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The N400 component of the event-related brain potential (ERP) 
has received a lot of attention, as it promises to shed light on 
the brain basis of meaning processing. The N400 is a negative 

brain potential recorded over centro-parietal areas peaking around 
400 ms after the presentation of a potentially meaningful stimulus. 
The first report of the N400 showed that it occurred on presenta-
tion of a word violating expectations established by context: given  
‘I take coffee with cream and…’ the anomalous word ‘dog’ produces 
a larger N400 than the congruent word ‘sugar’1. The N400 has since 
been used as a dependent variable in over 1,000 studies2. However, 
despite the large amount of data on the N400, its functional basis 
continues to be debated: various verbal descriptive theories have 
been proposed3–7, but their capacity to capture all the relevant data 
is difficult to determine unambiguously due to the lack of imple-
mentation, and none has yet offered a generally accepted account2.

Here, we provide both support for and formalization of the view 
that the N400 reflects the input-driven update of a representation 
of sentence meaning—one that implicitly and probabilistically 
represents all aspects of meaning as it evolves in real time during 
comprehension2. We do so by presenting an explicit computational 
model of this process. The model is trained and tested using mate-
rials generated from a simplified artificial microworld in which 
we can manipulate variables that have been shown to affect the 
N400, allowing us to explore how these factors affect processing. 
The use of synthetic materials prevents us from simulating N400s 
to specific sentences used in empirical experiments. However, an 
artificial environment provides more transparency concerning the 
factors influencing model behaviour than would be afforded by a 
naturalistic corpus.

The model does not exactly correspond to any existing account 
of the N400, as it implements a distinct perspective on language 
comprehension. Existing accounts are often grounded (at least 
partly) in modes of theorizing originating from the 1950s8, in which 
symbolic representations of the meanings of words are retrieved 
from memory and subsequently integrated into a compositional 
representation—an annotated structural description thought to 
serve as the representation of sentence meaning9–11. Although per-
spectives on language processing have evolved in various ways, 
many researchers maintain the notion that word meanings are 

retrieved from memory before being assigned to roles in a compo-
sitional representation.

Our model, called the sentence gestalt (SG) model12,13, provides 
an alternative to this mode of theorizing. It offers a functional-level 
characterization of language understanding in which each word in 
a sentence provides clues that constrain the formation of an implicit 
probabilistic representation of the event described by the sentence. 
Earlier work established that the model could capture several core 
aspects of language comprehension13. The current work extending 
the model to address N400s at this functional level complements 
efforts to model neurophysiological details underlying the N40014–16.

The design of the SG model (Fig. 1) reflects the principle that 
listeners continually update their probabilistic representation of the 
described event as each incoming word of a sentence is presented. 
The representation corresponds to an internal (hidden layer) acti-
vation state called the sentence gestalt that depends on connection-
based knowledge in the ‘update’ part of the network (Fig. 1). The 
SG activation pattern can guide responses to potential queries about 
the event described by the sentence (see the ‘Implicit probabilistic 
theory of meaning’ section in the Supplementary Discussion). The 
model is trained with sentences and queries about the events the 
sentences describe, so that it can provide responses to such queries. 
Although we focus on a simple microworld of events and sentences 
that describe them, the model exemplifies a wider conception of a 
neural activation state that represents a person’s subjective under-
standing of a broad range of situations and of the kinds of inputs 
that can update this understanding. The input could be in the form 
of language expressing states of affairs, or even non-declarative lan-
guage such as questions (Supplementary Discussion). Although we 
focus on linguistic input here, the input guiding the formation of 
this representation could also come from witnessing events directly, 
from pictures or sounds, or from any combination of linguistic and 
other forms of input.

The magnitude of the activation update produced by each suc-
cessive word of a sentence corresponds to the change in the model’s 
probabilistic representation that is produced by the word—and it 
is this change, we propose, that is reflected in N400 amplitudes. 
Specifically, the semantic update (SU) induced by the current 
word n is defined as the sum across the units in the SG layer of the  
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absolute value of the change in each unit’s activation that this word 
produces. For a given unit (indexed below by the subscript i), the 
change is simply the difference between the unit’s activation after 
word n and after word n −  1:

∑= = − −a w a wN400 SU ( ) ( )n n
i

i n i n 1

This measure can be related formally to a Bayesian measure of 
surprise17 and to the signals that govern learning in the network (see 
below and Supplementary Discussion).

How the SU captures the N400 is best illustrated with an  example: 
after a listener has heard ‘I take my coffee with cream and… ’ our 
account holds that the activation state already implicitly represents 
a high subjective probability that the speaker takes her coffee with 
cream and sugar, so the representation will change very little when 
the word ‘sugar’ is presented, resulting in little change in activation, 
and thus a small N400. In contrast, the representation will change 
much more if ‘dog’ is presented instead, corresponding to a much 
larger change in subjective probabilities of event characteristics, 
reflected in a larger change in activation and thus a larger N400.

Distinctive features of the sentence gestalt model
Several aspects of the model’s design and behaviour are worth 
exploring to understand how it accounts for the empirical find-
ings. First, the model forms a representation of the situation or 
event described by the sentence, rather than a representation of the 
sentence itself. This contrasts with models of language processing 
that focus primarily on updating linguistic expectations, including 

expectations about specific words or structural relationships10,11. 
Furthermore, unlike most other models, the SG model does not 
contain separate modules for lexical access or syntactic parsing—
instead it simply maps from word forms to an implicit probabilistic 
representation of sentence meaning.

We make no stipulations of the form or structure of the model’s 
internal representations; rather, these representations are shaped 
by the statistics of its experiences18,19. To train the model, we need 
a way of providing it with information about the event described 
by the sentence. Similar to the original implementation, events are 
described in terms of an action, a location, a situation (such as ‘at 
breakfast’), an agent, and the object or patient to which the action 
is applied. Critically, the event description is not the model’s inter-
nal representation, but is instead a characterization of those aspects 
of the event that the representation should be capable of describ-
ing if probed. In this way our model is similar to contemporary 
deep learning models such as Google’s neural machine translation 
(GNMT) system20, which also makes no stipulations of the form 
or structure of the internal representation generated from an input 
sentence; instead, the representation is shaped by learning to predict 
the translation of a sentence from one language in other languages. 
The relative success of the GNMT can be seen as supporting the 
view that a commitment to any stipulated form of internal repre-
sentation is an impediment to capturing the nuanced, quasiregular 
nature of language21,22.

