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Human beings have a remarkable ability to attribute meaning to the objects and 

events around them. Without much conscious effort, we are able to recognize the items in 

our environment as familiar “kinds” of things, and to attribute to them properties that 

have not been observed directly. We know, for instance, that the banana on the kitchen 

counter has a skin that easily peels off, and that beneath the peel we will find a soft 

yellow-white interior. We know that the banana is meant to be eaten, and can anticipate 

what it will taste like. Such inferences spring readily to mind whether we observe the 

banana itself or, as with this paragraph, simply read or hear statements referring to 

bananas. The cognitive faculty that supports these abilities is sometimes referred to as 

“semantic memory,” and a key goal of much research in cognitive psychology is to 

understand the processes that support this aspect of human cognition. 

One long-standing hypothesis places categorization at the heart of human 

semantic abilities. The motivation for this view is that categorization can provide an 

efficient mechanism for storing and generalizing knowledge about the world. As Rosch 

(1978) put it, “…what one wishes to gain from one’s categories is a great deal of 

information about the environment while conserving finite resources as much as 

possible.” Thus categorization-based theories propose that knowledge about the world is 

stored in a set of discrete category representations, each encoding or providing access to 

information about the properties that characterize members of the class. New items are 

assigned to stored categories through a process that is sensitive to the similarity between 

the item and the stored representations; and once the item has been categorized, it is 

attributed the properties known to typify the category. There are a great many different 

hypotheses about / models of the processes by which items are assigned to categories and 



subsequently are attributed properties (Anderson, 1991; Ashby & Alfonso-Reese, 1995; 

Kruschke, 1992; Love, Medin, & Gureckis, 2004; Nosofsky, 1984; Pothos & Chater, 

2002), but these share commitment to the idea that categorization is the engine that drives 

storage and generalization of knowledge about the world. Indeed, the idea that semantic 

abilities are supported by categorization processes is so pervasive that it is seldom treated 

as a hypothesis. In the preceding quotation, for instance, Rosch inquires only what one 

wants from one’s categories—as though the question of whether our semantic memory 

system actually employs category representations is itself beyond question. 

Still, the idea that categorization is the core mechanism supporting semantic 

abilities brings with it a series of challenges and puzzles that have yet to be solved. We 

briefly summarize some of the challenges that have motivated our work; a more 

extensive discussion of these issues is presented in the first chapter of Semantic 

Cognition: A Parallel Distributed Processing Approach (Rogers & McClelland, 2004), 

henceforth SC. 

Multiple category representation. As has long been known, objects in the world 

usually belong simultaneously to many different categories (Barsalou, 1993; Collins & 

Quillian, 1969; Murphy & Lassaline, 1997; Rosch, Mervis, Gray, Johnson, & Boyes-

Braem, 1976). Lassie, for instance, belongs to the categories collie, dog, pet, animal and 

movie star. Chickens belong to the categories bird, animal, poultry and livestock; 

bulldozers are both vehicles and construction equipment; and so on. Moreover, the 

different categories to which an item belongs can license different conclusions about the 

item’s unobserved properties. If the chicken is categorized as an animal, this might 

license the conclusion that it can’t fly, since most animals are flightless. If classified as a 



bird, the reverse conclusion is warranted (most birds can fly); and if classified as a 

chicken, the original conclusion holds (chickens can’t fly). The notion that semantic 

knowledge resides in or is accessible from a set of stored category representations thus 

raises the question of how the different competing categories are “selected” as the 

appropriate ones for governing generalization in a given context. This in turn seems to 

require involvement of some additional representational structure or processing 

mechanism that governs the selection of / interaction among category representations. For 

instance, the “spreading activation” theories of the 1970’s proposed that different 

category representations were connected in a graph structure that facilitated the “flow of 

activation” between categories that are “linked” in memory (Collins & Loftus, 1975; 

Collins & Quillian, 1969). 

Category coherence. The problem of multiple category representation highlights a 

second more general challenge for prototype-like theories where semantic knowledge is 

thought to be stored in summary representations of categories. Specifically, how does the 

semantic system “know” for which groupings of items it should form a stored category 

representation (Murphy & Medin, 1985)? Some groupings of items seem to form 

coherent sets that are useful for governing generalization (e.g. “birds,” “dogs,” “cars”), 

whereas other groupings seem less coherent and useful (e.g. “things that are either blue or 

orange”, “things that have corners”, “things that could fit in the trunk of my car”). How 

does the system “know” that it should store a summary representation of the class of 

dogs, but should not store a summary representation of the class of things that are blue 

and orange? 



Primacy of different category structures in development, maturity, and 

dissolution. The general question of how the semantic system “knows” which categories 

to store is further constrained by empirical evidence regarding the acquisition of 

conceptual distinctions over infancy and early childhood, the primacy of certain kinds of 

category structures in healthy adult cognition, and the dissolution of conceptual 

knowledge in some forms of dementia. Together, these sources of evidence generally 

support two seemingly contradictory conclusions about which kinds of categories are 

easiest to learn and most robustly represented in memory. 

First, a large body of research generally suggests that infants and children 

differentiate quite gross conceptual distinctions (such as the distinction between animals 

and manmade objects) earlier in life than more fine-grained distinctions (such as the 

distinction between birds and fish; Keil, 1979; Mandler, 2000; Mandler & McDonough, 

1996; Pauen, 2002, 2002). A complementary body of work in neuropsychology has 

shown that the progressive dissolution of conceptual knowledge observed the 

degenerative syndrome semantic dementia (SD) follows a reverse path: patients with SD 

first lose the ability to differentiate quite fine-grained conceptual distinctions (e.g. they 

cannot tell a robin from a canary, but know both are birds), then gradually lose the 

distinctions among increasingly more general categories as the disease progresses 

(Patterson & Hodges, 2000; Patterson, Nestor, & Rogers, 2007; Rogers et al., 2004; 

Rogers & Patterson, 2007). Together, these literatures suggest that more general or global 

conceptual distinctions are both the first to be acquired and the most robust in the face of 

global semantic impairment. 



Seemingly in contrast to this conclusion, however, are long-standing observations 

about children’s lexical development and the categorization behaviour of healthy adults, 

both of which seem to suggest that categories at an intermediate level of specificity are 

primal in both acquisition and adult performance. For instance, a long tradition of 

research convincingly demonstrates that children learn to name objects at an intermediate 

or basic level of specificity (e.g. “bird,” “fish”), prior to learning more general (e.g. 

