
Machine LearbiDg, 7, 161-193 (1991)
(S) 1991 Kluwer Academic Publisbers, Boston. Manufactured in The Netherlands.

Graded. State Machines: The Representation of

Temporal Contingencies in Simple Recurrent
Networks

PAVID SERVAN-SCHREIBER, AXEL CLEEREMANS.AND JAMEs L. MCclELLAND
School of CompUler Sci#nce and Depa~nt

. of fsychology, C4megie Mellon UniW!mty

Abstract. We explore a netwOrk arcbiiecture introduced by Elman (1990) for predicting suCcessive elements of
a sequence. The network uses the paUem pf actiVation over a set of hidden units from time-step

l. togetherwith element t, to predic;:t element 1. When the network is . trained with strings from a particular finite-state
grammar, it can learn to ~a perfect finite.~ ~r for thegranunar. When the net bas a minimal . number
of hidden units, patterns on ' the hidden units come to correspond to the Dodes of the grammar; however, this
c:ortespondence is not necessary for the networkio aetas a perfect finite-state recognizer. Next, we provide a

. detailed analysis ofbow the1letWorkacquires its intemalrepresentations. We show that the network
pqressively -encodes more and more telnporal context by means ofa probability analysis. Finally, we explore the collllitions

\!P!Ier Wl1icJIJb.en~rk.~gm:y infonnation.abootdistant sequential contingencies across intervening eleinents
to distant element,s. Such. information is maintained with relative ease if it is relevant at each intermediate Step;
it tends to be lost when mterveningelements do Dot depend on it. At

fustglance this may suggest that such net-
works are not relevant to natural language, in which dependencies may span indefinite distances. However, embed-
dings in natural language are not completely independent of earlier information. The final simulation

. shows that
long distance sequential contingencies c8nbe encodCd by the network even if only subtlestatistica) properties
of embedded strings depend on the early information. The network encodes long-

distance dependencies by shoding
internal representations thata,e responsible for processing common embeddings in otberwisedifferent sequences.
This ability tOreptesent simultaneously simi1arities and differences between several sequences relies on the graded
nature of representations used by the network , which contrast with the finite states of traditional automata. For
this reason, the network and other similar architectures may beca1led Graded StaltMachines.

Keywords. Graded state machines, finite state automata, recurrent networks, temporal contingencies, prediction task

1. Introduction

As language abundantly illustrates, the meaning of individual events in a stream-such as
words in a sentence-is often determined by preceding events in the sequence, which pro-
vide a context. The word 'ball' is interpreted differently in " The countess threw the ball"
and in "The pitcher threw the balL" Similarly, goal-directed behavior and planning are
characterized by coordination of behaviors over long sequences of input-output pairings,
agliin implying that . goals and plans act as a context for the interpretation and generation
of individual events.

The similarity-based style of processing in connectionist models provides natural primitives
to implement the role of context in the selection of meaning and actions. However, most
connectionist models of sequence processing present all cues of a sequence in parallel and

162 D. SERVAN-SCHREIBER, A. CLEERBMANS AND J.L. MCCLELLAND

oftenassUlIle a length for the sequence (e.g., Cotttell , 1985; Fanty, 1985; Selman,
1985; Sejnowski & Rosenberg, 1987; Hanson and Kegl , 1987). Typically, these models use
a pool of input units for the event present at time t, another pool. for event t + 1, and

so on, in whitis often called it 'movingwmdow ' paradigm. As. Elman (1990) points out,
S1ichimplem~ntatiODSare not psychologically satisfying, and they are also computationally
wasteful since some unused pools of units must be kept available for the rare occasions
when the longest sequences are pre$ented.

Some conneCtionist architectures have specifically addressed the problem of learning
and representing the information contained in sequences in more elegant ways. Iordan (1986)

described a network in which the output associated to each state was fed back and blended
with the input representing the next sate over a set of ' state units' (Figure 1).

After several steps of processing, the pattern present on the input units is characteristic
of the particular sequence of states that the network bas traversed. With sequences of in-
creasing length, the netWork has more difficulty discriminating on the. basis of the first
cues presented, but theatchitecturedoes notrigidly constrain the length of input sequences.
However, while such a network learns how to use the representation of successive states,
it does not discover a representation for the $equence.

Elman (1990) has introduced an architectUre-which we call a simple recurrent network
(SRN)--that has the potential to master an infinite corpus of sequences with the limited
mWis of a learning procedure ' that is completely local in time (Figure 2). In the SRN,
dtehidden unit layer is allOWed to feed back on itself, so that the intennediate results of

. processing at time t - 1 can influence the intermediate results of processing at time t.
In practice, the simple recurrent network is implemented by copying the pattern of activa-
tion on the hidden units onto a set of 'context units' which feed into the , hidden layer along
with the input units. These context units are comparable to Jordan' s state units.

In Elman s simple recurrent networks , the set of context units provides the system with
memory in the fonn of a trace of processing at the previous time slice. As Rumelhart,
Hinton and Williams (1986) have pointed out, the pattern of activation on the hidden units

Figure 1. The Jordan (1986) Sequential Network.

ill

GRADED STATE MACHINES 163

INPUT UNITS: Element t

Figure 2. The Simple Recurrent Network. Each box represents a pool of units and each forward arrow represents
a complete set of trainable connections fron1eaeh sending unit to eacbreceiving unit in the next pool. The backward
arrow, from the hidden layer to theconteft layer del;lOtes a copy operation.

corresponds to an 'encoding' or 'internal representation; of the input pattern. By the nature
ofback-propagation" suchl'qlresentlitions correspond to the inputpattem partially processed
into features relevant to the task (e.g.,Binton, McClelland & Rumelhart, 1986). In the
recurrent networks, internal representations encode not only the prior event but also rele-
vant aspects of the representation that Was constructed in predicting, the prior event from
its predecessor. When fed back as input, these representations could provide information
that allows the network to nurintain prediction~relevant features of an entire sequence.

In this study, we show diat theSRNcan learn to mimic closely a finite state automaton
(FSA), both in its behavior and in its state representations. In particular, we show that it
can learn to process an infinIte corpusofstrings based on experience with a finite set of
training exemplars. We then e:ltplore the capaCity of this architecture to recognize and use,
non-local conting~ncies between elem~nts of a sequence that cannot be represented conven-
iently in a traditional finite state 1iutOmaton. We show that the SRN encodes long-distance
dependenCies by shading intema1 representations that are responsible for processing com-
mon embeddings in otherwise different sequences. This ability to represent simultaneously
similarities and differences between sequences in the same state of activation relies on the
graded natureofrepresentations used by the network, which contrast with th~ finite states
of traditional automata. For this reason, we suggest that the SRN and other similarar-
chitectures may be exemplars of a new class of automata, one that we may call Graded
State Machines.

2. wrning a fmite state grammar

2J. MaleriallUUl task

In our frnt experiment, we asked whether the network cold learn the contingencies im-
plied by a small finite state grammar. As in all of the following explorations, the network

164 SERVAN~SCHRElBER, A. CLEEREMANS AND J.L. MCCLELLAND

,is assigned the task of predicting' successive elements of a sequence~ This task is interesting
because it allows us to examine precisely hoW the network extracts information about whole

sequenceS' without actually seeing ttlore than two elements at a time. In addition, it is possible
to manipulate precisely the nature of these sequences by constructing different training
and testing sets of strings that require integration of more or less temporal information.
The stimulus set thus needs to exhibit various interesting features with, regard to the poten-
tialities of the architecture (i.e., the sequences must be of different lengths, their elements
should be more or less predictable in different contexts, loops and subloops should be
allowed, etc.

Reber (1976) used a small finite-state gounmar in an artificial grammar learning experi-
ment that is well suited to our purposes (Figure 3). Finite;.state grammars consiSt ofnodes
connected by labeled arcs. A grammatical string is generated by entering the network through
the 'start' node and by moving from noc:te f()node until the 'end' node is reached. Each
ttartsition from one node toanothet produces the letter corresponding to the label of the
arc linking these two nodes. Examplesofstrings thatcanbe generated by the above gram-
mar are: TXS' PTVV'

, '

TSXXTVPS'
The difficulty in mastering the prediction task when letters of a string are presented in-

dividuallyis that two instances of the same leitermay l~d to different nodes and therefore
different predictions about its successors. 10 order to perform the task adequately, it is
thus necessary for the network to encode more than just the identity of the current letter.

2. Network architecture

As illustrated in Figute 4 , the network has atbree-Iayer architecture. The input layer con-
sists of tWo pools of units. The first pool is called the context pool, and its units are used
to represent the temporal context by holding a copy of the hidden units' activation level
at the previous time slice (note that this is strictly equivalent to a fully conn~ted feedback
loop on the hidden layer). The second pool of input. units represents the current element

End

Figure 3. The imite-state grammar used by Reber (1976).

GRADED STATE MACIDNES 165

0(!J00(!)0~

(!JIZJ00~(I)~
Figure 4. General architecture of the network.

of the string. On each trial, the network is presented with an element of the string, and
is supposed to produce the next element on the output layer, In both the input and the out-
put layers; letters ~e represented by the activation of a single unit. Five units therefore
code for the five different possible letters in each of these two layers, In addition, two units
code for begin and end bits. These two bits are needed so that the network can be trained
to predict the firstelem~t and the end of a string (although only one transition bit is strictly
necessary). In this fIrSt experiment, the number of hidden units was set to 3. Other values
will be reported as appropriate.