Second, learning takes place in the model over an extended time 
course loosely corresponding to human development, based on 
the gradual accumulation of experience about events and the sen-
tences that describe them. Thus, the SU occurring on presentation 
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Fig. 1 | the sentence gestalt (SG) model architecture, processing a sentence with a high- or low-cloze probability ending, and the model’s N400 
correlate. a, The model consists of an update network and a query network. Circles represent layers of units (and number of units in each layer). Arrows 
represent all-to-all modifiable connections; each unit applies a sigmoid transformation to its summed inputs, where each input is the product of the 
activation of the sending unit times the weight of that connection. In the update part of the model, each incoming word is processed through layer ‘hidden 
1’, where it combines with the previous SG activation to produce the updated SG pattern corresponding to the updated implicit representation of the 
described event. During training, after each presented word, the model is probed concerning all aspects of the described event (for example: agent, ‘man’; 
action, ‘play’, and so on) in the query network. Here, the activation from the probe layer combines via layer ‘hidden 2’ with the current SG pattern to 
produce output activations. Selected output units activated in response to the agent, action and patient probes are shown; each query response includes 
a distinguishing feature (such as ‘man’ or ‘woman’, as shown) as well as other features (such as ‘person’ or ‘adult’, not shown) that capture semantic 
similarities among event participants (Supplementary Table 1). After presentation of ‘The man’, the SG representation (thought bubble, top) supports 
activation of the correct features when probed for the agent and estimates the probabilities of action and patient features. b, After the word ‘plays’, the SG 
representation is updated and the model now activates the correct features given the agent and action probes, and estimates the probability of alternative 
possible patients, based on its experience (the man plays chess more often than monopoly). If the next word is ‘chess’ (top), the change in SG activation 
(summed magnitudes of changes in ‘difference vector’) is smaller than if the next word is 'monopoly' (bottom). The change, called the semantic update, is 
the proposed N400 correlate (right), which is larger for the less probable ending (in this case, ‘monopoly’, bottom).
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of a particular word in a particular context depends not only on the 
statistics of the environment, but also on the extent of the model’s 
training—thereby allowing it to address changes in N400s as a func-
tion of experience.

Third, the model responds to words presented to it, indepen-
dently of whether they form sentences, as implemented in the 
update part of the network (Fig. 1). This allows the model to address 
N400s evoked by words presented in pairs or in isolation. We view 
this as a largely automatic process, proceeding independently of the 
intention of the listener. Whether they are in sentences or not, the 
SG activity produced by words will reflect aspects of events in which 
they occur, in line with embodied approaches to the representation 
of meaning23,24. The explicit computation of responses to queries 
about events is used during training to allow the model to learn to 
map from sentences to meaning, but this process is not thought of as 
contributing to the N400, and would not ordinarily occur during an 
N400 experiment, when no external event information is available.

Finally, we do not see the process reflected in the N400 as the 
only process that contributes to language understanding. Other 
processes, reflected in other ERP components, may come into play 
in understanding sentences describing implausible events or sen-
tences with unusual structure, and these processes may result in 
changes to the meaning representation that is ultimately derived 
from a linguistic input. In the ‘Discussion’ section, we consider how 

the formation of an initial, implicit representation of meaning, as 
captured by the SG model, might fit into a broader picture of lan-
guage understanding.

Results
We report 16 simulations of well-established N400 effects, chosen to 
illustrate how the model can address a broad range of empirical find-
ings taken as supporting diverse descriptive theories of the N400’s 
functional basis (Table 1). We focus on language-related effects, but 
note that both linguistic and non-linguistic information contribute 
to changes in semantic activation as reflected by the N400.

Basic effects. From ‘violation signal’ to graded reflection of surprise. 
The N400 was first observed after a semantically anomalous sen-
tence completion such as ‘He spread the warm bread with socks’1 
as compared to a high-probability congruent completion (‘but-
ter’). Correspondingly, in our model, the SU is significantly larger 
for sentences with endings that are semantically and statistically 
inconsistent with the training corpus compared to semantically 
consistent, high-probability completions (simulation 1; Fig. 2a and 
Supplementary Fig. 1a). Soon after the initial study, it became clear 
that the N400 is graded, with larger amplitudes for acceptable sen-
tence continuations with lower cloze probability (defined as the 
percentage of participants continuing a sentence fragment with a 

Table 1 | overview of simulated N400 effects

Simulated effects example N400 data Ref. no.

Basic effects
(1) Semantic incongruity I take coffee with cream and sugar/dog. Cong. <  incong. 1

(2) Cloze probability Don’t touch the wet paint/dog. High <  low 25

(3) Position in sentence Late <  early 26

(4) Categorically related incongruity They wanted to make the hotel look 
more like a tropical resort. So along the 
driveway they planted rows of palms/
pines/tulips.

Cong. <  cat. rel. incong. <  incong. 29

(5) Lexical frequency High <  low 31

(6) Semantic priming Sofa – bed Related <  unrelated 32

(7) Associative priming Wind – mill Related <  unrelated 32

(8) Repetition priming Rep. <  unrelated 33

Specificity of the N400 effect
(9–11) Reversal anomalies (1) For breakfast the eggs would only 

eat...
Cong. ≤  reversal <  incong. 34

(2) The javelin has the athletes thrown. 
(In Dutch)

66

(3) The fox that on the poacher 
hunted... (In Dutch)

37

(12) Word order violation She is very satisfied with the ironed 
neatly linen.

No effect 38

(13) Constraint for unexpected endings Joy was too frightened to look (low 
constraint). The children went out to 
look (high constraint).

No effect 39

Development and learning
(14) Age Babies: less compr. <  more compr.  

Later: young >  old
40–42

(15) Priming during near chance second 
language performance

Chien – chat Related <  unrelated 44

(16) Repetition ×  incongruity Cong. (|nonrep. – rep.|) <  incong. 
(|nonrep. – rep.|)

48

Cong., congruent; incong., incongruent; cat. rel., categorically related; reversal, reversal anomaly; rep., repeated; compr., comprehension; nonrep., nonrepeated.
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specific word in offline sentence completion tasks), as in the exam-
ple ‘Don’t touch the wet dog (low cloze)/paint (high cloze)’25. This 
is also captured by the model: it exhibits a larger SU for sentence 
endings presented with a low (0.3) as compared to a high probability 
(0.7) during training (simulation 2; Fig. 2b, Supplementary Fig. 1b 
and Supplementary Note 1). The graded character of the underly-
ing process is further supported by the finding that N400s gradu-
ally decrease across the sequence of words in normal congruent 
sentences26. The SU in the model correspondingly shows a gradual 
decrease across successive words in sentences (simulation 3; Fig. 2c 
and Supplementary Fig. 1c).