“animal,” “vehicle”) or specific (e.g. “robin,” “trout”) names (Brown, 1958; Mervis & 

Crisafi, 1982; Mervis, 1987); and seminal work by Rosch and others (Jolicoeur, Gluck, & 

Kosslyn, 1984; Mervis & Rosch, 1981; Murphy & Smith, 1982; Rosch et al., 1976) 

demonstrated that adults (i) usually produce basic-level names in free-naming tasks and 

(ii) are faster and more accurate to categorize typical objects at the basic level relative to 

more general or more specific levels. This body of research seems to suggest that basic-

level categories are acquired earlier and are more robustly represented in the semantic 

system than are more general or more specific representations. 

Thus to the general question “How does the semantic system know which 

categories should be stored in memory,” categorization-based approaches face several 

further questions pertaining to acquisition and dissolution. Why are more general 

category distinctions acquired earlier by preverbal infants? Why are intermediate-level 

names learned earliest in development, and why are they so robust in healthy adults? 

Why are the more general distinctions also more robust to semantic impairment?  

Domain-specific patterns of inductive projection. Finally, classic research in the 

study of children’s inductive inferences has found that different kinds of properties tend 

to generalize from a reference item in quite different ways, at least in older children and 



adults (Carey, 1985; Gelman & Williams, 1998; Gelman & Coley, 1990; Gelman & 

Wellman, 1991; Jones, Smith, & Landau, 1991; Macario, 1991; Massey & Gelman, 

1988). For instance, when told that a robin “has an omentum inside,” older children and 

adults generalize the property strongly to the class of birds, but if told that a robin “likes 

to live in an omentum,” they generalize the property much more narrowly—for instance, 

only to small birds that build nests in trees. One puzzle for categorization-based theories 

is how to explain these different patterns of inductive projection for different kinds of 

properties. If generalization is governed by an item’s similarity to stored category 

representations, how can new learning about a given item generalize in quite different 

ways, depending upon the “kind” of information? A further challenge is that patterns of 

inductive projection for a given property can also vary substantially depending upon the 

item in question. Thus, for instance, children weight shared shape more heavily than 

shared colour when generalizing new knowledge in the domain of toys, but show the 

reverse pattern in the domain of foods(Macario, 1991). Such patterns pose a chicken-and-

egg problem for categorization-based theories: a new item cannot be categorized until 

one knows how to weight its properties, but because these weights depend upon the 

category, they cannot be determined until the item has been categorized(Gelman & 

Williams, 1998). 

One response to these challenges, of course, is the further development of 

categorization-based approaches to semantic knowledge. The current volume attests that 

there are many interesting new developments in this vein. Our own work, however, is 

motivated by the observation that categorization is not the only efficient mechanism for 

storing and generalizing knowledge about the world. A tradition of work extending back 



to the distributed memory model of McClelland and Rumelhart (1986) and the semantic 

memory models of Rumelhart (Rumelhart, 1990; Rumelhart & Todd, 1993) and Hinton 

(1981; 1986) provides an alternative mechanism that, like categorization, is efficient in 

that it does not require addition of a new representational element for every new class or 

learning event, and that also promotes semantic generalization—all without requiring any 

internal process of categorization. The internal representations employed in our approach 

do not correspond to explicit, discrete representations of different classes of objects, and 

the processes that govern generalization of knowledge to new items do not involve the 

assignment of the item to one of a finite number of discrete equivalence classes. 

Consequently, questions about which categories are stored in memory, or how the system 

determines which category to use when generalizing, are moot in this framework. 

Furthermore, our framework suggests potential mechanisms that account for the variety 

of phenomena summarized above, and also provides some clues as to how the semantic 

system may be organized in the brain. Thus we believe that our approach—semantics 

without categorization—can resolve many of the puzzles faced by categorization-based 

approaches to semantic knowledge. 

Assumptions of the approach. 

Our approach adopts the basic assumptions of the connectionist or parallel 

distributed processing (PDP) approach to cognition generally (Rumelhart, McClelland, & 

Group, 1986): 

 (1) Cognitive phenomena arise from the propagation of activation amongst 

simple, neuron-like processing units, each of which adopts, at any point in time, an 

activation state analogous to the mean firing rate of a population of neurons.  “Input” 



units explicitly encode the state of the environment via direct “sensory” inputs; 

“output” units explicitly encode representations of potential responses; and “hidden” 

units mediate the flow of activation between inputs and outputs. 

(2) Propagation of activation is constrained by weighted synapse-like 

connections between units. At any given time, the activation of a unit depends on (a) 

the states of the other units from which it received incoming connections, (b) the 

values of the weights on the incoming connections, and (c) a transfer function that is 

typically nonlinear and differentiable.  

(3) Input and output representations are directly assigned by the theorist and 

are intended to capture aspects of structure existing in the environment as encoded by 

sensory and motor systems. Internal representations of the environment take the form 

of distributed patterns of activation across subsets of hidden units, and information 

processing involves the updating of unit activations over time in response to some 

direct input from the environment, which has the effect of transforming input 

representations into internal representations that are useful for generating appropriate 

output patterns. 

(4) The internal representations generated by inputs depend upon the 

architecture, that is, the gross pattern of connectivity among units in the network, as 

well as the particular values of the weights on these connections. Learning—defined 

as a change in processing prompted by previous experience—arises from experience-

dependent changes to the values of the weights on these connections. 

 



In addition to these general principles of parallel distributed processing, our 

approach adopts further assumptions specific to the domain of semantic cognition: 

 

1) The function of the semantic system is to generate context- and item-

appropriate inferences about the properties of objects (either perceived directly or 

referred to in speech) that are not directly observed in the current situation. 

2) The semantic system adopts a “convergent” architecture in which all 

different kinds of information, regardless of the semantic domain or the modality of 

input or output, are processed through the same set of units and weights. This 

architecture permits the model to exploit high-order patterns of covariation in the sets 

of visual, tactile, auditory, haptic, functional, and linguistic properties that 

characterize objects.  

3) Changes to weights in the system are generated by a process of predictive 

error-driven learning. The key idea is that, upon encountering a given object in a 

particular situation, the semantic system generates implicit predictions about what 

will happen next, which are either confirmed or disconfirmed by subsequent 

experience. Learning involves adjustment of weights throughout the system so as to 

reduce the discrepancy between observed and expected outcomes over a broad set of 

experiences with different objects and situations. 

4) Weights are initially very small and random, so that all different kinds of 

inputs generate very similar internal representations. 