3. Coding of the stringS

A string of illetters is coded as a series orn + 1 training patterns. Each pattern consists
of two input vectors and one target vectOr. The target vector is a seven-bit ,vector represen-
ting , element t + 1 of the string. The two input vectors are:

. A three-bit vector representing the activation of the. hidden units at time t - I, and

. A seven-bit vector representing element t of the string.

4. Training

On each of 60,000 training trials, a string was generated from the grammar, starting with
the ' ' Successive arcs were then selected randomly from the two possible continuations,
with a probability of 0.5. Each letter was then presented sequentially to the network. The
activations of the context units were reset to 0 at the beginning of each string, After each
letter, the error between the network's prediction and the actual successor specified by
the string was computed and back~propagated. The 60,000 randomly' generated strings ranged
from 3 to 30 letters (mean: 7, sd: 3.3)1

166 SERVAN-SCHRElBER, A. CLttREMANS AND J.L. MCCLELLAND

5. Performtmce

Figure shows the state of activation of all the units in the network, after training, when
the start Symbol is presented (here the letter ' B!-for begin). Activation of the output units
indicate that the network is predicting two possible successors, the letters ' P' and ' ' Note

that the best possible prediction always activates two letters on, the output layer except when

the end of the string is predicted. ' Since during training 'P' and 'T' followed the start sym-

bolequaJlyoften, each is activated partially in order to minimize error. Figure 6 shows
the state of the network at the next time step in the string ' BI'XXVV. ' The pattern ofactiva-

non on the context units is now a copy oCthe pattern geneJ'$ted previously on the hidden

layer. The two successors predicted . are ' X' and'
The next two figures iUustrate how the network is able to generate different predictions

when presented with two instances of th~ same letter on the inputlayerin different co~-

texts. In Figure 7a, when the letter 'X' immediately follOWs 'T: the network predicts again
S' and 'x:' appropriately. However, as Figure 7bshows, when a second 'X' follows, the

prediction changes radically as the detwork now expects 'T' or 'V.' Note that if the net-

work were not provided with a Copy of the previous pattern of activation on the hidden
layer, it would activate the four possible successors of the letter ' X' in both cases.

String

OI1tput
Hid,clen
Context

Input

Btxxvv

00 5300 38 01 02 00
01 00 10

00 00 00

10000 00 00 00 00

Figure 5. State of the network after presentation of the 'Begin' symbol (foUowing training). Activation values
are internally in the range 0 to 1.0 and ,are displayed on a scale from 0 ,to 100. The capitalized bold letter indicates

which letter is currently being presented on the input layer.

String

OI1tput
Hidclen
Context

Input

b'lxxvv

00 01 39 00 56 00 00

84 00 28

01 00 10

00100 00 00 00 00 00

Figure Ii State of the network after presentation of an initial ' T.' Note that the activation pattern on the context

layer is identiCal to the activation pattern on the bidden layer at the previous time, step.

, ., .

GRADED STATE , MACHINES 167

String btXxvv

00 04 44 00 37 07 00

74 00 93

84 00 28

00 00 00 00 10000 00

Output
Hidden
Context

Input

String btxXvv

00 50 01 01 00 S5 00

06 09 99

74 00 93

00 00 00 00 10000 00

Output
Hidden
Context

Input

l'igure 7. a) State of the netWork afterpresentltionof the first 'X: b) State of the network after presentation of
the second '

In order to test whether the network would generate similarly good predictions after every
letter of any grammatical string, we tested its behavior on 20 000 strings derived randomly
from the grammar. A predicti()n was considered accurate . if, for every letter in a given
string, activation of its successor was above 0.3. If this criterion was not met, presentation
of the string was st()ppedand the string was considered ' rejected.' With this criterion, the
network cOrrectly 'accepted' all of the 20,OOO. strings presented.

We also verified that the network, did not accept ungrammatical strings. We presented
the network with 130,000 strings generated from the same pool of letters but in a random
manner-i.e. , mostly 'non-grammatical.' During this test, the network is first presented
with the 'B' and one of the five letters or ' E" is then selected at random as a successor.
Ifthatletter is predicted by the network as a legal successor (i.e., activation is above 0,
for the corresponding unit), it is then presented to the input layer on the next time step,
and another letter is drawn at random as its successor. This procedure is repeated as long
as each letter is predicted as a legal successor until ' E' is selected as the next letter. The

168 D. SERVAN-SCHREIBER, A. CLEEREMANS AND J.L. MCCLELLAND

. procedure is intel111pted as soon as the actua1succes80r generated by the random procedure
is not prediced by the network, and the string of letters is then considered ' rejected.' As

in the previous test, the string is considered 'accepted' if all its letters have been predicted

as possible continuations up to ' E: Of the 130,000 strings, 0.2 % (260) happened to be gram-

matical, and 99.7% were non-granunatical. The network performed flawlessly, accepting
all the grammaticalsUingsand rejecting '8ll the others. In other words, for all non-

grammatical strings, when the first non-grammatical letter was presented to the network
its activation on the output layer at the previous step was less than 0.3 (i.e~, it was not
predicted as asuccessor of the previous--grammatically' acceptable-letter).

Finally, . we presented the network with several extremely. long strings such. as:

, BTSSS SSSSSS S SSSSSSSS SSSSXJCVP ~P~~P~~P ~P~PXVP~~
111111 IT11 1 ITTTI 1 lIT 111111 ITVPXVP~PXVPXVP~P~S'

and observed that, at every step, the network correctly predicted both legal successors and
no others.

Note that it is possible for a network with more hidden units to reach this performance
, criterion with much less training. For example, a network with IS hidd~n units reached
criterion after 20,000 strings were presented. However, activation values on the output layer

are not as Clearly contrasted when training is less extensive. Also, the selection of a threshold
of 0.3 is not completely arbitrary. The activation of output units is related to the frequency
with which a particular letter appears as the successor of a given sequence. In the training
set used here, this probability is 0.5. The activation of a legal successor, would then be
expected to be 0. 2 HoweVer, because of the use of a momentum term in the back propaga-
tion learning procedure, the activation of correct output units following training was occa-
sionally below 0.5-sometimes as low as 0.

ti Analysis of internal i'epresentations
+'C

Obviously, in order to perform accurately, the network takes advantage of the representa-
tions that have developed on the hidden units which are copied back onto the context layer.
At any point in the sequence, these patterns must somehow encode the position of the 'cur-

rent input in the grammar on which the network was trained. One approach to understand-
ing how the network uses these patterns of activation is to perform a cluster analysis. We
recorded the patterns of activation on the hidden units following the presentation of each
letter in a small random set of grammatical strings. The matrix of Euclidean distances be-
tween each pair of vectors of activation served as input to a cluster analysisprogram.3 The

graphical result of this analysis is presented in Figure SA. Each leaf in the tree correspQnds
to a particular string, and the capitalized letter, in that string indicates which letter has just
been presented. For example, if the leaf is identified as ' pvPs,"P' is the current letter and
its predecessors were 'P' and 'V' (the correct prediction would thus be ' X' or

From the figUre, it is clear that activation patterns are grouped acCording to the different
nodes in the finite state grammar; all the patterns that produce a similar prediction are
grouped together, independently of the current letter: This grouping by similar predictions

GRADED STATE MACHINES 169

is apparent in Figure 8b, which represents an enlargement of the bottom cluster (clUSter
S) QfFigure 8a. One can see that this cluster grOIJPS patterns that result in the activation
of the "End" w1it: All the strings cOrresponding to these patterns end in ' V' or S' and
lead to node IS of the . gnunmar, out of which " End" is the only possible successor.
Therefore, when one of the hidden layer patterns is copied bac~ ontO the context layer,
the network is provided with infonnation about the cUrrent node. That infonnation is com-
bined with input representing the CUrrent /ener tOproc1uce a pattern on the hidden layer

that is a representation of the next node. To a degreeofapproximation, the recurrent net-
wOrk behaves exactly like titefinite state automaton defined by the grammar. It does not
use a stack or registers to provide contextual infoimationbut relies instead on simple state
transitions, just like a finite State machine. Indeed, ' the network's perfect performance on
randomly generated grammatical and non-grammatical strings shows that it ~' be used
asa finite state recognizer.

However, a closer 1000k at the cluster analysis reveals that within a cluster corresponding
to a particular node, patterns areffutther divided according to the path traversed before
that node. For example, anexaiDination of Figure8breveals that patterns ending by 'VV:
PS' and 'SXS' endings havebeeJi grouped separately by the ai1alysis: they are more similar

to each other than totheabSt1'actprototypicalpauern that would characterize the correspond-
ing node.';4 We can illustrate the behavior of the network with a specific example. When
the f1rstletter of the string " BI'X' is presented, the initial pattern OnOOntext units corresponds
to node O. This pattern togetherwitb the letter ' T' generates a hidden layer pattern cor-
responding to node 1. When that pattern is copied onto the context layer and the letter
X' is presented, a new pattern eorrespondingto node 3 is produced on the hidden layer,

and this pattern is in turn copied on the context units. If the network behaved exactly like
a finite state autom,aton, the exact same patterns would be used during processing of the
other strings 'BTSX' and 'BTSSX: That behavior would be adequately captured by the
transition network shown in Figure 9. However, since the cluster aI1aIysis shows that slightly
different patterns are produced by the substrings 'BT: 'BTS' and 'BTSS: Figure 10 is a
more accurate description of the network' s state transitions. As States 1, l' and I" aD the
one hand and 3, 3' and 3" on the other are nevertheless very similar to each other, the
finite state machine that the network implements can be said to approXimate the idealiza-
tionof a fmite state automaton corresponding exactly tothegrarnmar underlying the ex-
emplars on which it has been trained.