Expectancy for words versus semantic features. The findings dis-
cussed above would be consistent with the view that N400s reflect 
the inverse probability of a word in a specific context (word surpri-
sal27) and, indeed, a recent study observed a significant correlation 
between N400 and word surprisal measured at the output layer of 
a simple recurrent network (SRN) trained to predict the next word 
based on preceding context28. However, there is evidence that N400s 
may not be a function of word probabilities per se but rather of 
probabilities of aspects of meaning signalled by words: N400s are 
smaller for incongruent completions that are closer semantically to 
the correct completion than those that are semantically more dis-
tant. Consider the following sentence: ‘They wanted to make the 
hotel look more like a tropical resort. So, along the driveway they 
planted rows of… ’. The N400 effect relative to ‘palms’ (congruent 
completion) is smaller for ‘pines’ (incongruent completion from 
the same basic level category as the congruent completion) than 
for ‘tulips’ (incongruent completion from another basic level cat-
egory than the congruent completion)”29. Our model captures these 
results: we compared sentence completions that were presented with 
a high probability during training and two types of never-presented 
completions. The SU was lowest for high-probability completions, 

as expected; crucially, among never-presented completions, SU was 
smaller for those that shared semantic features with high-prob-
ability completions compared to those that did not (simulation 4;  
Fig. 2d and Supplementary Fig. 1d).

Semantic integration versus lexical access. The sentence-level effects 
considered above have often been taken to indicate that N400s 
reflect the effort to integrate an incoming word into the preceding 
context7,30. However, a sentence context is not actually needed: N400 
effects can also be obtained for words presented in pairs or in iso-
lation. Specifically, N400s are smaller for isolated words with high 
rather than low lexical frequency31; for words (for example ‘bed’) 
presented after categorically related primes (‘sofa’) or associatively 
related primes (‘sleep’) as compared to unrelated primes32; and for 
immediate repetition of words compared to the same words fol-
lowing unrelated primes33. Such N400 effects outside of a sentence 
context, especially the influences of repetition and lexical frequency, 
have led some researchers to suggest that N400s do not reflect the 
formation of a representation of sentence meaning but only access 
to the current word’s meaning3,14. As previously noted, the SG pat-
tern probabilistically represents the meaning of a sentence if one is 
presented, but the model also processes words presented singly or 
in pairs. Unlike traditional models, there is no separate system for 
accessing meanings of words. Instead the model contains a single 
system that processes words and word sequences, whether or not 
they form a meaningful sentence.

The model captures all of the above-mentioned effects: first, the 
SU was smaller for isolated words that occurred relatively frequently 
during training (simulation 5; Fig. 2e and Supplementary Fig. 1e). 
Furthermore, the SU was smaller for words presented after words 
from the same semantic category compared to words from a differ-
ent category (simulation 6; Fig. 2f and Supplementary Fig. 1f), and 
smaller for words presented after associatively related words (‘chess’ 
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Fig. 2 | Simulation results for the basic effects. a–h, The model’s N400 correlate. Blue dots represent results for independent runs of the model (n =  10 
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would be represented by red error bars, but in this figure the error bars do not exceed the area of the red dot. Cong., congruent; incong., incongruent. 
Statistical results for a–h are shown below: t1 from the model analyses (item analyses are reported in Supplementary Fig. 1), Cohen’s d (note that 
effect sizes might be larger in simulations than in empirical experiments due to the noise in EEG signals) and 95% confidence interval for the condition 
difference, CI). a, Semantic incongruity (n =  10 items per condition): t1(9) =  25.00, P <  0.001, d =  7.91, 95% CI (1.26, 1.51). b, Cloze probability (n =  10 
items): t1(9) =  8.56, P <  0.001, d =  2.71, 95% CI (0.18, 0.30). c, Position in sentence (n =  12 items): t1(9) =  8.17, P <  0.001, d =  2.58, 95% CI (0.43, 0.76) from 
second to third sentence position; t1(9) =  4.73, P =  0.003, d =  1.50, 95% CI (0.16, 0.44) from third to fourth position; and t1(9) =  17.15, P <  0.001, d =  5.42, 
95% CI (0.44, 0.58) from fourth to fifth position. d, Categorically related incongruities (n =  10 items) were larger than congruent, t1(9) =  10.63, P <  0.001, 
d =  3.36, 95% CI (0.33, 0.51), and smaller than incongruent continuations, t1(9) =  14.69, P <  0.001, d =  4.64, 95% CI (0.82, 1.11). e, Lexical frequency (n =  14 
items): t1(9) =  3.13, P =  0.012, d =  0.99, 95% CI (0.05, 0.31). f, Semantic priming (n =  10 items): t1(9) =  14.55, P <  0.001, d =  4.60, 95% CI (0.32, 0.44). 
g, Associative priming (n =  10 items): t1(9) =  14.75, P <  0.001, d =  4.67, 95% CI (0.63, 0.86). h, Immediate repetition priming (n =  10 items): t1(9) =  16.0, 
P <  0.001, d =  5.07, 95% CI (0.60, 0.80). Details on the statistics including normality tests are reported in Supplementary Methods 4.
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following ‘play’) as compared to unrelated words (‘chess’ following 
‘eat’) (simulation 7; Fig. 2g and Supplementary Fig. 1g). Finally, the 
SU was smaller for the second presentation of a repeated word com-
pared to a word presented after an unrelated word (simulation 8; 
Fig. 2h, Supplementary Fig. 1h).

Specificity of the N400 effect. Reversal anomalies and the N400. A 
finding that has puzzled the N400 community is the lack of a robust 
N400 effect in ‘reversal anomaly’ sentences. Only a very small 
N400 increase occurs in sentences such as ‘For breakfast the eggs 
would only eat… ’ when compared with corresponding congruent 
sentences such as ‘For breakfast, the boys would only eat… ’34. The 
small N400 effect here is typically accompanied by an increase in 

the P600, a subsequent positive potential. In contrast, N400 but not 
P600 amplitudes are considerably larger in sentence variations such 
as ‘For breakfast the boys would only bury… ’34.

