics of individual experiences.
Importantly, neocortical learning can be rapid for information that
is consistent with known structure (McClelland, 2013; Tse et al.,
2007). This suggests that it is possible that interactive activation-
based mechanisms, when combined with the CLS, are able to
computationally model situations in which a change in action-
outcome contingencies causes a decision maker to rapidly adjust
behavior. Future work is required to specify and develop such
models.

Concluding Comment

We believe that the purpose of models is to explore the impli-
cations of ideas. Here, we have developed a model based on a
fairly small set of simple ideas and have used these ideas to
simulate a broad range of empirical phenomena in value-based
decision making. The scope of these simulations invites a recon-
sideration of the view that motivated behaviors are undertaken in
the service of maximizing expected value, and that the process of
decision making proceeds via the serial processing of functionally
distinct submodules. It also suggests that interactive activation is a
viable framework to integrate and inform the field of value-based
decision making.
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