5) Acquisition of new semantic knowledge proceeds slowly and gradually. To 

promote generalization, our model assumes that semantic representations are 



distributed and overlapping. To prevent catastrophic interference in such a system, 

learning must proceed in a slow and interleaved manner, so that new learning does 

not “over-write” useful weight configurations built up over past experience. 

6) The semantic system interacts with a fast-learning episodic memory system 

(Mcclelland, Mcnaughton, & Oreilly, 1995). Of course, human beings are capable of 

rapidly acquiring new facts about objects and generalizing them appropriately. Our 

theory proposes that this ability is supported by a fast-learning system in the medial 

temporal lobes, consistent with a long history of research in the neural basis of 

episodic memory (Mcclelland et al., 1995). The fast-learning system employs sparse 

representations so that even very similar objects and events are represented with non-

overlapping patterns. Consequently, the fast-learning system can learn rapidly 

without catastrophic interference, but cannot generalize well. We assume that the 

fast-learning MTL system interacts with the slow-learning semantic system to support 

the immediate generalization of newly-learned information. Our model implements 

the slow-learning semantic system only. 

7) Internal representations are shaped by the situation or context. We assume 

that the internal representations that guide semantic cognition are shaped, not only by 

the current object of interest, but also by learned representations of the situation or 

task-context in which the item is experienced. So, for instance, the same object—say, 

a chicken—can evoke different internal representations, depending on whether the 

current situation demands retrieval of the item’s name, function, expected behaviour, 

shape, and so on. In the models reported here, the Relation inputs provide information 

about the context that influences the Hidden unit activations directly; however in 



other work, we have investigated models that must learn distributed internal 

representations that capture similarity structure across relation contexts (Rogers & 

McClelland, 2008).  

 

These are the core assumptions adopted by our approach. In the next section we 

describe a simple feed-forward model that conforms to these assumptions, and illustrate 

how it offers leverage on the challenges faced by categorization-based approaches raised 

earlier. 

A simple model implementation. 

The model architecture is based on that described by Rumelhart (1990) and shown 

in Figure 5.1. It consists of five layers of units connected in a feed-forward manner as 

indicated in the illustration. Units in the Item input layer directly encode localist 

representations of individual items that may be encountered in the environment. In the 

original model employed by Rumelhart, these included 8 items taken from the classic 

hierarchical spreading-activation model of Collins and Quillian (1969). In the simulations 

we will discuss, we extended this simple corpus to include eight plants (four different 

flowers and four different trees) and 13 animals (4 birds, 4 fish, and 5 mammals). Units 

in the Relation input layer directly encode localist representations of different relational 

contexts in which the various items might be encountered. The relation context constrains 

which of the item’s various properties are immediately relevant to the current situation. 

For instance, the “can” context indicates a situation in which the system must anticipate 

or report the item’s expected behaviour; the “has” context indicates a situation in which 

the system must anticipate or report its component parts; the “is” situation indicates 



contexts in which the item’s visual appearance is relevant; and so on. Of course, in the 

real world there exist many more potential items and potential contexts. In this model, the 

items and the relation contexts both represent a simple elaboration of the subordinate 

concepts and relation terms employed by Collins and Quillian (1969) and by Rumelhart 

(1990).  

 

--Figure 5.1 about here -- 

 

Whereas the activations of Item and Relation units are directly set by the 

environment, all other unit activations are determined by the inputs they receive from the 

units to which they are connected. The net input to a receiving unit is the inner product of 

the activations of the units from which it receives projections and the values of the 

weights on those projections, plus a fixed bias constant of -2 that serves to turn units off 

in the absence of input. Unit activations are set by passing the net input through a 

sigmoidal activation function: 

ai = 1/(1 + e -net
i) 

…where ai is the activation of unit i and neti is the net input to unit i. This 

function is bounded between 0 and 1 and increases smoothly and monotonically, but 

nonlinearly, in this range. The sigmoid activation function is important for learning in 

multi-layer networks because it is nonlinear and differentiable, and so allows gradient-

descent learning to form internal representations capable of supporting essentially any 

input-output mapping (Rumelhart, Durbin, Golden, & Chauvin, 1995; Rumelhart, Hinton, 

& Williams, 1986). It is extensively used in connectionist modelling partly because it has 



a comparatively simple derivative for use in gradient-descent learning, and partly because 

it approximates the expected firing rate for a population of integrate-and-fire neurons 

given the same net input (Movellan & McClelland, 1993). 

Units in the Item layer project forward to the layer labelled Representation. 

Activation of a single unit in the Item layer thus provokes a distributed pattern of 

activation across the Representation units. This pattern depends upon the values of the 

weights projecting from input to Representation layers, and these weights are shaped by 

learning and experience—so that the patterns produced in the trained model are 

distributed learned internal representations of the inputs.  

These distributed representations in turn send connections forward to the Hidden 

layer, which also receives inputs from the Relation input units. The distributed patterns 

that arise here are therefore influenced by both the internal representation of the current 

item and by the current relation—so that the same item can give rise to quite different 

internal representations, depending upon the particular relation context in which it is 

encountered. Thus, whereas the Representation layer encodes a context-independent 

internal representation of the current item that is the same across all relation contexts, the 

Hidden layer encodes a context-dependent representation that varies across different 

contexts. 

A final set of weights projects forward from the Hidden layer to the Attribute 

layer. Units in this layer correspond to explicit properties that can be attributed to objects, 

including their perceptual properties, their names and other verbal statements about them, 

their behaviours, or the motor responses one might generate when interacting with them. 

In general we view these as directly capturing properties that can in principle be directly 



experienced from the environment, though all the properties may not be present in any 

given situation. For instance, there is an Attribute unit corresponding to the property “can 

move,” which may be directly available from the environment whenever an item is 

observed to be moving, but which can also be inferred by the knowledgeable observer 

even if the item is currently stationary. 

The model is “queried” by presenting inputs to the Item and Relation units, 

corresponding to the observation of a given item in a particular situation, and computing 

activations for all units in a forward pass, based on the values of the interconnecting 

weights and the sigmoidal activation function of the units. When the configuration of 

weights is such that the model activates all and only the appropriate responses for all the 

various possible queries—for instance, when it activates the units “grow,” “move,” “fly,” 

and “sing” for the canary—the model can be said to “know” the domain. 