This pattern of results has sparked considerable theoretical 
uncertainty. Many researchers have taken these findings to indicate 
that the word ‘eggs’ in the given context is easily integrated into a 
representation of sentence meaning because ‘eggs’ is (at least tem-
porarily) interpreted as specifying the object eaten rather than the 
agent of eating. Such a situation has been called a temporary ‘seman-
tic illusion’35. Our account is partly in line with this view, although 
we describe such a state of mind as an ‘event probability-based 
interpretation’ to avoid the implication that syntax must always be 
the definitive cue when syntax and other considerations conflict. 
Others36 have taken this finding to indicate that the N400 is not 
related to sentence meaning but instead reflects retrieval of word 
meaning. The idea is that the retrieval of the meaning of ‘eat’ is facil-
itated by priming from ‘breakfast’ and ‘eggs’, whereas ‘bury’ would 
not be facilitated by prior context. On this view, understanding sen-
tence meaning is associated with the P600 rather than the N400.

We address this controversy by showing that our model cap-
tures the small N400 effect in reversal anomalies. In the first rel-
evant simulation, in line with N400s, the model exhibited only a 
slight increase in SU for reversal anomalies (‘At breakfast, the eggs 
eat… ’) as compared to congruent continuations (‘At breakfast, the 
man eats… ), and a substantial increase for incongruent continua-
tions (‘At breakfast, the man plants… ’) (simulation 9; Fig. 3a and 
Supplementary Fig. 2a). The query network’s responses to relevant 
probes suggests that the model does indeed maintain an event prob-
ability-based interpretation, in that it continues to favour the eggs as 
the patient instead of the agent of eating even after the word ‘eat’ is 
presented (Supplementary Fig. 3).

The second simulation addresses the small N400 effect in rever-
sal anomalies in which both participants are animate beings that 
can occur as agents (this was not the case in the first simulation 
and another (simulation 10; Supplementary Fig. 4) described in 
Supplementary Methods 1). Consider these materials37: ‘De vos die 
op de stroper joeg… ’ (‘The fox who hunted the poacher… ’) and 
‘De zieke die in de chirurg sneede… ’ (‘The patient who cut into 
the surgeon… ’). Here, both event participants are animate, yet the 
syntactically supported interpretations are inconsistent with event 
probabilities. (We use the phrase ‘event probabilities’ to refer to the 
probability distribution of role fillers in events consistent with the 
words so far encountered, independent of the order of the words. 
For example, at the second noun in ‘the poacher on the fox’ and ‘the 
fox on the poacher’, the words so far encountered are the same, and 
so event probabilities would be the same as well.) Both participants 
can be agents in events involving the other participant (fox could 
watch poacher, and patient could stand in front of surgeon), and 
both can engage in the relevant action (hunt something, or cut into 
something). What makes these cases anomalous is that in hunting 
events involving poachers and foxes, it is always the poachers that 
hunt the foxes; and in events involving surgeons and patients where 
one is cutting into the other, it is always the surgeons that cut into 
the patients.

To address such cases, we conducted a simulation focusing on 
the experiment that used the cited examples (among others)37. 
The experiment was done in Dutch; this is critical because it 
means that both nouns are presented before the verb. We there-
fore trained an additional model with Dutch word order, using 
event scenarios set up to align with the materials used in the target 
experiment (Supplementary Methods 2 and Supplementary Fig. 5).  
Using sentences from these scenarios, the model again success-
fully captures the N400 in reversal anomalies. It exhibited only a 
very slight increase in SU for reversal anomalies (‘The fox on the 
poacher hunted’) compared to congruent sentences (‘The poacher 
on the fox hunted’) and a substantial increase for incongruent  
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Fig. 3 | Simulation results concerning the specificity of the N400 effect. 
Blue dots represent results for independent runs of the model (n =  10 
models), averaged across items per condition; red dots represent condition 
means, red error bars represent ± SEM (see Supplementary Fig. 2 for item-
based analyses). Incong., incongruent; reversal, reversal anomaly; cong., 
congruent; high c., unexpected high constraint; low c., unexpected low 
constraint; exp., expected. a, Reversal anomaly in standard model34 (n =  8 
items): t1(9) =  2.09, P =  0.199, d =  0.66, 95% CI (0.02, 0.41) for  
comparison between congruent and reversal; t1(9) =  10.66, P <  0.001, 
d =  3.37, 95% CI (0.95, 1.46) for comparison between reversal and 
incongruent; and t1(9) =  28.39, P <  0.001, d =  8.98, 95% CI (1.29, 1.51) for 
comparison between congruent and incongruent. b, Reversal anomaly 
where both participants can be agents37 (n =  8 items). These results are  
from a model trained on a different environment (see the main text for  
details), explaining the difference in SU in the baseline (congruent) 
condition. Again, SU in the reversal anomaly is only slightly increased as 
compared to the congruent condition, while being considerably larger in the 
incongruent condition. Congruent versus reversal: t1(9) =  13.25, P <  0.001, 
d =  4.19, 95% CI (0.30, 0.42); congruent versus incongruent: t1(9) =  55.10, 
P <  0.001, d =  17.41, 95% CI (2.26, 2.45); reversal versus incongruent: 
t1(9) =  52.21, P <  0.001, d =  16.51, 95% CI (1.90, 2.08). c, Change in word 
order (n =  10 items). The SU was slightly larger for normal versus changed 
order; significant only over models, t1(9) =  5.94, P <  0.001, d =  1.88, 95% CI 
(0.14, 0.31). d, Constraint for unexpected endings (n =  10 items). The SU 
did not differ between unexpected high versus low constraint, t1(9) =  0.13, 
P =  0.90, d =  0.04, 95% CI (− 0.24, 0.27). For expected endings it was 
lower than for unexpected high constraint, t1(9) =  25.00, P <  0.001, d =  7.91, 
95% CI (1.26, 1.52), and unexpected low constraint, t1(9) =  10.21, P <  0.001, 
d =  3.23, 95% CI (1.09, 1.72).
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continuations (‘The poacher on the fox planted’; simulation 11; 
Fig. 3b and Supplementary Fig. 2b).

To understand why the model does not exhibit a substantially 
larger SU in the role-reversed sentences compared to controls, we 
examined the network’s responses to relevant probes. While the 
model’s interpretation of the congruent sentences was unambigu-
ous, it exhibited uncertainty in its role assignments when processing 
reversal anomalies, due to conflicting constraints imposed by word 
order and event probabilities. This conflict was not reflected in a 
large SU at the verb because it was already present at the second 
noun and was not resolved by the verb (see Supplementary Note 2 
and Supplementary Fig. 6).