However, we should point out that the close correspondence between representations
and function obtained for the recurrent network with three hidden units is rather the excep-
tion than the rule. With only three hidden units, representational resources are so scarce
that backpropagation forces the network to develop representations that yield a prediction
on the basis of the current node alone, ignoring contributions from the path. This situation
precludes the development of different-redundant-representations for a particular node
that typically occurs with larger numbers of hidden units. When redundant representations
do develop, the network's behavior still converges to the theoretical finite state automaton-
the sense that it can still be used as a perfect finite state recognizer for strings generated
from the corresponding grammar-but internal representations do not correspond to that
idealization. Figure U shows the cluster analysis obtained from a network with 15 hidden
units after training on the same task. Only nodes 4 and of the grammar seem to be

:~~_.

170 D. SERVAN~SCHREIBER, A. CLEEREMANS AND J.L. MCCLELLAND

.0,

Figure M. Hierarchical Cluster Analysis of the H.u. activation patterns after 200 000 presentations from strings
generated at random according to the Reber grammar (Three hidden units).

,..

GRADED STATE MACHINES 171

t81xxvV
, txxttvV

pvV
pvpxvV

tlSlXXVV
I8XX1YV

pllYV
ptvpxtvV
txXYpxvV
ptvpxvV

ptttvpS
ptlYpS

18xxtvp$
pvpS

pvpxtYpS
t118xxvp$

txXYpS
txxtvpS

pvpxvpS
IIxS

\888xS

tIS

I-'--

Figure 8B. An ~nIarged portion of Figure SA, representing the bottom cluster (cluster S). The proportions of
the original figure have not necessarily' been respected in ,this enlargement.

Figure 9. A transition network corresponding to the upper-left part of Reber s finite-state grammar.

Figure 10. A transition network illustrating the network's true behavior.

G.I

D. SERVAN,SCaRElBER, A. CLEEREMANS AND J.L. MCCLELi.AND172

11S1

21T!

21X!

31X!

21P!

Figure 11. Hierarchical Cluster Analysis of the H.U. activation patterns after 200,000 presentations from strings
generated at random according to the Reber grammar (Fifteen hidden units).

GRADED STATE MACHINES 173

represented by a unique ' prototype' on the hidden layer. Clusters corresponding to nodes
I, 2 and 3 are divided according to the preceding arc. Information about arcs is not rele-

, vant to the prediction task and the different clusters corresponding to the a single node
play~ redundant role.

FjnaJIy, preventing the development ofredlUldant representations may also produce adverse
effects. For example, in the Reber grammar, predictions following nodes land 3 are iden-
tical ('X or S'). With sooierandomsets of weights atld training sequences, networks with
onlytbree hidden units ,occasionally develop alinost identical representations .for nodes 1
atld3, and are therefore unable to differentiate the fll'St from the second ' in a string.

In tb'e next section weewnine a different type of training environment, . one in which
infonnationaboutthe path traversed becomes relevant to the prediction task.

3. Discovering Bndusing patbinfonnation

The previous ~tion,has shOWtl that' simple recurrent networks can learn to encode the
nodes of tbe grammar used to generate strings in the training set: However, this training
material does not. require information . about arcs or sequences of. arcs-the " path!.-to be
maintained. How does the network'sperfonnance adjust as the training material involves
more complex and subtle temporal contingencies? We examine this question in the follow-

ingsection, using attaining set that places many addition8I constraints on the prediction task.

3.1. Material

The set of strings that can be generated from the grammar is f1I1ite for . a given length.
For lengths 3 to 8, this amounts to 43 grammaticaJstrings. The 21 strings shown in Figure
12 were selectedaJid served as training set. The remaining 22 strings can be U!ied to test
generalization.

The selected set ofstrings has a number of interesting properties with regard to explor-
ing the network's performance on subtle temporal contingencies:

As in, the previous task, identical letters occur at different points in each string, and lead
to different predictions about the identity of the SUccessor. No stable prediction is therefore
associated with' any. particular letter, and. it is thus necessary to encode the position, or
the node of the grammar.

TSXS
TSSXXVV
TXXTTVV
TSXXTVPS
PVV
PVPXVV
PTVE'S

TSSSXS
TxxVPXW
TSSxxVPS
TXXVPS
P TVP XVV
PVPXVPS
PTTTVP S

TXS
TSSSXXVV
TSXXTVV
TXXTVPS
PTTW
PTVPXTW
PVPXTVPS

Figure 12. The 21 grammatical strings of length 3 to 8.

174 D. SERVAN-SCHREIBER, A, C~S AND J.L. MCCLELLAND

8 In this llinited trai1Ung '~t, leDgth places additional constraints on the encoding because
the possiblepredictioDS associated with a particular node in the grimunarare dependent
on the length of the .sequence. The set of possible letters that follow a particular node
depends on bow many lettetsbavealreadY been presented. For example, following the
5eCI'1ence oTXX' both oT' and 'V' are legal successors. However, follOwing the sequence
TXXVPX: 'X' is the sixth letter and only ' Would bea legal successor. This informa-

tion . must tJtereforealso be somehow represente(l during processing.
. Sub~ttems ocanTingin the strings are not all asspciated with their possible S1,1ccessors

equally often. Accurate predictions therefore require that information about the identity
of the letters that bave already been presented be maintained in the system, Le., the system
must be sensitive to the frequency distribution of subpattems in the training set. This
amounts to encoding the

~.

path that has been traversed in the granunar.

These features of the limited training set obviously make the prediction task much more
complex ~nin , the previous simulation.

2. . Network tuchitectI4rt

The same general netWork architect1,lre was used for this set of simulations. The number
of hidden units was arbit:r:arily set to 15.

3, Perfo171UUJce

The network was trained on the 21 differentsequences (a total of 130 patterns) until the
total sum squared error (us) reached a pla~u with DO further improvements. This point
was reached after 2000 epochs and tss was SO. Note that tss cannot be driven much below
this value, since most partial sequences ofletWrsare compatible with 2 different successors.
At this point, the netWork correctly predicts the possible successors of each letter, and
distinguishes betweendifferentoccurtences of the same letter-like it did in the simulation
described previously. However, the network' s perfonnancemakes it obvious that many ad-
ditional constraints specific to the limited training set have been encoded. Figure 13a shows
that the netWork expects a 'r or a ' after a first presentation of the second ' X' in the
grammar.

Contrast these predictions with those illustrated in Figure 13b, which shows the state
of the network after a second presentation of the second ' : Although the same node in
the grammar has been reached, and 'T' and 'V' are again possible alternatives, the net-
work now predicts only 'V.'

Thus, the network has successfully learned that an 'X' occurring late in the sequence
is never followed by a 'T!.....a fact which derives directly from the inaximum length con-
straint of 8 letters.

It could be argued that that network simply learned that when ' X' is preceded by '
it ,cannot be followed by ' T', and thus relies only on the preceding letter to make that distinc-
tion. However, the story is more complicated than this.

GkADED STATE MACHINES

String

OUtput
Bidden
Context

J;nput

String

Output
Bidden
Context

Input

175

btxXvpxvv

0049 00 00 00 50 00
27 89 02 16 99 4301 06 0418 998195 18 01
01 18 00 41 95 01 60 59 05 06 84 99 19 05 00

B T , S , P X V E
00 00 00 0010000 00

b t x xCV P X v v

00 03 00 00 00 95 00

85 03 85 31 00, 72 19 31 03 93 99 61 05 00

01 07 05 90 93 04 00 10 71 40 99 16 90 05 82

00 00 0000 100 00 00

Figure 13. a) State of the netWork after presentation of the second ' X.' b) State of the, network after i second
presentation of the second 'X.'

In the folloWing two cases, the network is presented with the first occurrence of the let-
ter 'V.' In the flI'St case, ' V' is preceded by the sequence ' tssxx,' while in the second case,
it is preceded by 'tsssxx,' The difference ora single '5' in the sequence-which occurred
5 presentations before-results in markedly different predictions when 'V' is presented
(Figures 14aand 14b).

The difference in predictions can be traced again to the length constraint iInposed on
the strings in the limited training set, In the second case, the string spans a total of 7 letters
when 'V' is presented, and the only alternative compatible with the length constraint is
a second ' and the end ' of the string. This is not true in the first case, in which both
VV' and ' VPS' are possible endings.

Thus, it seems that the representation developed on the context units encodes more than
the immediate context---the pattern of activation could include a full representation of the
path traversed so far. Alternatively, it could. be hypothesized that the context units encode
only the preceding letter and a counter of how many letters have been presented.

176

String

Output
Hidden
Context

Input

String

Output
Hidden
Context

Input

~. SERVAN-SCHREIBER, A. CLEEREMANS AND J.L. MCCLELLAND

btssxxVv
00 00 00 54 00 '48 00
44 98 30 84 ~9 82 00 47 00 09 41 98 13 02 00

89 90 01 01 99 70 01 03 02 10 99 95 8521

00 00 00 00 00100 00

btsssxxVv
B T S P X V E
00 00 00 02 00 97 00

56 99 48 93 99 85 0022 00 10 77 97 30 03 00
54 67 01 04 99 59 07 09 0106 98 97 72 16 00

00 00 00 00 00100 00

Figure 14. 1\vo presentations of the first ' ' with slightly different paths.