To find such a configuration of weights, the model is trained with the 

backpropagation learning algorithm (Rumelhart, Hinton, & Williams, 1986). In 

backpropagation learning, the output generated by the network for a given input is 

compared to the desired output, and the difference is converted to a measure of error. The 

derivative of this error with respect to each weight in the network is then computed, and 

all weights are adjusted by a small amount in the direction that reduces the error for the 

given training item. In our simulations, we employed the sum-squared error: for each 

output unit, the squared difference between the target and the actual output is computed, 

and this is summed across output units to provide a total error signal to guide gradient-

descent learning for each pattern. Though error propagation is thought by some to be a 

biologically implausible mechanism for learning, it is possible for error-like signals to be 



carried in unit activation states, and hence to drive learning, in networks with 

bidirectional connectivity (Hinton & McClelland, 1988; O'Reilly, 1996). We take 

backpropagation to be a simple way of approximating this kind of learning in a feed-

forward network, and as a simple and direct instantiation of the general assumption stated 

earlier that learning takes place via a process of predictive error-driven learning.  

In keeping with the assumption that learning in the semantic system is slow and 

gradual, the weight changes for any given event are small and incremental. As a 

consequence, changes that improve prediction for a single item- pair, but hurt 

performance for other item-relation pairs, are soon reversed by subsequent learning, 

whereas changes that improve prediction for many different item-relation pairs accrete 

over time, allowing the model to discover a set of weights that “work” well for all of the 

items in the training environment simultaneously. This slow and gradual learning process 

thus provides a mechanism for developmental change in knowledge acquisition. The 

internal representations and outputs generated by any given input depend upon the 

configuration of weights at the time of testing. These weights—and consequently the 

internal representations and responses—evolve in interesting ways over the course of 

training with a fixed environment, providing a means of understanding patterns of 

behaviour in different age groups and across different tasks. 

After training, the patterns that arise over the Representation layer capture 

similarity structure apparent in the output patterns describing each individual item. Items 

that have many properties in common across the different relation contexts are 

represented with similar patterns in this layer, whereas those with few properties in 

common are represented with quite different patterns. Because semantically related items 



tend to have many properties in common, these internal patterns come to capture the 

semantic or conceptual similarity relations among items—so they can serve as a basis for 

semantic generalization. 

The Representation units, because they receive inputs from Item but not Relation 

inputs, must find representational structure that works well across all different relation 

contexts. This structure will, however, not be useful for governing generalization in every 

individual relation context, because different “kinds” of properties can capture quite 

different similarity relations among the items. The representations that evolve on the 

Hidden units are constrained by input from the Relation units, and so, as elaborated 

below, can “reshape” the deeper similarity structure encoded in the Representation units. 

Feed-forward networks with different internal architectures—for instance, networks that 

connect inputs directly to outputs, or connect via a single hidden layer—are not obliged 

to simultaneously find both context-neutral and context-specific levels of representation, 

and so do not show many of the interesting behaviours of the Rumelhart network (see 

Chapter 9 of Rogers and McClelland,2004, for further discussion). The five-layer 

architecture of this model is therefore very important to its functioning. 

Recommended implementation. 

Simulations reported in Rogers and McClelland (2004) were conducted using the 

pdp++ software package. The latest version of this software, now called Emergent, can 

be found on the Web at http://grey.colorado.edu/emergent/index.php/Main_Page. Use of 

this software requires, however, somewhat specialized knowledge and training. For those 

without this expertise, we therefore recommend implementing the model in Matlab using 

PDPTool. 

http://grey.colorado.edu/emergent/index.php/Main_Page


PDPTool is a fully-functional re-implementation, in Matlab, of the original 

software released with the PDP Handbook (McClelland & Rumelhart, 1988), coupled 

with an intuitive graphical user interface. It takes the form of a library of object-types, 

functions, and graphical display objects that can be loaded in the Matlab environment or 

can be run as a stand-alone application. Currently the library includes objects and 

functions that implement feed-forward, simple recurrent, and fully recurrent 

backpropagation, interactive activation and competition networks, and competitive 

learning. The library, including instructions for installing the software, a user’s manual, a 

short tutorial, and an online version of the PDP Handbook, can be downloaded from the 

Web at http://www.stanford.edu/group/pdplab/resources.html  A brief article describing 

the aims and utility of PDPTool was published in the Academic Edition of the Matlab 

Digest in October 2009.  

The PDPTool release comes with a set of pre-built network, template, and 

environment files, some for use with the Handbook and tutorials, and others providing 

implementations of classic PDP networks from the literature. These example files include 

an implementation of the original 8-item Rumelhart network. A picture of the PDPTool 

display for this network is shown in Figure 5.2.   

 

–Figure 5.2 about here – 

 

We further note that, in order to replicate simulation results reported in Rogers 

and McClelland (2004), including those reviewed below, the user will need to build and 

parameterize networks as described in the source material. The original work develops a 

http://www.stanford.edu/group/pdplab/resources.html


series of increasingly elaborate model implementations. The architecture, training 

patterns, and model parameters for each implementation are, however, documented in the 

Appendices to the book and these should be sufficient for the reader to replicate the 

original work in PDPTool. 

 

Addressing the core phenomena. 

In this section we revisit the core phenomena motivating the approach and briefly 

indicate how the model addresses these.  

Multiple category representation. In our framework, the internal representations 

that govern how knowledge generalizes are not discrete category representations, but are 

patterns of activation across continuous-valued units in the Representation and Hidden 

layers of the network. Each pattern can be viewed as a point in a continuous high-

dimensional space, with each individual unit encoding one dimension. In this sense our 

model is similar to exemplar-based models, except that i) the dimensions of the space do 

not correspond to interpretable semantic features and ii) there is no “database” of stored 

exemplars. Instead each exemplar leaves its “trace” on the values of the interconnecting 

weights. Categories have no real existence in the model’s internal representations, but 

correspond roughly to densely-occupied regions of the representation space. For instance, 

the four individual fish are all represented as somewhat similar to one another, and as 

quite different from the birds and mammals, and so form a fairly tight cluster that 

corresponds roughly to the category fish. More general categories correspond to more 

inclusive clusters in the space, and more specific categories to less inclusive clusters. 

Because there are no direct internal category representations in the model, there is no 



problem of deciding which categories are “stored” by the semantic system, or of 

adjudicating which category structures should be used to govern generalization for a 

given task. 