In summary, the simulations show that the small N400 effect in 
reversal anomalies is consistent with the view that the N400 reflects 
the updating of an implicit representation of sentence meaning as 
implemented in the SG model. The model is partly in line with 
previous accounts favouring a role for plausibility constraints in 
sentence processing35. However, in our model, the initial heuristic 
comprehension process underlying N400s is not purely based on 

event probabilities. Instead, the model is sensitive to both event 
probabilities and syntactic constraints, and from this perspective the 
small N400 effect in reversal anomalies does not necessarily reflect a 
clear-cut event probability-based interpretation (of, for instance, the 
poacher hunting the fox). Instead, the finding may reflect a state of 
unresolved conflict between different cues. Other processes, possi-
bly associated with the P600, may resolve the conflict between com-
peting interpretations in such situations (see Discussion).

Specificity of the N400 to violations of semantic rather than syntactic 
factors. N400s are not influenced by syntactic factors such as viola-
tions of word order (such as ‘The girl is very satisfied with the ironed 
neatly linen’), which instead elicit P600 effects38. Because the model 
is representing the event described by the sentence, and this event 
is not necessarily affected by a change in word order, the model is 
likewise insensitive to such violations. To demonstrate this, we con-
sidered the model’s response to changes in word order (‘On Sunday, 
the man the robin feeds’ versus ‘On Sunday, the man feeds the 
robin’), examining the SU at the highlighted position. If anything, 
the SU was slightly larger in the condition with normal compared 
to changed word order (simulation 12; Fig. 3c and Supplementary 
Fig. 2c), because changes in word order also entail changes in the 
amount of information a word provides about the described event, 
and the amount of semantic information was on average slightly 
higher in sentences with normal compared to changed word order 
(see Methods).

No influence of constraint for unexpected endings. The model also 
captures the finding that the N400 does not depend on the prior 
establishment of a specific expectation39. That is, the N400 for an 
unpredictable word is equally large independent of whether the 
word is unpredictable because the context does not predict any spe-
cific word (e.g., “Joy was too frightened to look.”) or because the 
context predicts a specific word different from the one presented 
(e.g., “The children went outside to look”, where play would be 
expected). Correspondingly, in the model SU was equally large for 
words that are unexpected because the context is unconstraining 
(e.g., “The man likes the email.”) as for words that are unexpected 
because they violate specific expectations (e.g., “The man eats the 
email.” Simulation 13; Fig. 3d, Supplementary Fig. 2d). This finding 
highlights the fact that the N400, like the SU in the model, cor-
responds to the amount of unexpected semantic information (in 
the sense of Bayesian surprise) and does not constitute a violation 
signal per se.

Development and learning. In all of the simulations above, it would 
have been possible to model the phenomena by treating the N400 
as a reflection of change in explicit estimates of event-feature prob-
abilities, rather than as reflecting the update of an implicit internal 
representation that latently represents these estimates in a way that 
only becomes explicit when queried. In this section, we show that 
the implicit SU (measured at the hidden SG layer) and the change in 
the networks’ explicit estimates of feature probabilities in response 
to probes (measured at the output layer) can pattern differently, with 
the implicit SU patterning more closely with the N400, supporting 
a role for the update of the learned implicit representation rather 
than explicit estimates of event-feature probabilities or objectively 
true probabilities in capturing neural responses (see Supplementary 
Discussion for details of these measures). We then consider how the 
implicit SU can drive connection-based learning in the update net-
work, accounting for a final pattern of empirical findings.

Development. N400s change with increasing language experience 
and over development. The examination of N400 effects in dif-
ferent age groups has shown that N400 effects increase with com-
prehension skills very early in life40 but later decrease with age41,42.  
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Fig. 4 | Development across training. Semantic incongruity effects as a 
function of the number of sentences the model has been exposed to.  
a, Semantic update at the model’s hidden SG layer shows at first an increase 
and later a decrease with additional training, in line with the developmental 
trajectory of the N400. Each light blue or dark blue dot represents the 
results for one independent run of the model, averaged across items per 
condition; the red dots represent the means for each condition, and red 
error bars represent ± SEM (see Supplementary Fig. 7 for item-based 
analyses). The size of the effect (the numerical difference between the 
congruent and incongruent condition) differed between all subsequent 
time points: t1(9) =  17.02, P <  0.001, d =  5.38, 95% CI (3.28, 4.29) between 
10,000 and 100,000 sentences; t1(9) =  7.80, P <  0.001, d =  2.47, 95% 
CI (1.33, 2.41) between 100,000 and 200,000 sentences; t1(9) =  14.69, 
P <  0.001, d =  4.65, 95% CI (1.24, 1.69) between 200,000 and 400,000 
sentences; t1(9) =  7.70, P <  0.001, d =  2.43, 95% CI (0.34, 0.62) between 
400,000 and 800,000 sentences. b, Activation update at the output layer 
steadily increases with additional training, reflecting closer and closer 
approximation to the true conditional probability distributions embodied in 
the training corpus.
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A comparison of the effect of semantic congruity on SU at differ-
ent points in training shows a developmental pattern consistent 
with these findings (simulation 14; Fig. 4a and Supplementary 
Fig. 7a): the size of the congruity effect on SU first increased and 
then decreased as training proceeded. Interestingly, the decrease 
in the effect on SU over the second half of training was accom-
panied by a continuing increase in the effect of semantic congru-
ity on the change in output activation (Fig. 4b and Supplementary 
Fig. 7b). The activation pattern at the output layer reflects explicit 
estimates of semantic feature probabilities in that units at the out-
put layer explicitly represent semantic features (such as ‘can grow’ 
and ‘green’), and network error (across the training environment) 
is minimized when the activation of each feature unit in each sit-
uation corresponds to the conditional probability of this feature 
in this situation (for example, activation of 0.7 when the condi-
tional probability of the feature is 0.7). Thus, in the trained model, 
changes in output activation induced by an incoming word approx-
imate changes in explicit estimates of feature probabilities induced 
by that word. The continuing increase of the congruity effect across 
training (Fig. 4b) shows that it is not the changes in the model’s 
explicit estimates of semantic feature probabilities that pattern 
with the developmental trajectory of the N400 effect. Instead, it is 
the change in the hidden SG layer activation that corresponds to 
this developmental trajectory (Fig. 4a).