In order t() understand better the kind of representations that encode sequential context
we performed a cluster analysis on all the hidden ul'lit patterns evoked by each, sequence.
Each letter of each sequence Was presented to the network and the corresponding pattern
of activation on the hidden layer was recorded. The Euclidean distance between each pair
of patterns was computed and the matrix of all distances was provided as input to a clusteranalysis program.

The resulting analysis is shown in Figure 15. We labeled the arcs according, to the letter
being presented (the 'current letter) and itS position in the Reber grammar. Thus ' V; refers
to the first 'V' in the grammar and " '2 to the second ' V' which immediately precedes the
end of the string. 'Early ' and 'Late' refer . to whether the letter occurred early or late in
the sequence (for example in ' PT. .' ' T2 occurs early; in ' PVPXT. .' it occurs late). Finally,
in the left margin we indicated what predictions the corresponding patterns yield on the
output layer (e. , the hidden ul'lit pattern generated by ' B' predictS ' T' or '

From the figure, it can be seen that the patterns are grouped according to three distinct
principles: (1) according to similar predictions, (2) according to similar letters presented

GRADED STATE MACHINES 177

...

VorP

...-

late

earl

TorP

0::

...

, TM

" .;:::.......-...-...::

lat.End

TI leartyl
TorY

X&learly!

TorY

XorS

XI 'earlyl

-...,

Tillatel

-,......"""

Pa.

...-............

XorS

....'"'-..-"::.....-""-

-a:

,",,-

End _.

...

TorY

.:=

Xlilatel

-...

Figure 1S. Hierarchical cluster analysis of the H.u. activation patters after 2000 epochs of training on the set
of 21 strings.

178 D. SERVAN-SCHRElBER, A. CLEEREMANS AND J. , MCCLELLAND

on the input units, and (3) according, to similar paths. These factors do not necessarily
overlap sineeseveraloCc\lrrencesofthe same letter in a sequence usually implies different
predictions and since sinillar paths also lead to different predictions depending on the cut-
rent letter.

For example, the top cluster in the figure corresponds to all occurrences of the letter
and is further subdivided among 'Viand ' .' The 'Vi cluster is itselffurther divided

between groups where 'Vi occurs early in the sequence (e.

g., '

pV.. .) and groups where
it occurs later (e.

g.,

'tssxxV. . .). Note that the divisipIi according to the path does not
necessarily correspond to different predictions. For example, ' V2 always predicts ' END'
and always with maximum certainty. Nevertheless, sequences up to ' Vi are divided accord-
ingtQ the path traversed.

Without going into the details 'of the organization of the remaining clusterS, it can be
seen that they are predominantly grouped according to the predictions associated with the
corresponding portion ()fthe sequence and then further divided according to the path tra-
versed up to that point. Forexamplf, ' T~ 'X2 and 'P; all predict 'T or V; "Ii and '
both predict 'X or So' and so an.

OVerall, the hidden units patterns developed by the network reflect two influences: a
top-down' pressure to produce the correct 'oUptut, and a 'bottom-up' pressure from the

successive letters in the path which modifies the activation pattern independently of theoutput to be generated.
The top-down force derives directly from the back-propagation learning rule. Sinlliar

patterns on the output units tend to be associated with similar patterns on the hidden units.
Thus, when two different letters yield the same prediction (e.

g., "

Ii and 'X;), they tend

to produce similar hidden layer patterns. The bottom-up force comes from the fact that,
Devertheless, , each letter presented with a particular context can produce a characteristic
mark or shQ.ding on the hidden unit pattern ($ee Pollack 1989, for a further discussion
of error-driven and recurrence-driven influences on the development of hidden unit pat-
terns in recurrent networks). The hidden unit patterns are not truly an ' encbding' of the
input, as is often suggested, but rather an encoding of the association between a particular
input and the relevant prediction. It really reflects an influence from both sides.

Finally, it is worth noting thatthe very specific internalrepresentations acquired by the
network are nonetheless sufficiently ,abstract to ensure good generalization. We tested the
network on the remaining untrained 22 strings of length 3 to 8 that can be generated by
the grammar. Over the 165 predictions of successors in these strings, the network made
an incorrect prediction (activation of an incorrect successor ~ 0.05) in only 10 cases, and
it failed to predict one of two continuations consistent with the grammar and length con-
straints in 10 other cases.

4. Finite stateautonuztQ and graded state machines

In the previous sections, we have examined how the recurrent network encodes and uses
information about meaningful subsequences of events, giving it the capacity to yield dif-
ferent outputs according to some specific traversed path or to the length of strings. However,
the network does not use a separate and explicit representation for non-local properties

--'~~.,,~
GRADED STATE MACHINES 179

of the stringssucb as- length. It only learns to associate different predictions to a subset
ofstates; thosetbat are associated with a more restricted choice of successors. Again there
are not stacks or registers, andeacb different prediction is associated to a specific state
on th~ context units. Inthatsense, the recurrent network that bas learned to master this
task still behaves like a finite~$tate machine, although the training set involves non-local
constraints that could only be encoded in a 'very cumbersome way in a finite-state grammar.

We usUally do not think of finite ,Stlte automata as capable of encoding non-local infor-
mation such as length ora sequence. Yet, finite state machines bave in principle the same
computational power as a 'I\1ring machine with a finite tape and they can be designed to
respond adequately to non-local constraints. Recursive or Augmented ttansition networks
and other Thring.,equivalent automata are preferable to finite state machines because they
spare memory and are modular-and therefore easier to design and modify. However, the
finite state machines that the recurrent network seems to implement have properties that
set them apart from their traditionalcounterpaits:

. For tasks with an appropriate structure, recurrent networks develop their own state tran-
sition diagram, sparing this burden to the designer.

. The large amount of memory required to develop different representations for every state
needed is provided by the repr~sentational power of hidden layer patterns. For example,
15 hidden units with four possible values-e.g., 0,.25, .75, I-can support more than
one billion different patterns (41' = 107,374,1824).

. The network implementation remains capable of performing similarity-based processing,
making it somewhat noise-tolerant (the machine does not 'jam' if it encounters an unde-
fined state transition and it can recover as the sequence of inputs continues), and it re-
mains able to generalize to sequences that were not part of the training set.

Because of its inherent ability to use groded rather than finite states, the SRN is defmitely
not a finite state machine of the usual. kind. As we mentioned above, we have come to
consider it as an exemplar of a new class of automata that we call Graded State Machines.

In the next section, we examine bow the SRN comes to develop appropriate internal
representations of the temporal context.

4. Learning

We have seen that the SRN develops and learns to use compact and effective representa-
tions of the sequences presented. These representations are sufficient to disambiguate iden-
tical cues in the presence of context , to code for length constraints and to react appropriately
to atypical cases.' How are these representations discovered?

As we noted earlier, in an SRN, tbehidden layer is presented with information about
the current letter, but alser-on the context layer-with an encoding of the relevant features
of the previous letter. Thus, a given hidden layer pattern can come to encode information
about the relevant features of two consecutive letters. When this pattern is fed back on
the context layer" the new pattern of activation over the hidden units can come to encode
information about three consecutive letters, and so on. In this manner, the context layer
patterns can allow the network to maintain prediction-relevant features of an entire sequence.

180 D. SERVAN-$CIIRBIBER, A. CLEEREMANS AND J.L. MCCLELLAND

, As, discussed. elsewhere' iri more, detail (Servan- Scbreiber, Cleeremans &. McClelland,
1988, 1989).- leai'ning pro~ through threequalitati\Tely different phases. During a first
phase the network tends to ignore thecont.extinfu~tion. Tbis is a direct consequence

' Qf the , fi1ct that d1epattemso! activation on tbebidden layer-and hence the context layer-are
continuously changing from one epoch to the next as the weightS from the iriput

unitS (the
letters) to the bidden layer are modified. Consequently, adjustments made to the

weightS
from the CQDtext layer to the bidden layer are inconsistent from epoch to epoch and cancel
each otber. contrast. tI1enetWOrk is able to pickup the stable association between each
kiter and "1 itS possible suCcessors, For example, after only 100 epochs of training, the
response pattern generatec:i by ' ' and the corresponding output are almost identical. to
the pattern generated by ' " as Figures 16a and 16b deIrtonstrate. At the end oftbis phase
the network thus predicts all the suCcessors of each letter iri the grammar, iridependently
of the arc to wbich each letter corresponds.

Epoch
String

O1.1tput
Hidden
Context

Input

Epoch
String

Output
Hidden
Context

Input

100
b S iii x xv ps

0000 36 00 33 16 17
4524 47 26 36 23 5522 2226 22 23 30 30 33
44 22 56 21 36 22 64 16 13 23 20 1625 21 40
B T S P X 'V E
00 00 10000 00 00 00

100
blilsxxvpS

00 00 37 00 33 16 17

45 24 47 25 36 23 56 22 21 25 21 22 29 30 32

42 29 53 24 32 27 61 25 16 33 25 23 28 27 41

00 00 10000 00 00 00

Figure 16. a) Hidden layer and output generated by the presentation of the
first S in a sequence after 100 epochs

of training. b) Hidden layer and output patterns generated by the presentation of the
secondS in a sequence after

100 epochs of training.

GRADED STA'l'EMAcHINES 181

IDa second phase, patterns copied on the contextlayer are n()W represented by a QDique
cOdedesignatingwbkh letter preceded the current letter, and the netwOrk can exploit this
stability of the context information, to ' . stan distinguishing between different occurrences
of the same letfer~ffetent arc:sinthe graInmar. Thus, to continue with the above exam-
ple, the response elicited by the presentation of an ' Sj Would progressively become dif-
ferent from that elicited by an '

Finally, ina third phase, small differences in the context information that reflect the ac-
CUrrence of previous elements can be used to differentiateposition.c:1ependent predictions
resultingfroIri length constraints. ,For example, the network learns to differentiate between
tssxxV' which predicts either 'P' or 'V,' and ' tsssxxV' which predicts only ' V,' although

both occurrences of ' correspond to the same arc in the grammar. In order to make this
distinction, thepattemof actiVation on the context layer must be a representation of the
entire pa(h rather than simply .m encOding of the previous letter.