Nevertheless, the model can categorize in its overt behaviour. Each output unit 

can be viewed as a probabilistic categorical response to a given input. For instance, the 

output unit corresponding to the name “bird” can be viewed as indicating the likelihood 

that a given item belongs to the class of things that are labelled “bird.” Such judgments 

depend upon the configuration of the weights that project from the Hidden units to the 

bird name unit, which will strongly activate this unit for a subvolume of the 

representation space defined by the units in this layer. Whenever the model’s internal 

representation occupies a point in this subspace, it will generate the overt judgment that 

the represented item is called a “bird.” The precise location and extent of this volume 

depends upon the values of the weights projecting from Hidden to Output layers, which 

are acquired through the learning rule. Thus the model, like people, can generate explicit 

category judgments in its outputs, but it does not employ an internal categorization 

process to do so. It is also the case that explicit categorization labels may or may not 

align well with the organization of the model’s internal representations. Though labels 

like “salmon,” “fish,” and “animal” may align well with clusters at different levels of 

granularity, nothing prevents the model from learning other labels that cross-cut this 

structure. For instance, a name like “pet” might apply to the canary, dog, and cat, but not 

to the other birds or mammals in the corpus.  

Category coherence. Because the model does not store overt category 

representations, there is no question about why some categories (like “dog”) are stored 



and others (like “blue-and-orange things”) are not. Beyond this, however, the model 

suggests one reason why some groupings of items seem to provide good candidates for 

naming and for inductive generalization whereas others do not. Specifically, the model’s 

internal representations are strongly shaped by the covariance structure of the properties 

of objects in the environment. Sets of items that tend to share many properties in common 

with one another get represented as quite similar to one another. Consequently learning 

about the properties of one such item tends to generalize strongly to all other similarly-

represented items. This in turn means that the properties common to most items within 

such a cluster get learned very rapidly, whereas the properties that individuate items 

within a cluster will be somewhat more difficult to learn. On this view, coherent 

categories—sets of items that provide good vehicles for induction and are likely to 

receive names in the language—are those groups of items sharing properties that 

themselves reliably covary with many other properties. We note that this conception of 

coherence does not necessarily just reflect raw overall similarity amongst items: Sets of 

items that share many properties will not be represented as similar if the properties they 

happen to share do not themselves covary strongly with many other properties in the set 

(see Chapter 3 of the Semantic Cognition book). 

Primacy of superordinate structure in development and dementia. Although the 

fully-trained model finds internal representations that capture the similarity structure of 

the training patterns, the network does not discover this organization of internal 

representations all at once. Instead, the representations undergo a progressive nonlinear 

process of differentiation—first discriminating items from grossly different conceptual 

domains (e.g. plants and animals) without any apparent fine-grained structure; then 



capturing intermediate distinctions (e.g. birds vs. fish) without further subordinate 

organization; and finally pulling apart individual items. Figure 5.3 shows a 

multidimensional scaling diagram of the model’s internal representations taken at evenly-

spaced points throughout training. Each line shows the trajectory of a single item’s 

representation throughout learning. Initially, all items are represented as similar to one 

another, because the network is initialized with small, random values. Very quickly, 

however, the plants become differentiated from the animals, while within these coarse 

categories we see very little differentiation. Some time later, the network begins to 

differentiate more intermediate clusters (birds and fish, flowers and trees) but with little 

differentiation of the individual items. In the last phase, the individual items begin to pull 

apart from one another. A full explanation of the reasons for this phenomenon is beyond 

the scope of this paper but was provided in Chapter 2 of the Semantic Cognition book. 

This progressive coarse-to-fine discrimination of internal representations mirrors the 

pattern of conceptual development observed in carefully controlled studies of pre-verbal 

infants in the work of Mandler (2000), Pauen (2002; 2002) and others. 

 

-- Figure 5.3 about here -- 

 

Figure 5.3 suggests why more general or superordinate-level information tends to 

be more robust in progressive semantic syndromes like semantic dementia. In its fully-

trained state, the network has learned to map out from its internal representations (coded 

in Representation and Hidden layers) to explicit representations of overt responses. For 

properties that are only true of very specific concepts—for instance, the name “canary,” 



or the property “can sing” (true only of the canary)—the network has learned to activate 

the corresponding unit only from the internal state corresponding to the represented item. 

Thus there is a relatively narrow subvolume of the representation state space from which 

the network will activate the units corresponding to very specific properties. For 

properties that characterize more general classes—properties like has wings (true of all 

birds) or can move (true of all animals)—the network has learned to activate the 

corresponding output units for a wider set of items, all of whom are represented as 

somewhat similar to one another. The consequence is that, for these items, there is a 

broader subvolume of the representation state space from which the model has learned to 

generate the corresponding response. When the system degrades with disease, the internal 

representations generated by a given input become distorted—some of the connections 

that encode the representation are no longer present. For very specific properties, small 

distortions can move the representation out of the relatively narrow subvolume from 

which the model can generate the appropriate response. For more general properties, 

small distortions to the correct pattern will not move the representation out of this 

subvolume, and the model will continue to generate the appropriate response. Thus, the 

more general the category to which the property applies, the more robust knowledge of 

the property will be to semantic impairment.  

 

-- Figure 5.4 about here -- 

 

The left panel of Figure 5.4 shows the network’s ability to activate subordinate, 

basic, and superordinate-level names for items in its environment as the patterns of 



activation in the Representation layer are subject to increasing amounts of noise 

(simulating the degradation of semantic representations arising from progressive brain 

damage). Whereas basic-level names are initially the most strongly active labels, 

activation of these units declines more sharply than the activation of the more 

superordinate name units, producing a “cross-over” effect where general-level responses 

are more active than basic-level responses when the network is subject to moderate to 

severe semantic impairment. The right side of Figure 5.4 shows analogous data from 

patients with semantic dementia performing a category-verification task (Rogers & 

Patterson, 2007). 

 

Primacy of the basic level in lexical acquisition and adult categorization and 

naming. If more general concepts are the first to be differentiated in acquisition and are 

the most robust to semantic impairment, why do categories at the more intermediate or 

“basic” level appear to be “privileged” in lexical acquisition and in adult categorization?  

Our approach suggests an answer to this seeming paradox, which stems from the 

observation that the coarse-to-fine differentiation of concepts is observed fairly early in 

development, before children have begun to speak. By the time children have begun to 

name objects, they are also able to differentiate concepts at the basic level (Mandler, 

2000; Mandler & Bauer, 1988; Pauen, 2002). Once the semantic system has begun to 

differentiate basic clusters within some more general domain, it is actually at a 

disadvantage in learning superordinate relative to basic-level names. 