The reversed pattern for changes in hidden and output activations 
is possible because, as noted above, the SG activation does not explic-
itly represent the probabilities of semantic features—instead, it pro-
vides a basis (together with connection weights in the query network) 
for estimating these probabilities when probed. As connection weights 
in the query network get stronger throughout the course of learning, 
smaller changes in SG activations become sufficient to produce big 
changes in output activations. This shift of labour from activation to 
connection weights is interesting in that it might underlie the com-
mon finding that experience often leads to decreased neural activity 
in parallel with increased speed and accuracy of task performance43.

Early sensitivity to a new language. A study of human second lan-
guage learning showed robust influences of semantic priming on 
N400s while overt lexical decision performance in the newly trained 
language was still near chance44. Although second language learn-
ing is beyond the scope of the present work, we observe a similar 
pattern at a very early stage in our model’s training (Fig. 5a). At this 
early stage, overt estimates of feature probabilities were only weakly 
modulated by the words presented, but the SU was significantly 
influenced by semantic priming, associative priming and semantic 
congruity in sentences (simulation 15; Fig. 5b and Supplementary 
Fig. 8). Similarly to humans, then, our model can exhibit N400-like 
effects before overt behaviour robustly reflects learning.
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Fig. 5 | Comprehension performance and semantic update effects at a very early stage in training. a, Activation of selected output units while the model 
is presented with the sentence ‘The man plays chess’. It can be seen that the model fails to activate the corresponding units at the output layer. The 
only thing that it has apparently learned at this point is which concepts correspond to possible agents, and it activates those in a way that is sensitive to 
their base-rate frequencies (in the model’s environment, ‘woman’ and ‘man’ are more frequent than ‘girl’ and ‘boy’; see Methods), and with a beginning 
tendency to activate the correct agent (‘man’) most. b, Even at this low level of performance, there are robust effects of associative priming (t1(9) =  6.12, 
P <  0.001, d =  1.94, 95% CI (0.93, 2.03), top), semantic congruity in sentences (t1(9) =  6.85, P <  0.001, d =  2.16, 95% CI (0.95, 1.90), middle) and semantic 
priming (t1(9) =  5.39, P <  0.001, d =  1.70, 95% CI (0.35, 0.85), bottom) on the size of the semantic update, the model’s N400 correlate. Each blue dot 
represents the results for one independent run of the model, averaged across items per condition; the red dots represent the means for each condition, and 
red error bars represent ± SEM (see Supplementary Fig. 8 for item-based analyses). Cong., congruent; incong., incongruent.
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The relationship between activation update and adaptation in a pre-
dictive system. The change induced by the next incoming word that 
we suggest underlies N400 amplitudes can be seen as reflecting the 
‘error’ (difference or divergence) between the model’s implicit prob-
ability estimate based on the previous words, and the updated esti-
mate based on the next word in the sentence. If the estimate after 
word n − 1 is viewed as a prediction, this difference can be viewed 
as a prediction error. It is often assumed that learning is based on 
such temporal difference or prediction errors45–47 so that if N400s 
reflect the update of a probabilistic representation of meaning, then 
larger N400s should be related to greater adaptation, that is, larger 
adjustments to future estimates. Here we implement this idea, using 
the SU to drive learning: the SG layer activation at the next word 
serves as the target for the SG layer activation at the current word, 
so that the error signal that we back-propagate through the network 
to drive the adaptation of connection weights after each presented 
word becomes the difference in SG layer activation between the 
current and the next word, that is, SGn – SGn-1 (see Methods and 
Supplementary Discussion for details). Importantly, this allows the 
model to learn from listening or reading, without a separate event 
description. We then used this approach to simulate the finding 
that the effect of semantic incongruity on N400s is reduced by rep-
etition: the first presentation of an incongruent completion, which 
induces a larger N400 compared to a congruent completion, leads 
to a larger reduction in the N400 when the presentation is repeated 
after a delay, compared to the congruent continuation48.

To simulate this pattern, we presented a set of congruent and 
incongruent sentences, adapting the weights in the update network 
using the temporal difference signal on the SG layer to drive learn-
ing. We then presented all sentences a second time and observed a 
greater reduction in the N400 with repetition of incongruent com-
pared to congruent sentence completions (simulation 16; Fig. 6 and 
Supplementary Fig. 9).

Notably, the summed magnitude of the signal that drives 
learning corresponds exactly to our N400 correlate, highlighting  
the relationship between semantic update, prediction error and 

experience-driven learning49,50. Thus, our account predicts that in 
general, larger N400s should induce stronger adaptation. Although 
further investigation is needed, there is some evidence consistent 
with this prediction: larger N400s to single words during a study 
phase predict enhanced implicit memory (measured by stem com-
pletion without explicit memory) during testing51.

Discussion
The N400 ERP component is widely used to investigate the neu-
rocognitive processes underlying the processing of meaning in 
language. However, the component’s functional basis continues to 
be actively debated2. In the simulations presented above, we have 
shown that an implemented computational model of language com-
prehension, the sentence gestalt model, provides a unified account 
capturing a wide range of findings (Table 1). The model treats 
N400 amplitudes as the change induced by an incoming word in an 
implicit probabilistic representation of meaning. Here we explain 
how the model’s distinctive characteristics contribute to its ability to 
account for the data.

First, our model does not assume separate stages for lexical 
access (retrieval of word meaning) and subsequent integration of 
word meanings into a compositional representation. This is crucial 
because the two most prominent competing theories of the N400’s 
functional basis suggest that N400s reflect either lexical access3 or 
integration/unification into a compositional/combinatorial repre-
sentation of sentence meaning6,7. In the SG model, incoming stimuli 
instead serve as ‘cues to meaning’52, which automatically change an 
activation pattern that implicitly represents estimates of conditional 
probabilities of all aspects of meaning of the described event. Our 
account is similar to the lexical access perspective in that the pro-
cess is assumed to be fast, automatic and implicit, but differs from 
this view in that the resulting activation pattern doesn’t represent 
only the currently incoming word. Instead, similar to the integra-
tion view, the resulting activation state is assumed to represent all 
aspects of the event described by the sentence (including—although 
not currently implemented—input from other modalities), but our 
model differs from integration accounts in avoiding a commit-
ment to explicit compositional representation. Our perspective is 
in line with a recent review on the N400 that concluded that the 
component might best be understood as a “temporally delimited 
electrical snapshot of the intersection of a feedforward flow of 
stimulus-driven activity with a state of the distributed, dynamically 
active neural landscape that is semantic memory”2. Crucially, the 
SG model provides a computationally explicit account of the nature 
and role of this distributed activation state, and how it changes 
through stimulus-driven activity as meaning is dynamically con-
structed during comprehension. The model uses event probability 
together with word order to build a meaning representation instead 
of slotting individual word meanings into a syntactic structure. It 
may override syntactic conventions when event probability infor-
mation is strong, or may experience uncertainty when syntactic and 
event probability information conflict. These aspects of the model 
underlie its behaviour when presented with reversal anomalies  
(Fig. 3a,b and Supplementary Fig. 4) or violations of word order 
(Fig. 3c), allowing it to explain the observed absence of N400 effects.