Naturally, these three phases do not reflect sharp changes in the network' s behavior aver
training. Rather, they are simply particular points iri what is essentially a continuous proc-
ess, during which thenetWorkprolressively encodes increasing amounts of temporal con-
text information to refine its predictions. It is possible to analyze this smooth progression
towards better predictions by notlngthatthese predictions converge towards the optimal
conditional probabilities of observing a particular successor to the sequence presented up
to that point. Ultimately, given sufficient training, the SRN' sresponses would become these
optimal conditional probabilities (that is, the minima in the error function are located at
those points in weight space where the activations equal the optimal conditional proba-
bilities). . This obserVation gives usa tool for anlayzing how the predictions change over
time. Indeed, the conditional probability of observing a particular letter at any point in
a sequence of inputs varies according totheilumber of preceding elements that have been
encoded. For instance, since all letters occur twice in the grammar, a system basing its
predictions on only the current element of the sequerice will predict all the successors of
the current letter, independently of the arc to whicfl that element corresponds. If two elements
of the sequence are .encoded, the uncertainty about the next event is much reduced, since
in many cases; subsequences of two letters are unique, and thus provide an unambiguous
cueto its possible successors. In some other cases, subtle dependencies such as those
resulting from length constraints require as much as 6 elements of temporal context to be
Qptimallypredictable.

Thus, by generating a large number of strings that have exactly the same statistical prop-
erties as those used during. training, it is possible to estimate the conditional probabilities
of observing each letter as the successor to each possible path of a given length. The average
conditional probabiJjty (ACP) of observing a particular letter at every node of the gram-
mar, after a given amount of temporal context (i .e., over all paths of a given length). can
then be obtained easily by weighting each individual term appropriately. This analysis can
be conducted for paths Qfany length , thus yielding a set of ACPs for each statistica1 order
considered.' Each set of ACPs can then be used as the predictor variable in a regression
analysis against the network's responses, averaged in a similar way. We would expect the
ACPs based on short paths to be better predictors of the SRN's be~avior early in training,
and the ACPs based on IQnger paths to be better predictors of the SRN's behavior late in
training, thus revealing the fact that, during training" the network learns to base its predic-
tions on increasingly larger amounts of temporal context.

182 D. SERVAN-SCHRaBER, A. CLEEREMANS AND J.L. MCCLELLAND

AnSRN with fifteen hidden units~ trainec1onthe 43 strings of length 3to 8 from
the Reber grammar, in e)\8ctly the satDe collditioDS asdescribedearlier. The network was

for 1000 epocbS, and its perfoliDaDl::etested ollcebefore training, and every SO epochs
thereafter, for a total of 21 tet. Each test Consisted of 1) freezing the connections, 2) present-

ing the netWork with the entire set of strings (8to1.81 of 329 patterns) once, and 3) record-
ing its response toeacb individuaJ inPutpattem. Next, the average activation of each response
unit (i.e., each letter in the gratnmar) given 6 elements of temporal context was computed
(i.e., afterall paths of length 6 that are followed by that letter).

In a separate analySis, seven sets of ACPs (from order 0 to order 6) were computed in
the manner described above. Each of these sevellsets of ACPs was then used as the pre-
dictor variable in a regression analysis on each , set of average activations produced by the
network. These data are represented in Figure 17, Bach point represents the percentage
of variance explained in the network's behavior on a particular test by the ACPs6f a par-
ticular statistical order. Points conespondingto the same set of ACPsare Imked. together
for , a total of 7 curves, each corresponding ' to the ACPs of a, particular order.

What the figure reveals is that the network' s responses are approximating the conditional
probabilities of increasjngly higher statistical orge1'S. Thus, before training, the performance
of the network is best ~plained by theOth order ACPs (Le., the frequency of each letter
in the training set),This is due tothefaet that before training, the activations of the response
units tend to be almost unifonn, as ' do the Oth order ACPs. In the next two tests (i.e., at
epoch 50 and: epoch 100), the network's perfonnance is best explained by the first-order
ACPs. Inotherwords, the network's predictions during these two tests were essentially
based on paths oflength 1. This point in training corresponds to the first phase of learning
identified earlier, during which the network's responses do not distinguish betWeen dif-
ferent occurrences of the same letter.

Soon, however, the network's performance comes to be better explained by ACPs of higher
statistical orders, One can see the curves cOnesponding to the ACPs of order 2 and 3 pro-
gressively take over, thus indicating that the netWork is essentially basing its predictions
on paths of length ,2, then oflength. 3. .Atthis point, the network has entered the second
phase oflearning, during which it now distinguishes between different occurrences of the
same letter. Later in training, ' the network's behavior . be seen to be better captured
by ACPs based on even longer paths; firSt of length 4, and fmally, of length 5. Note that
the network ,reI11ains at that stage ' for a much longer period of time than for shorter ACPs.
This reflects, the. fact that encoding longer paths is more difficult. At this point, the net-
work has started to become sensitive ,to subtler dependencies such as length constraints,
which require an encoding of the full path traversed so far. Finally, the curve correspond-
ing to the ACPs of order 6 can be seen to raise steadily towards increasingly better fits,
only to be achieved considerably later in training.

It is worth noting that there is a large amount of overlap between the percentage of variance
explained by the different sets of ACPs. This is not surprising, since most of the sets of
ACPs are partially COJ,Telated With each other. Even so, we see the successive correspondence
to longer and longer temporal contingenCies with more and more training.

In all the learning problems we examined so fur, contingencies between elements of the
sequence were relevant at each processing step: In the next section, we propose a detailed

GRADED STATE MACHINES

'tI
: 0.

I 0.

';:

'0 0.

200 400 600

Epoch

183

-.- ACP.o
-.- ACP.
- ACP.

ACP-3

--

ACP-4,
- ACP.

- ,

ACN '

800 1000

Figure 17. A graphic representation of the percentage of variance in the network's performance explained by average
conditioDal probabilities of ~cteasing Statistical order (from 0 to 6). Each point represents the r-squared of a
regression analysis using' a particular set of average conditional probabilities as the predictor variable, and ' average
activationS produced by the netWork at a particular point in training as the dependent variable.

analysis of the ~onstraints guiding the learning of tnore complex contingencies, for which
information about the distant eletnents of the sequence to be maintaified for several proces-
sing steps before they become useful.

50 Encoding non-local context

5.1. Processing loops

Consider the general problem of learning, two arbitrary sequences of the, same length and,
ending by two different letters. Under what conditions will the network be able to make
a correct prediction about the nature of the last letter when presented with the penultimate
letter? Obviously, the necessary and sufficient condition is that the internal representations
associated with the penultimate letter are different (indeed, the hidden units patterns have
to be different if different outputs are to be generated). Let us consider several different
prototypical cases and verify if this condition holds:

PABC X and PABC V

P ABC X and TDEF V

(l)

(2)

184 D. SERVAN-SCHREIBER, A. CLEEREMANS AND J.L. MCCLELLAND

Clearly, problem III is impossible: as the two sequences are identical up to the last let-
ter, there is simply no way for the network to make a different prediction when presented
with the penultimate letter (' C' in the above example). The internal representations induced

by the successive elements of the sequences will be strictly identical in both cases. Prob-
lem (2), on the other hand, is trivial, as the last letter is contingent on the penultimate
letter ('X' is contingent on '

; '

V' on ' There is no need here to maintain information
available for several processing steps, and the different contexts set by the penultimate let-
ters are sufficient to ensure that different predictions can be made for the last letter. Con-
sider now problem (3).

PSSS P and TSSS T , (3)

As can be seen, the presence of a final ' T' is contingent on the presence of an jnitial
;a final 'P' on the presence oran initial ' P.' The shared ' s do not supply any relevant

infomation for disambiguating the last letter. Moreover, the predictions the network is

required to make in the course of pr~ssing are identical in both sequences up to the last
letter.

Obviously, the only way for the network to solve this problem is to develop different
internal representation$ for every letter. in the two sequences. Consider the fact . that the
network is required to make different predictions when presented with the last' S.' As stated
earlier, this will only be possible if the input presented at the penultimate time step pro-
duces differentintel'nalrepresentations in the two sequences. However , this necessary dif-
ference cannot be due to the last'S' itself, as it is presented in both sequences. Rather,
the only way for different internal representations to arise when the last'S' is presented
is when the context pool. holds different patterns of activation. As the context pool holds
a copy of the internal , representations of the previous step, these ' representations. must
themselves be different. :Recursively, we can apply the same reasoning up to the first letter.
The network must therefore develop a different representation for all the letters in, the se-
quence. Are initial different letters a sufficient condition to ensure that each letter iD the
sequences will be associated with different internal representations? The answer is twofold.