To see this, consider teaching the Rumelhart model to name at a point in its 

development such that the birds have been differentiated from the fish, but the individual 



birds and fish are still quite similar to one another. For each item, there are 3 different 

names that might be appropriate—for instance, for the canary, the network could name it 

as an “animal,” a “bird,” or a “canary.” Suppose further that all of the different names 

occurred equally frequently in the environment—say, 4 times per epoch of training. 

Which names would the network learn first? 

First consider the name “animal.” When the model learns that the canary is an 

animal, this response will tend to generalize strongly to the robin (which is represented as 

quite similar) but less strongly to the salmon and the sunfish (which are now somewhat 

distinct). Similarly when the network learns that the salmon is an animal, this response 

will generalize strongly to the sunfish but less strongly to the canary. So each time the 

name appears for one of the 4 animals, only half of the items that share the name benefit 

strongly from the learning. 

When learning to call the canary a “bird,” the same pattern is observed: the 

response generalizes strongly to the robin and not to either of the fish. This time, 

however, the name bird is only ever applied to one of the 2 individual birds. If it occurs 4 

times per epoch, then it occurs twice with the canary and twice with the robin. So every 

time the name appears it benefits all of the items to which it applies. On these grounds, 

this intermediate-level name should be learned more rapidly than the more general name. 

What about specific names? In our scenario, the word “canary” appears 4 times 

per epoch, always with the canary item. As before, this response will have a strong 

tendency to generalize to the robin. In this case, however, the generalization is 

detrimental—the name “canary” does not apply to the robin. So, when the model 

encounters the robin, it must reverse the weight changes, to turn off the name unit 



corresponding to “canary” and turn on the unit corresponding to “robin.” This similarity-

based interference will prevent the network from rapidly learning this more specific 

name. Only when the robin and canary are sufficiently differentiated from one another 

will the system easily learn to generate different subordinate names for them. 

In other words, when word-frequency is controlled, then at any given point in 

development, the network will best be able to learn those words that demarcate items 

within a relatively tight cluster. More general names will be learned more slowly because 

they apply to items that are dispersed in the space and so do not promote strong cross-

item generalization; more specific names will be learned more slowly because they apply 

to items with similar representations and so suffer from strong cross-item interference. 

Since children learn to name only after they have differentiated intermediate concepts, 

they are most likely to learn intermediate-level names. And because basic-level clusters 

continue to be “tight” and well-separated into adulthood, adults are likely to show similar 

advantages in basic-level categorization and naming.  

Basic-level advantages arise in our model for largely the same reasons proposed 

by Rosch and others (Murphy & Brownell, 1985; Rosch et al., 1976; Tanaka & Taylor, 

1991) . A key difference is that, on the PDP theory, the representational similarity 

structure that promotes basic-level advantages is not present initially, but only emerges 

after coarser conceptual distinctions have been acquired. Thus the primacy of the basic 

level in lexical acquisition and adult categorization co-exists with the coarse-to-fine 

differentiation of concepts in pre-verbal infants and the preservation of general level 

information in semantic impairment. For instance, in the simulation results shown in 

Figure 5.4a, the undamaged model activates basic-level names more strongly than either 



superordinate or subordinate names—but nevertheless, superordinate-level information is 

more robust when the network is damaged and, though not shown here, the internal 

representations still differentiate in a coarse-to-fine manner in the same simulation 

(Rogers & McClelland, 2004).  

Domain-specific patterns of inductive projection. Finally, the basic architecture of 

the network in Figure 5.1 suggests one answer to the puzzle of domain-specific inductive 

projection. Recall that, in classic studies of inductive projection—where children are 

taught a new property of a familiar item, and are then asked what other objects likely 

share the property—the pattern of inductive projection can differ depending upon the 

kind of property in question. For instance, if the property is understood to be a biological 

trait, it may generalize to one subset of items, but if understood to be a physical trait, it 

may generalize to a very different subset (Carey, 1985; Gelman & Markman, 1986). If 

categorization is the process that supports inductive projection, then how can new 

learning about a given item show very different patterns of generalization? 

In our framework, the internal representations that constrain generalization of new 

learning are shaped, not only by the item in question, but also by information about the 

current task context. Specifically, the patterns of activation arising across Hidden units in 

the model depend partly upon inputs from the Representation units, but also on inputs 

from the Context units. Weights projecting out from the Relation units are, like the 

weights projecting out from the Item units, shaped by learning—so the network must 

learn how to treat items in different relation contexts, just as it learns how to represent the 

items themselves.  



A natural consequence of this architecture is that, when the properties associated 

with two different relations capture quite different aspects of similarity among a set of 

items, then the similarity structure arising across Hidden units can be quite different, 

depending on the relation context. To see this, consider Figure 5, which shows a 

multidimensional scaling of the model’s internal representations of 16 different items in 

different contexts. The middle plot shows the similarity of the 16 items as encoded in the 

Representation layer of a trained model. The top panel shows the same 16 items as 

encoded by the Hidden layer when the is context is activated in the input, whereas the 

bottom panel shows Hidden layer patterns for these items when the can context is 

activated in the input. In the network’s environment, all of the plants can do only one 

thing: grow. In the can context, then, the model has learned to represent all 8 plants as 

nearly identical to one another. The birds and the fish, because they can do different 

things, remain well differentiated from one another. The is context, in contrast, all of the 

various items have quite different and somewhat random properties (mostly colours and 

idiosyncratic visual traits; note that the is relation is separate from the class inclusion 

relation denoted by isa in both our model and Collins and Quillian’s original work). 

Consequently the 16 individual items are all fairly well differentiated from one another, 

although the deeper similarity structure present in the base representation can still be 

observed (for instance, the fish are all more similar to one another than they are to the 

birds). 

 

-- Figure 5.5 about here -- 

 



It seems that the inputs from the Relation layer can “re-shape” the base similarity 

structure encoded by Representation units, to better capture structure suited to the context 

at hand. Because this is so, the model will show quite different patterns of inductive 

projection for the exact same reference item, depending upon the relation context in 

which the property is learned. For instance, Figure 5.6 shows what happens when the 

model is taught a new fact about the maple tree: that it can queem, has a queem, or is 

queem. Depending upon the relation, the model generalizes this new fact in quite 

different ways: to all of the plants if “queem” is a kind of behaviour (the can context), to 

just the trees if “queem” is a part (the has context), and to an idiosyncratic set of items if 

“queem” is a superficial appearance property (the is context). 