Second, the model’s representations result from a learning pro-
cess and thus depend on the statistical regularities in the model’s 
environment as well as the amount of training. This allows the 
model to account for N400 effects across development (Fig. 4), 
including N400 effects while behavioural performance is near 
chance (Fig. 5) and the influence of delayed repetition on N400 
congruity effects (Fig. 6).

Third, the model updates its activation after the presentation 
of a word, whether or not it occurs in a sentence, allowing it to 
capture N400 effects for single words (frequency effects; Fig. 2e)  
and words presented in pairs (repetition, Fig. 2h; semantic  
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Fig. 6 | Simulation of the interaction between delayed repetition and 
semantic incongruity. Each dark blue or light blue dot represents the 
results for one independent run of the model, averaged across items 
per condition; the red dots represent the means for each condition (see 
Supplementary Fig. 9 for item-based analyses). There were significant main 
effects of congruity, F1(1,9) =  214.13, P <  .001, ηp

2 =  0.960, and repetition, 
F1(1,9) =  48.47, P <  0.001, ηp

2 =  0.843, and a significant interaction between 
both factors, F1(1,9) =  83.30, P <  0.001, ηp

2 =  0.902. Post-hoc comparisons 
showed that even though the repetition effect was larger for incongruent 
as compared to congruent sentence completions, that is, incongruent 
(first – repetition) >  congruent (first – repetition), t1(9) =  9.13, P <  0.001, 
d =  2.89, 95% CI (0.32, 0.53), it was significant in both conditions, 
t1(9) =  4.21, P =  0.0046, d =  1.33, 95% CI (0.14, 0.46) for the congruent 
completions, and t1(9) =  8.78, P <  0.001, d =  2.78, 95% CI (0.54, 0.91) for 
the incongruent completions. 
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priming, Fig. 2f; associative priming, Fig. 2g) as well as words pre-
sented in a sentence context (semantic congruity, Fig. 2a; cloze 
probability, Fig. 2b; position in the sentence, Fig. 2c; semantically 
related incongruity, Fig. 2d; and no influence of constraint for 
unexpected endings, Fig. 3d).

Fourth, we propose that the N400 as captured by the model char-
acterizes one specific aspect of language comprehension, namely 
the automatic stimulus-driven update of an initial implicit rep-
resentation of the described event. This is in line with the N400’s 
anatomical localization in regions involved in semantic represen-
tation such as the medial temporal gyrus (MTG)3 and anterior-
medial temporal lobe (AMTL)53,54. The processes underlying the 
N400 may thus correspond to a type of language processing that 
has been characterized as shallow, underspecified55, plausibility 
based35 and “good enough”56, and that may be preserved in patients 
with lesions to frontal cortex (specifically the left inferior prefrontal 
cortex, BA47)57,58. This region has been proposed to support con-
trol processes in comprehension that are required when processing 
demands are high59,60, such as in syntactically complex sentences57 
and sentences requiring selection among competing alternative 
interpretations61 (for example, reversal anomalies and garden path 
sentences). These aspects of language comprehension do not con-
tribute to the N400—instead, they may be reflected in other ERP 
components, as discussed below.

The SG activation latently predicts the attributes of the entire 
event described by a sentence, capturing base-rate probabilities 
(before sentence processing begins) and adjusting this activation 
pattern as each word of the sentence is presented. In the current 
implementation, inputs are presented at discrete time steps cor-
responding to successive words, but this is a simplification for 
tractability. We assume that, in reality, the adjustment of semantic 
activation occurs continuously in time, so that the earliest arriving 
information about a word immediately influences the evolving SG 
representation62, in line with the finding that N400 effects in spoken 
language comprehension often begin before the word has become 
acoustically unique63,64. It is important to note that this kind of pre-
diction does not refer to the active and intentional prediction of 
specific items but rather to a latent or implicit state such that the 
model (and presumably the brain) becomes tuned through expe-
rience to anticipate likely upcoming input so that it can respond 
to it with little additional change. Semantic activation changes 
induced by new input reflect the discrepancy between anticipated 
and encountered information about aspects of meaning conveyed 
by the sentence, and it is this discrepancy that corresponds to the 
learning signal driving adaptation of connection-based knowledge 
representations49. In this sense, our approach is in line with Bayesian 
approaches to understanding neural dynamics46,65. Our simulations 
suggest that the semantic system may not represent probabilities of 
aspects of meaning explicitly but rather uses a summary representa-
tion that implicitly represents estimates of these probabilities, sup-
porting explicit estimates when queried and becoming increasingly 
efficient as learning progresses.

Recently, other studies have also linked the N400 to computa-
tional models. Most have concentrated on words presented singly 
or in pairs, and do not address processing in sentence contexts14–16,49. 
Two modelling studies focus on sentence processing. One of them 
observed a correlation between N400s and word surprisal estimated 
by a simple recurrent network (SRN) trained to predict the next 
word based on preceding context28. To demonstrate that an account 
of N400s as word surprisal fails to capture some of the phenomena 
our model captures, we trained an SRN on the same corpus as the 
SG model and repeated some critical simulations with this SRN (see 
Supplementary Methods 3).

First, word surprisal reflects both semantic and syntactic expec-
tation violations, while the N400 is specific to meaning. Indeed, 
while SU in the SG model was insensitive to changes in word order 
(Fig. 3c and Supplementary Fig. 2c), surprisal in the SRN was sig-
nificantly larger for syntactically anomalous compared to normal 
word order (Fig. 7b and Supplementary Fig. 10b). The lack of 
semantic specificity of word surprisal converges with the finding 
that the correlation between surprisal in the SRN and N400s in the 
above-mentioned study was observed only for content words, not 
for grammatical function words28. Furthermore, the SRN did not 
capture the decrease of N400 effects with age, showing instead a 
slight increase with training (Fig. 7c and Supplementary Fig. 10c), 
because surprisal is measured in terms of the estimates of word 
probabilities, which become sharper throughout learning. Finally, 
the SRN did not produce the small N400 in reversal anomalies: 
when presented with 'At breakfast, the eggs eat… ’, word surpri-
sal was large—numerically larger than for incongruent continua-
tions (Fig. 7a and Supplementary Fig. 10a)—while SU in the SG 
model showed only a very slight increase, in line with N400s34 
(Supplementary Fig. 11 shows an SRN trained on a natural corpus 
by S. Frank, personal communication).