First, , note that developing a different ' internal representation for each letter (including
the different instances of the ' letter ') is provided automatically by the recurrent nature

, of the architecture, even without any ttaining; Successive presentations of identical elements
toa recurrent network generate different internal representations at each step because the
context pool holds different patterns of activity at each step. In the above example, the
first letters will generate different internal representations. On the following step, these
patterns of activity will be fed back to the network, and induce different internal represen-
tations again. , This process will repeat itself up to the last' ' and the network will therefore
find itself in a state in whkh it is potentially able to correctly predict the last letter of the
two sequences of problem 13). Now, there is an important caveat to this observation. Another
fundamental property of recurrent networks is convergence towards an attractor state when
a long Sequence of idential elements are presented. Even though , initially, different pat-
terns of activation are produced on the hidden layer for each' S' in a sequence of '
eventually the network converges towards a stable state in which every new presentation
of the same input produces the same pattern of activation on the hidden layer. The number

GRADED STATE MACHINES 185

. - - - ._, -

of iterations required for the network to converge depends on the number of bidden units.
With more degrees of freedom, it takes more iterations for the network to Settle. Thus,
increasing the number of bidden units provides the network with an increased architec-
turalcapadty of.maintaining 4ifferences in its internal representations when the input
elements arei~entica1.

Second,. considertbeway, back-propagation interacts with this natural process . of main-
taining information about the first letter. In problem (3), the predictions in each sequence
are identical up to the last letter. As sitnilar outputs are required on each time step, the
~igbt adjustment proCedure pushes the network into developing i4entical internal represen-
tations at each time step and for the tWo sequences-therefore going in the opposite direc-
tion tbanisrequiied. This 'homogenizing' process can strongly binder learning; as will
be illustrated below.

From the above reasoning, we can infer that optimalleaming conditions exist when both
contexts and predictions are different in each sequence, If the sequences share identlcal
sequences of Predictions---as in' problem' (3)- theprocess of maintaining. the differences
betw~n the internal representations generated by an (initial) letter can be disrupted by
back-propagation itself. 'fbe very process of learning to predict correctly the intermediate
shared elements of the sequence can even cause the total error to rise sharply jn some cases
after an initial decrease~ indeed, the more traitrlJig the network gets on these intermediate
elements, tbemorelikely it is that their internal representations will become identical,
thereby completelyeliminatingiirltial slight differences that could potentially be used to
disambiguate the last element. Further training can only wOrsen this situation.. Note that
ii1 thisseriseback-propagation in the recurrent network is not guaranteed to implement
gradient descent. Presumably, the ability of the petwork to resist the ' homogenization' in-
duced by the learning algorithm will depend on its representational power-the number
of hidden units available for processing. .With more hidden units, there is also less pressure
on each unit , to take on specified activation levels. Small but crucial differences in activa-
tion levels will therefore be allowed to survive at eacbtime step, until they finally become
useful at the penultimate step.

To illustrate this point. a network with fifteen hidden units was trained on the two se-
quences of problem (3). The network is able to solve this problem very accurately after
approximately 10,000 epochs of training on the two pa~rns. Learning proceeds smoothly
until a very long plateau in the error is reached. This plateau corresponds to a learning
phase during which the weights are adjusted so that the network can take advantage of
the smalldiffetences that remain in the representations induced by the last' S' in the two
strings in order to make accurate predictions about the identity of the last letter. These
slight differences are of course due to the different context generated after presentation
of the first letter of the string.

To understand further the relation between network size and problem size, four different
networks (with 7, 15, 30 or 120 hidden units) were trained on each of four different ver-
sions of problem (3) (with 2, 4, 6 or 12 intermediate elements). As predicted, learning

was faster when the number of hidden units was larger. There was an interaction between
the size of the network and the size of the problem: adding more hidden units was of little
influence when the problem was small, but had a much larger impact for larger numbers
of intervening ' s. We also observed that the relation between the size of the problem and

186
D. SERVAN-SCHRE1BER, A. CLEEREMANS AND J.L. McCLELLAND

the number of epQChs to reach a
leaming criterion was exponential for an

netWOrk sizes.

These results suS8est that for relatively short.
embedded sequences of identica11etten, the

difficulties encoutt~ by the simple recurrent netWOrk can be alleviated by increaSing

1be number of bidden units. However, beyond a certain
lIDge, maintaining difJereDt represen-

tations actoSsthe'embed,c1ed sequence becomes , exponentially
difficult (see also Allen, 1988

and Allen, 1990 for a discussion of
bow ~rrent netwOrks hold information across

embeddcd,sequences),
An altogether different approacbto the question can also be taken. In the next section,

we argu.etbat some sequential problems may be less difficult than problem (3). More pre-
cisely, we will show bow very slight adjustments to the predictions the

netWOrk is required

to iDotberwise identical sequences can
greatly enhance performance.

5.2. Span'"'" embttl4etl"fI'ences

The previous example is a limited teSt of the network'
s ability to preserve information dur-

ing processing of an embedded. sequence in severallespects. Relevant information for making
~,predictionabout the nature of the

~t letter is at a constant distance acrosS all patterns

elementsiDsidethe embedded sequence are all identical. 'Ib
evaluate the performance

oftbe SRN on a task that is more closely related to natural
language situations, we tested

itsa~i1ity to maiDtaininfonnationabout
long-distance dependencies on strings generated

by the grammar shawn in Figure
18.

'Ii

Flgurr 1& A c:c)lnplex, finite-state grammar involving an embedded clause. The last letter is contingent on
die

first one, and the inttrmediate structure is shared by the
branches of the granun8r. Some arcs in the asym-

metrical version b8Ye clifl'erent transitional probabilities in the top iDd bottOm sub-strueture as explained in

ten.

GRAt)ED STATE MACHINES 187

If the fint letterenCQUiltered in the string is a 'To' tbelast letter of the string is also

a 'T.'Convmely, if the first letter is.

. '

Po' the bstletter is also a 'P.' ' In betw=1 these
matching letters, Vie interposed almost the same finite state grBmmar that we had been

using in previous experiments (Reber's) to play Ihe role of an embedded sentence. We modi-
fiedReber' sgrammar by eliminatjng the' S' loop and the 'T' loop in order to shonen Ihe
average length of strings.

In a first e.xperimentwc trained the network on strings generated from thefinite$tlte
grammar With the same probabilities attacbedto corresponding arcs in the bottom and top
\'mio)) of Reber' s grammar, Tbisversion was ~ed the 'symmetrical gnunmar : contiDgen-
des inside the sub-grammar are the same independently of the first letter of the string,
and all arcs bad a probability of 5, The, average length of strings was 6.5 (set = 2.1).

After training, the performance of the network was evaluated in tbefollowing way: 20.000
- strings generated from the synunetricalgrammat were presented and for each strblgwe

looked at Ihe relative activation of the predictions of ' T' and 'P' upon e.xitfrom the sub-
grammar. If the Luceratio for the prediction with the highest activation was below 0.6,
the trial was treated as a ' miss' (ice., fiillure iopredictone or the other distinctively)~ If
the Luee ratiowasgreatei' c)t cqualtoO. 6and the network predicted the correct alternative,
a'bit' was recorded. If the incorrect alternative was predicted, the trial was treated as an

, '

error.' Following training on 900,
000 exempJars, performance consiSted of 7S

% '

bits, 6.3 %
errors, and 18.7% misses. Performance was best for shorter embeddings (i.e., 3 to4 Jet-
ters) and deteriorated as the length of the embedding increased (see Figure 19).

However, the fact that contingencies inside the embedded sequences are similar for both
sUb-granUnars greatly 11ises the difficUltY of the task and does not necessarily reflect the
nature of natura! language. Consider a problem of number agreement illustrated by the
following two sentences:

The dog that chased the calls very playful

The dogs that chased the ' cat are very playful

We would contend that expectations about concepts and words forthcoming in the em-
bedded sentence are different for the singular and pJural forms. For example, the embedded
cJauses require different agreement morphemes~hases vs. chase-when the clause is in
the present tense, etc. Furthermore, even after the same word has been encountered in
both cases (e.

g" '

chased'), expectations about possible successors for that word would remain
different (e;g. , a single dog and a pack ~fdogs are 1Ucely to be chasing different things).
As we have seen, if such differences in predictions do exist the network is more likely
to maintain information relevant to non-local cpntext since that information is relevant at
. several intermediate steps.

1b illustrate this point, in a second experiment, the same network-,with 15 hidden units-
was trained on a vanant of the gnUnmar shown in Figure 18. IiI this 'asymmetrical' ver-
sion, the second X arc has a probability of being seJected during training, whereas
in the bottom sub-grammar, the second P arc had a probability of of being selected.
Arcs stemming from aU other nodes had the same probability attached to them in both
sub-grammars. The mean length of strlngsgenerated from this asymmetrical version was

8 letters (sd = 1.3),

------ - - - - -

. t 188 D. S1mVAN-SCHRElBER, A. CLEEREMANSAND J.L. MCCl..ELLAND '

100

..'

0 ...
error.

Emb.d"'

FfglUt 19.Pe:n:entaae afhits ad enon ua function ofembeddiD& 1aIath. AIIIbe c:ases with 7 or more letters
ill the embedding were pouped qether.

Following traiJUng on the asyuunetrica1 version of the grammar the network was teSted
WithstriDgs generated from the

S)WImetrlCDl version. Its performance level rose to 100%
hits. It isiJnportaDt to note that performance of this network canootbe attributed to adif-
ference in statistical properties of the teSt strings between the top and bottom sub-
grammars--such as the difference present during trainibg-sirlce the testing setcame from
the symmetrical grammar. Themore, this experlment demonstrates that the network is better

, able to preserve information about the predecessor of the ernbeddedsequence across iden-
tical embeddings8$long as the ensemble ofpotentialpathways is differentiated during train-
ing. Furthermore" differences in potential pathways may be only statistical and, eveD then,
rathersma1l. We would expect ,even greater improvemeritsin performance if the two sub-
grammars included a set of non-overlapping sequenCes in addition to a set of sequences
thatai'e identical in both.