 

-- Figure 5.6 about here -- 

 

In summary, an important aspect of our theory is the idea that internal semantic 

representations capture knowledge, not just about the item in question, but also about 

context in which the task is being performed. This context can capture information about 

the particular kind of information that the system is being asked to retrieve—

consequently the kinds of generalization behaviours exhibited by the system can vary 

depending upon this information. 

 

Relation to other approaches. 

Our theory addresses a series of empirical and theoretical issues that have proven 

challenging for some categorization-based approaches. We are not aware of other 



computational approaches which have tackled precisely the same set of motivating 

phenomena as has our work.  In particular, our focus on core issues in child development 

and in neuropsychology makes it difficult to compare our approach to others in this 

volume, since these approaches are, by and large, targeted at explaining detailed 

observations about adult categorization behaviour, mostly with reference to new 

category-learning experiments. With regard to the nature of semantic representations and 

the mechanisms that support semantic generalization, however, our approach does share 

some commonalities and some differences with other computational approaches to 

categorization. 

Exemplar theories / non-parametric density estimation. Our framework shares 

some characteristics with exemplar-based approaches to categorization (Kruschke, 1992; 

Medin & Shaffer, 1978; Nosofsky, 1986), some of which may be viewed as similar in 

many ways to nonparametric density estimation (Griffiths, Sanborn, Canini, & Navarro, 

2008). In these approaches, as in our work, categorization behaviour is viewed, not as 

reflecting the internal mechanism that governs knowledge generalization, but as a 

probabilistic response generated from a continuous internal representation space. The 

approaches differ in their conception of the nature of the underlying representations and 

the processes that govern generalization.  

In exemplar theories, the elements are a vast set of stored discrete representations 

of previous learning events, each typically construed as a point in a high-dimensional 

feature space. Learning involves adding new representations to this set with each learning 

episode. From these representations, a continuous probability density function is 

estimated for the full space, and generalization is then governed by maximum likelihood 



estimates given the observed features of a new item and the estimated probability density. 

In our theory, the dimensions of the representation space do not correspond to 

interpretable semantic features, nothing is added with new learning, and there is no store 

of discrete events in memory. Instead what is “stored” is a single matrix of connection 

weights, and each learning event leaves a “trace” through its influence on the values of 

these weights. 

Exemplar theories have mainly focused on learning to assign items to a single set 

of mutually exclusive categories, and it is not clear to what extent the best known theories 

(such as Nosofsky’s Generalized Context Model, Chapter 2, or Kruschke’s ALCOVE 

model, Chapter 6) fare when required to learn assignment of items to multiple different 

categorization schemes (Palmeri, 1999; Verheyen, Ameel, Rogers, & Storms, 2008). Our 

approach assumes that there is no single categorization scheme that is always employed 

for all items, but that the semantic system is capable of categorizing items according to a 

variety of different schemes. 

Finally, some exemplar theories have focused on understanding how people 

weight the different properties of objects when categorizing them (Kruschke, 1992; 

Nosofsky, 1986). The PDP theory also suggests a mechanism for feature-weighting—

specifically, it suggests that sets of properties that covary coherently with many other 

properties will receive greater weight in determining an item’s internal representation, 

and consequently will strongly shape the similarity structure that governs generalization 

in the system. Understanding the similarities and differences between this approach to 

feature weighting and that offered by other computational approaches remains a goal for 

future research. 



Prototype theories / parametric density estimation. In some respects, our 

approach may seem to be more similar to parametric approaches to density estimation 

(Ashby & Alfonso-Reese, 1995). In these approaches, the probability density in some 

feature space is computed, not by retaining a full record of all previous events, but by 

fitting some set of n parameterizable distributions to the observed data. For instance, such 

an approach might assume that each cluster in a multidimensional feature space has been 

generated from some Gaussian distribution; that the probability distribution for the full 

space can be approximated by a mixture of such Gaussians; and that “categories” 

correspond either to individual Gaussians or to some set of Gaussians in the mixture. On 

this view, learning serves to help determine how many “clusters” (Gaussians) there are, 

and what the parameters of the distributions are (i.e. the location of their modes in the 

feature space, the height of the mode and the variance of the distribution). Prototype 

theories (Chapter 3) can be viewed as a special case of parametric density estimation in 

which there exists one distribution (“prototype”) for each known category. 

Our approach is similar to parametric density estimation in that knowledge is 

stored in a fixed set of parameterizable elements—namely the weights—so that learning 

does not “add” new elements into a memory store. We believe this analogy to be 

somewhat misleading, however, because in most parametric approaches to density 

estimation, the basic representational elements are the distributions that need to be 

parameterized. That is, there is typically a one-to-one or a many-to-one correspondence 

between the individual distributions and the categories stored in memory. This is not the 

case in the PDP model—there is no sense in which either the weights or units in our 

model correspond directly to some explicit category. The internal representations 



generated for various inputs always depend on the full set of weights, and each weight 

contributes to the representation of all categories and items. 

Structured probabilistic models. Under structured probabilistic approaches(Kemp 

& Tenenbaum, 2008; Tenenbaum & Griffiths, 2001; Tenenbaum, Griffiths, & Kemp, 

2006), semantic cognition is viewed as the inductive problem of deciding which of a vast 

number of conceptual structures is most likely to have generated the observed properties 

of a set of items in a domain. The relationship between such approaches and the PDP 

approach is the subject of much current debate beyond the scope of this chapter; the 

interested reader can find recent commentary in (Griffiths, Chater, Kemp, Perfors, & 

Tenenbaum, submitted; Mcclelland et al., submitted; Rogers & McClelland, 2008). Here 

we simply wish to note some key commonalities and differences between the approaches. 

Briefly, both views emphasize that the function of the semantic system is to 

promote inductive inference; both propose that inductive inference is probabilistic; and 

both situate the problem of learning within an optimization framework. The key 

differences lie in basic assumptions about representation and mechanism. Structured 

probabilistic approaches assume that the semantic system approximates optimal 

probabilistic inference—so that any method and any representational assumption that 

allows the theorist to compute the true probability distribution over some set of outcomes 

may be employed to understand how the system is working. In practice the 

representations often involve discrete category representations embedded in graph 

structures, with probability distributions computed over all possible categories and all 

possible graphs. The approach also requires specification of initial biases for all 

categories and graph structures, and so presupposes considerable initial knowledge. 



Learning involves using observed data to select the most probable set of categories and 

graph structures governing some behaviour, and then updating prior beliefs about the 

likelihood of these different structures. 

On the PDP approach, representations must take the form of distributed patterns 

of activity across processing units—hence there is no analogy to the graphical structures 

often employed in structured probabilistic approaches. Also, there are no discrete internal 

category representations, no explicit “hypotheses” about categories and structures, and no 

explicit biases attached to different hypotheses and category structures. The internal 

representations and outputs generated by objects and relations depend upon the particular 

configuration of weights instantiated in the network at a given point in time. This 

configuration itself can be viewed as a point in a fully continuous multidimensional 

weight space. The weight-space determines the full set of input-output mappings that can 

be expressed by the network, and in this sense is similar to the “hypothesis space” (the set 

of all possible concepts and graph structures) presupposed by the probabilistic 

framework. There are, however, several key differences. First, unlike the structured 

probabilistic approach, there is no enumerated set of possible structure types (or 

constructors for such structure types).  Second, there is never a sense of comparative 

evaluation of alternative possible structure types—at any given point in time, the system 

has a single configuration of weights, capturing a single input-output mapping.  Third, 

learning occurs quite differently in the connectionist framework: each new experience 

results in a slight adjustment of the connection weights, gradually leading, through an 

ongoing developmental process, to elaboration of a structured knowledge representation.  

While the structured probabilistic approach can be applied in such an “on-line” method, it 



is typical to view each new experience as adding to the corpus of stored experiences from 

which the best possible structure will be inferred using arbitrary computational methods.  

Thus, the connectionist framework imposes strong constraints on the learning process not 

considered within structured probabilistic approaches. 

 

Conclusion 

In summary, we believe it is fruitful to investigate approaches to semantic 

cognition that do not invoke an internal categorization mechanism as the primary vehicle 

for knowledge storage and generalization. The PDP approach to semantic cognition 

provides an alternative set of mechanisms for efficient storage and generalization of 

semantic information. Although our framework shares some characteristics with other 

computational approaches, it also differs in several key respects. In particular, the 

applicability of the framework to phenomena in cognitive development and disordered 

semantic cognition allows the theory to address a comparatively broad range of empirical 

findings. 

 

 

Figure Captions 

Figure 5.1. A simple model implementation of the theory adapted from Rumelhart and 

Todd (1993), used to learn all the propositions true of the specific concepts (pine, oak, 

etc.) in the classic hierarchical spreading activation model of Collins and Quillian (1969). 

Input units are shown on the left, and activation propagates from the left to the right. 

Where connections are indicated, every unit in the pool on the left is connected to every 



unit in the pool to the right. Each unit in the Item layer corresponds to an individual item 

in the environment. Each unit in the Relation layer represents contextual constraints on 

the kind of information to be retrieved. Thus, the input pair canary can corresponds to a 

situation in which the network is shown a picture of a canary and asked what it can do. 

The network is trained to turn on all those units that represent correct completions of the 

input query. In the example shown, the correct units to activate are grow, move, fly, and 

sing. All simulations discussed were conducted with variants of this model.  

 

Figure 5.2. Graphical display of the model implemented as a part of the standard release 

of the PDPTool Matlab application. Input units appear on the left, and activation flows 

rightward toward the attribute unit on the right. The rightmost column of units displays 

the target values used to train the model. The Figure shows activation of unit states when 

the trained model is queried with the input canary can. The model correctly activates all 

correct responses in the output, including the attributes grow, move, fly and sing. 

 

Figure 5.3. Progressive differentiation of concepts and preservation of superordinate 

information in the model. The labelled endpoints show a multidimensional scaling 

diagram of the model’s internal representations of 8 items after it has correctly learned all 

properties of all items. The lines show a multidimensional scaling of the trajectory of 

these representations over the course of learning. Though representations begin very 

similar to one another, animals and plants quickly differentiate from one another, 

followed by more intermediate categories, and finally the individual items are pulled 

apart. This “coarse-to-fine” differentiation of concepts mirrors patterns of conceptual 



differentiation observed in child development. The shading provides a conceptual 

illustration of the reason why superordinate information tends to be preserved: Properties 

shared by animals, for instance, are true of all birds and fish, and so tend to be activated 

by points within a broad region of the representation space (light gray shading in upper-

left). Properties shared only by the birds, in contrast, are activated by points in a 

comparatively narrower volume of the space (dark shading around canary and robin 

representations), whereas properties true of individual items are only activated for a very 

narrow volume of space (the white “bubbles” around each individual item 

representation). 

 

Figure 5.4. Left: Activation of correct name units for names at general (e.g. “animal”), 

basic (e.g. “fish”), and specific (e.g. “salmon”) levels in a variant of the model trained 

with 21 items, when the model’s internal representations are subject to increasing 

amounts of noise. Whereas the basic-level name is initially the most active unit, this 

activation declines more rapidly than the more general name unit, so that the network 

performs better when naming at more general levels. Right: Smoothed data from 8 

patients with SD performing a category-verification task in which they must decide 

whether a picture matches a name at either the general, basic, or specific level. Like the 

model, performance is initially better for basic-level names, but declines with increasing 

semantic impairment, so that the more impaired patients show an advantage for 

categorizing at the most general level. Panels reprinted with permission from Rogers and 

McClelland (2004) Figure 5.4, page 196, and from Rogers and Patterson (2007), Figure 

2, page 455. 



 

Figure 5.5. Multidimensional scaling showing the similarities represented by the model 

for objects in different relation contexts. The middle plot shows the similarities among 

object representations in the Representation layer. The top graph shows the similarities 

among the same objects in the Hidden layer, when the is relation unit is activated. The 

bottom graph shows the similarities across these same units when the can relation unit is 

activated. The is relation context exaggerates differences among related objects; for 

example, relative to the similarities in the Representation layer, the trees are fairly well 

spread out in the is context. Moreover, similarities in object appearances are preserved in 

these representations; for example, the canary is as close to the flowers as to the other 

birds in the is context, by virtue of being pretty. By contrast, the can context collapses 

differences among the plants, because in the network’s world, all plants can do only one 

thing: grow. 

 

Figure 5.6. Barplot showing that activation of the nonsense property “queem” in an 

extended version of the model when the network is queried with various inputs, after it 

has learned that the maple “can queem,” “has a queem,” or “is queem.” If the network 

learns the new property after 500 epochs of training, the property generalizes across the 

entire superordinate category, regardless of the relation context. When the network is 

taught the novel property after 2500 epochs of training, it shows different patterns of 

generalization depending on whether “queem” is understood to be a behavior, a part, or a 

physical attribute. 
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