It is interesting to compare 1he behavior of the SRN on this embedding task with the
corresPonding FSAtbatcould process the same strings. The FSA would have the structure
of Figure 18. It would only be able to Process the strings successfully by having two distinct
copies of all the states between the initial letter in the string and the final letter. One copy
is used after an initial P, the other is used after an initial T. This is inefficient since the
embedded material is the same in both cases. To capture this similarity in a simple and
elegant way. it is necessary to use a more powerful machine such as a recW'Sive tranSition
network. Jn this case, the embedding is treatedasa subroutine which can be "eaDed" from
different places. A return from the caI.t ensures that the grammar can corredly predict
whether a T or a P will follow. This ability to handle long distance. depe1'ldencies without
duplication: of the representation of intervening material lies at the heart of the arguments
that have lead to the use of recursive formaJismsto represent linguistic knowledge.

But the graded characteristics of the SRN allows the processing of embedded material
as well as the material that comes after the embedding, without duplicating the represerlta-
tion of intervening material , and without actually making a subroutine call. The states of
the SRN can be used simultaneously to indicate where the network is inside the embedding

. ,-

GRADED STATE MACHINEs

-0.5 0.5 1.0

JIPVP

1IxX

1IIXX

IpvpS

ppypS

ptICICvV

IbIS.

ptxS

ptX

tIXXV

ptJexV

IpV

ppV

189

2.0 2.5

Figul'f! 2a Cluster analysis of bidden unit activation
patterns following the presentation of identical sequencesin each of the tWo sub-grammars. Labels starting with the letter 'I' come from the top

sub-granunm, labels start-ing with the letter 'p' COme from the bottom sub-grammar.

and to indicate the history of processing prior to the embedding. The identity of the initial
Jetter simply shades the representation of states inside the embedding, so that correspond-
jug nodes have similar representations, '

and ' are processed using overlapping ponions of
the knowledge encoded in the connection weights. Yet the shading that the initial letter
provides allows the network to carry infonnation about the early part

of the string throughthe embedding, thereby allowing the network to exploit long-
distance dependencies. Thispropenyof the internal representations used by the SRN is illustrated in Figure 20. We

recorded some patterns of activation over the hidden units following the presentation of

190 D. SERVAN-SCHIWBER, A. CLEEREMANS AND J.L. MCCI..EU.AND

each letter inside the ernboddiDgs. 1be firit letter of the string , label in the figure (t or p)
indicates whether the String corresponds 10 the upper or lower sub-grammar. 1be figure
shows that the pauerns of activation generated by identical embeddings in the two different
sub-gtamn:um are more similar to eachotber (e,g., "8pvP' and 'ppvP' than 10 patterns

of activation gene...tedby different em~dings in the same sub-grammar (e.g. ~ "8pvP' and
'IpV'). 1bis iDdicates lbatthe network is sensitive to the similarlity of the corresponding
DOdes in each sub-grammar, wbileretainiDg information about what preceded entry into
the sub-grammar.

6. Discusision

In this study, we attempted to understandbeuer how the simple recurrent network, could
learn to represent and use CC)ntextual information when p~nted with structured ~ences
of inputs. Following thefitst experiment, we concluded. that copying the state of activation
on. thebiddcn layer at, the previous tfme step provided the network with the basic equip-
mentof a finite state machine. Wh~n, the&etof exemplars that the network is trained on
comes from a finite state grammar, the network can be used asarecognizer with respect
to thatgrimmar. Wbentherepresentational resO1Q'Ces&re severely constrained, internal
representations actual1yconvcrge on the nodes of the grammar. Interestingly, though, this
representational convergence is not a necessary condition for functional convergence: net-
works with more than enough structutC to handle the prediction task sometimes represent
the same node of the grammar using' two quite different patterns, corresponding to dif-
ferent paths into the $ame node. This divergenceofrepresentations does not upset the net-
work' s ability to serve as a recognizer for well-formed ~entes derived from the grammar.

We also showed that :be . mere presence of recurrent connections pushed the network
to develop hidden layer pattems thai capture information about ~uences of inputs, even
in the absence ofttaining, The second experiment shOwed. that back-propagationC8D be
used to take ad\'Bl1tage of this natural tendency when information about the path traversed

, is, relevant to the task at hand. This was illustrated with predictions that were specific to
particular subsequences in the training set or that took into account constraints on the length
of sequences. Encoding of sequential structure depends on the fact that back-propagation
causes bidden layers to encode task-relevant infonnation. 1n the simple recurrent network,
internal, representations encOde not only the prior event but also relevant aspects of the
representation that was constructed in predicting the prior event from its predecessor. When
fed back as input, these representations provide infonnationthat allows the network to main-
tain prediction-relevant features of an entire sequence. We illustrated this with cluster

8m!ly&eS
of the bidden layer patterns.

Our de$CriptioD of the stages of learning suggested that the network initially learns to
distinguish between events independently of the temporal context (e.g. , simply distinguish
between different letters). The information contained in the context layer is ignored at this

point. At the end of this stage, each event is associated to a specific pattern on the bidden
layer that identifies it for the following event, In the next phase, thanks to this new infor-
mation, different occu.rrences of the same event(e.g. , two occurrences of the same letter)
are distinguished on the basis of immediately preceding events-the simplest fonn of a

f'-

--~,

GRADED STATE MACHINEs
191

time tag. This stage
COITeSpOnds 10 the recognition of the different 'arcs' , in th~ particularfinite SlategrBlQJDar used in the aperiments, Finally, as the representation ofach event

acquires a time tag, sub-seqQences of events COIDelO yield, characteristic hickbtIayerpatterDsdw canfOnn the basis of further discriminatiQDS (e.g., ~tween an 'earlyand 'late' 'T2 in the Reber gramDJar). In this manner, and under appropriate conditions,
theJUdden - unit ,

patterns acJUeve enc:oding of the entire sequence of events presented.do not meaJiCO suggest that simple
recurrent networks can learn CO recognize

anyfinite Slate language. Indeed, we were ~le to predict two conditions under which perfor-
mance of the sbnpleJeCUrreDt network will deteriorate: (1) when different sequenceS may
contain identical embedded sequences involving

t!XQCt1y the same predictions; and (2) whenthe nQIDberOfbidden units is restricted and C8DDotsuppon
~undant representations ofsimilar Predictions, 10 , that - identica1predictions following different events tend 10 be

associated with very similar bidden uniipauems, :thereby erasing information about the
initialpath. We also noted that w~enrecurrentcoDDections are added to a three-layerf'eed-
forwardnetWork, back-prop8gation is Do longer guaranteed ,

10 perform gradient descent
in the error space. Additional training, by improviJ:Ig perfOi'Diance on

shared componentsof 0Iberwise differing sequences, CID-
e1iminateinformation necessary CO 'span

' an emheddedsequence and result ina sudden rise in the total enol. It fOllows from these limitationsthat the simple i'ecurrent network could DOt
be expected CO learn sequences with a moderatelycomplex recursive structure-such as context free grammars-

if contingencies inside theembedded struCtures do DOt depend on - relevant information preceding the embeddings.What is the , relevance of this work with regard to language processing? The
abilitY toexploit long-distance dependencies is an inherent aspect of human language processing

capabilities, bdit lies at - the hean, of the general belief that a recursive computational
macJPne is n~sary for processing natural language. The experiments we have done with
SRNs suggest bother possibility; it may ,be that long-distance dependencies can be proc-
essedbymachines that are simpler thanfuUy recursive

machines, as long as they make
use of graded stateinformation. 1his is particularly true if the probability struCture of the
gr&mmardefining the material tobeJearIled reflects-even very

slightly-the informationthat n~ to be maintained. As we noted previously, natural linguistic Stimuli may show
this PJ'Ppeny. Of course, true natural language is &r more complex than the simple strings
that can be generated by the machine shown in Figure 24

, so we C8MOt claim to have shownthat graded state machines wiU be able to process aU aspects of natural language. However,
our experiments indicate already that they are morepowerfuJ in interesting ways than tradi-
tional finite state automata (see also the work of Allen and Riecksen, 1989; Elman, 1990;
and Pollack; in press). CertainJy, the SRN should be seen as a new entry into the taxonomy
of computationaJ 1nachines. Whether theSRN~rrather some other instance of the broaderclass of graded state machines of which the SRN is one of the

simplest-will ultimatelyturn out, to prove sufficient for natural ianguageprocessing remains to be explored by fur-
ther research.

Acknowledgments

We gratefuUy acknowledge the constructive comments of Jordan Pollack and an anonymous
reviewer on an earlier draft of this paper. David Servan-

Schreiber was supported by an

192 D. SERVAN-SCHREIBER, A. CLEEREMANS ANDJ;L. MCCLELLAND

NIMH IDdividual Fellow Award MH~t Axel Cleeremans wassupponed by a grant
from tbeNatiOb81 Fund for Scientific Rese8rcb(Belgium). JamesL. McClelland was SU~
ported by III NIMH Reswch Scientist Career Development Award MH..()()38S. Support
for computational resources was provided by NSF(BNS-8~9) and - ONR(NOOOl4-86-
a-o146). Portions of this paperhaveprevio\1slyappeared in SeMD~Scbreiber, Cleeremans
" McClelland(1989), andin Cleeremans, .Serwn.,Schreiber" McClelland (1989).

Notes

I. SJigIIdymoc\ified versions of the BP programiiom McClelland and Rumelhllt (1988) were used fOr this aDd
alllUbseqUent limulldonsn;ported i,ntbis paper. TIle

weights iDthe aetWork were initially let to~wJues~ -0.58Dd +0.5. v.Jues of 1c:anUna rate and mo~twn (no and a.(pha in Riunelbart cJ aI.
(1986)) were sufticieDdy llnallto ~d IarJe oscillations and were pzaenIly in tile JUlIe of ODI
ClO2 fOr 1earniDcrateand 0.510 0.9 for IDODJeDtum. '

2. For aDylingle outputllllit, liventbat taJpts are binary, and assllDling a fixed iDput pattern fOr aIIlniniDg,
exemplars, the can be apressedas:

p(1 - a~ +(1 - p)az

where pisthe probability chat the unit should be on, and a is the activation of the unit. TIle first term '
applieswhen tile taiJet is .1, tbe secondwben thetaigetis o.s.ck-propaption tends 10 minimize the derivative of

this expression, which issiJnply 2a -' 2p. The minimum is attained
when . - p, i;e., when the activation

of the unit is equal to its probability ofbeinlon in thetrainUla set (Rumelban, personal communication to
McClelland, Spring 19119).

~. Cluster analysis' is ametbocl that fiDds , the optiinaJ partition of a set of vectors according to some measure
ofsiDiilarity (here, the euclidean distance). On the paphical representation of the obtained clusters, the con-
trast between two grOups is indicated by the lengtbof the horimntallinks. The length of vertical links is notmWIingfIiI.

' '

4. This &c:t seem surprising at first, since the learning aIlorithm does nol apply pressure on the weights
to 'aeneJate dilferenlrepresentations for different patb$ to the - saine node. Preserving chat kind of information
about the path does notCOiltributC in iise1fto reducing error in the prediction task. We must therefore

concludethat this differentiation is a direct consequence of the recurrem nature of th
e architecture rathertban a couse-qu~ of back-propagation. - Indeed" in Servan-Scbreiber, Cleeremans and McCleUand (1988), we showed

chat some amount of information about tbepath is encoded in the hidden layer patterns when a succession
ofletters is presented, even in the absence of any

training.
5, Inlact, length constraints are treated exactly as atypical cases since there is

110 representation of the length
of the string 851UCb.

6. lOr each S14tistietd order, the analysis consisted of three steps: Fust, we estimated the conditional probabilities
of observing each Jetter after each possible path tbrougbthe Jrammar (e.g.

, the probabilities of observing
each of the seven letters given the sequence 'TSS'). Second, we computed the probabilitiestbat each of the
above paths leads to each node of the parnmar (e.

I., the probabilities that the path "1'5S" finishes at node
II, node 1f2, etc.). Third, we Obtained the average conditio~ probabilities (AcP) of observing each letter
at each node of the grammar by sllJlUJ1ini the products of the terms obtained

in steps 11 andlf2 OYer the set
of possible paths. Fma1Iy, all the ACPstbal corresponded to letters that could nor appear at a particular node
(e.I., a 'V' at node ~, etc.) were eliminated from the analysis. Thus, for each statistical order, we obtained
a set of U ACPs (one for each oc:currence of the five letters, and one for '

' which can only appear at node
16. B' is Dever predicted).

7. For example, with three hidden units, the network converges to a stable state aftet an average of three itera-
tions when presented with identical inputs (with a precision of two decima1pointS for each unit). A network
with 15 hidden units converges after an average of 8 iterations. These results were obtained with random weights
in the JUlIe (-0.5, +0.5).

";~

0,'

:'+ '~~" '

GRAD SJ) STATE MACHINEs

193

&GeaiieraIJy, 1III8IJ \'8iue5 8be leanUua rate 8Dd JDOIDeDtum, as welI
as lD8Dy biddeounits"

heJplO miDimizeIbia problem.
9. 'JbeLuce ratio iadJe I8tio of die biahest 8Ctivadoa 011 die oUlput18yet1o

the IWD of all activadonI 011 IbatI8yet. TbiI measure is ~OQIy applied inJll)'ChoIClJ)' 10 model Ibe
ItraIBth of. I'eIpODIe IaIdaIcy 81lIOII&aliDitelielofaitemati‡Yel (Luce, 1963).

III8bis simulatiOn, a Luc:e I8do ofCl5 often
~u""t'Uud ed to i situatioiI~ T and 'P' Mre equa1Iy acd\'IIed Qd all 0Iber altematiYeS -set 10 zero.

Relereac:es

ADea, R.B.(1988). CODDeCtionist networb aiIsweriua simple questions about. micIoworId. Pro-IWdings tI/ 1M 7inth A1wMJI Corf/t~
, of 1M CognitiW! Science Sociay.AIIm, R.B., & ~ecbeD, M. , (1989). Rekre~ ill connectionist l8JISIiI&e usm. III R. Pi:i&r, Z. Scbrrter,' F. FoseJmu-SouIii, & L. Steels (Eda.

),

CoIIMCIionimJ in
pe~ctiW!. Nonb HoJland: Amsterdam.ADea, R.B. (19510). Ct1rtnet:donut It1nguop IUm (TRM~). Monisrown, NJ:BeU Communicalions

Raemh.CIeeremans A., $enu-Schreiber D., & McCleJland J.L. (1989). Finite If8te autom8ta.8Jld simple
recumm net-Wmb.Nauul~,

:m"'381.

' "

o.eD, G.W. (1985). ~ionistparsiJtg. Proceedblgsofth4 SeW!nth
Mnlltll

Corf/t~ tl/IM CognidW!' SdsIa SocUty. HiUida1e, NJ: Erlbawu.
EImua, J.L. (1990). FiDding structure ill tine.

Cognitiw! Science, 14, ~2U.Elman, J. (J990). ~oDand , iJu:onnectionist models. In Gerry T.
M. Altmann (Ed.), Cognitiw!models tl/6ptech procusing: Psycho/iiagllistic tlNI

CDIrIpUIQIioNd /'tF'$ptctiVeI. Cambridge, MA: MITPress.
Fanry, M. (198S). ConIext-/rte JH1r'IinI in CitNlMctiotIist

netIIIOl'ts (TRl74). Rochester, NY:t1niversity !;I(Rocbester,CoInpUterScience Depinment.
Hanson, S. &: KegI, J. (1987). PARSNtP: A connectionist Detwort that learns natural language from exposure

10 natural JangUage Baltences.
Ptocetdings olIM Ninth AnnIUJJ Conft~ olIM' Cogniliv, Science Society.HiUsdale, NJ:Erlbaum.

Hintoia, G., McCIeUaDd, U., &: Rume1bart, D.E. (1986). Distributed representations. IIID.
E. RWneIbart andMcCleUalld(Eels,),

ltuallel distributedPTOceIsi1!g, I:
Fo.o.dations. Cambridge, MA: MIT Press.Jordan, M.I. (1986). Attractor dyiwnics and p&raIJelism

ill a connectionist sequential inacbine. Procetdingl of1M EighthAn1lll41 Conft~ ofIM Cognitiw! Sci~ Society. HiUsdale, NJ: Erlbawu.Luce, R.D. 0963). Detection and recognition. III.tD.
Luce,R,R. Bush and E. Galanter (Eels.

),

Handboo1c ofmorhemllliCQ/ Psychology (HN.
I). New York: Wiley.

McCleUand, J.L., &: Rumelbart, D.E. (1988).
ExpIoT'DlitHIS in pturl/Jel ilistriJJllted PfOCtssing: A 1umdbooIc ofmodels, PFOgTtDnstlNl exemlel. Cambridge, MA: MIT Press.

PoUack, J. em pte$S). Recursive distn'buted
repre&elltations. ArrificUlllnullig~.Reber, A.S. (1976). Imp1icit learning of.,mhetic languages: The role oftbe

insuuctkJDa1 set. Joumal qf~Psydwlogy: Hwnim Leoming and Memory,
2. 88.;.94.

Rumelbart, D.E., &: McClellancl, L. (1986). Pil1rJJJe1 distriblllU processing, I: FOIIIIdtuions. Cambridge, MA:MIT Press.
RwneIbart, D.E., Hinton, G., &: Williams, R.I. (1986). Learning internal representations by

errorpropaption.III D.E. Rwnelbart and 1.L. McCleUand (Eels.

),

Ituullel disrribllledpfOCtssing, I: RJ/UIIJQrions. Cambridge,MA: MIT Press.
SejDowski, TJ., &: RDsenberJ, c. (1987). Parallel networks that learn to

prODOunceenglisb tc:It. Complex Sy$rems,I, 145-168.
Servan-Sclueiber D., Cleeremans A" a: McClelland J.

L. (1988). Encoding sequenriDlltnlctllrt in simple rtcur-rtnt nttwol'ts (1ecbnica) Repon CMU-CS-183). Pittsbursh, PA: Carnegie Mellon University, School of Com-
puter Science.

Servan-Scbreiber D., Cleeremans A., &: McClelland J.
L. (1989). Learning sequential structure in simple recur-rent networks. III D.S. 'lburetzky (Ed.), Athances in ntUrGllnformorion processing systems 1. San Mateo, CA:Morgan Kaufmann. (Collected papers of the IEEE Conference on Neurallnfoimation Processing S)'stems-

Natural and Synthetic, Denver, Nov. 28-Dec. 1, 1988).
St. John, M., &: McCleUand, L. (in press). Leamingand

applyiDg contextual constraints in sentence com-prehension. ArfUidallntelligence.