The other sentence-level model focuses specifically on reversal 
anomalies, assuming separate stages of lexical retrieval and seman-
tic integration36. Change in lexical activation (which is small in 
reversal anomalies due to priming) is linked to the N400; change 
in activation representing sentence meaning is assigned to the 
P600 component.
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blue dot represents the results for one independent run of the model, 
averaged across items per condition; red dots represent means for each 
condition, and red error bars represent ± SEM (see Supplementary Fig. 10 
for item-based analyses). a, Reversal anomaly: t1(9) =  4.55, P =  0.0042, 
d =  1.44, 95% CI (0.013, 0.038) for the comparison between congruent 
and reversal anomaly; t1(9) =  12.28, P <  0.001, d =  3.87, 95% CI (0.013, 
0.019) for the comparison between congruent and incongruent; t1(9) =  1.52, 
P =  0.49, d =  0.48, 95% CI (− 0.005, 0.024) for the comparison between 
incongruent and reversal anomaly. b, Word order: t1(9) =  29.78, P <  0.001, 
d =  9.42, 95% CI (0.064, 0.075). c, Congruity effect on surprisal as a 
function of the number of sentences to which the model has been exposed: 
t1(9) =  0.26, P =  1.0, d =  0.082, 95% CI (− 0.015, 0.019) for the comparison 
between 10,000 and 100,000 sentences; t1(9) =  6.74, P <  0.001, d =  2.13, 
95% CI (0.0009, 0.0019) for the comparison between 100,000 and 
200,000 sentences; t1(9) =  7.45, P <  0.001, d =  2.36, 95% CI (0.0014, 
0.0026) for the comparison between 200,000 and 400,000 sentences; 
t1(9) =  10.73, P <  0.001, d =  3.39, 95% CI (0.0039, 0.0060) for the 
comparison between 400,000 and 800,000 sentences.
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As discussed above, our model captures the small N400 effect in 
reversal anomalies because it takes both syntactic and semantic cues 
into account, and can favour event statistics or remain uncertain 
when there is a conflict between different constraints. While both 
the retrieval–integration model and the SG model account for the 
small N400 in reversal anomalies, the SG model does so within the 
context of a more complete account of the factors that do and do 
not influence the N400. Further research is required to determine 
whether the retrieval–integration model can capture the range of 
N400 findings encompassed by the SG model.

The functional basis of the P600 is not addressed by our model 
and requires further investigation. P600 responses have been 
observed with a wide range of linguistic irregularities, including 
reversal anomalies34,37,66, syntactic violations38, garden path sen-
tences67 and pragmatic processes68. Some have taken these find-
ings to suggest that the P600 might reflect combinatorial aspects 
of language processing, either related to syntax38 or to semantic 
integration36. An alternative more in line with our account of the 
N400 links the P600 not to language processing per se, but to more 
conscious, deliberate and effortful aspects of processing in general. 
Indeed, the P600 shares properties with the oddball-sensitive P369,70, 
which has been linked to explicit surprise and working memory 
updating71. This P600-as-P3 perspective naturally explains the sen-
sitivity of P600 effects to task demands and attention; the effect is 
strongly reduced or absent when there is no task or when the task is 
unrelated to the linguistic violation72. In contrast, N400 effects can 
be obtained during passive reading and even during unconscious 
processing, such as within the attentional blink73. Thus, from this 
view, the P600 differs from the N400 in two ways. It belongs to a 
component family responding to a wider range of expectation viola-
tions while the N400 is specific to meaning processing. Further, the 
N400 may reflect an automatic and implicit process that can result 
in underspecified and plausibility based representations55,56 (see 
Supplementary Note 3). In contrast, the P600 may be associated 
with more controlled and attention-related processes, which may 
be affected by factors beyond those influencing N400s, and may 
contribute to resolving situations of cue conflict. Further research is 
required to better understand these issues.

Our work opens up extensive opportunities for further inves-
tigation. One key result that needs to be addressed is that N400s 
were observed to be unaffected by sentence truth, at least in negated 
statements: N400s are equally small in the false and true sentences 
‘A robin is not/is a bird’ and equally large in the true and false sen-
tences ‘A robin is not/is a vehicle’74. Sentence truth is not the same 
as expected sentence meaning, and to understand the influence of 
negation on meaning expectations, the pragmatics of negation need 
to be taken into account (Supplementary Note 4). Studies that did 
this showed that N400s are indeed modulated by sentence truth75 
and plausibility76. Our model currently has no experience with nega-
tion and its pragmatics, but this could be incorporated in an exten-
sion. Another finding that should be addressed is that discourse 
meaning can influence the N400 over and above the local sentence 
context77,78. Yet another aspect to investigate is the parametric varia-
tion of corpus statistical factors contributing to the effects obtained 
in reversal anomalies, as the details of the model’s interpretation in 
situations of cue conflict strongly depend on the statistics of its envi-
ronment (see Supplementary Methods 2).

Finally, it remains to be explored how well the SG model can 
address behavioural measures of sentence processing. The beauty 
of ERPs is that different components index distinct aspects of pro-
cessing and can thus speak to the neurocognitive reality of these 
aspects even though several processes might jointly influence 
behavioural measures. To fully address behaviour, the model will 
probably need to be integrated into a more complete account of the 
neuro-mechanistic processes taking place during language process-
ing, including the more controlled and attention-related processes 

that may underlie the P600. In addition, the model’s query language 
and training corpus will need to be extended to address this issue 
and the full range of relevant neurocognitive phenomena, including 
other ERP components and signals that have been detected using 
other measurement modalities60,79.

While extending the model will be worthwhile, it neverthe-
less makes a useful contribution to understanding the brain pro-
cesses underlying language comprehension even in its current 
simple form. The model’s successes in capturing a diverse body of 
empirically observed neural responses suggest that the principles 
of semantic representation and processing it embodies may capture 
essential aspects of human language comprehension.

Methods
Here we provide details on the model’s training environment as well as the 
protocols used for training the model and for the simulations of empirical findings.

Environment. The model environment consists of [sentence, event] pairs 
probabilistically generated online during training according to constraints 
embodied in a simple generative model (Supplementary Fig. 12a). Sentences are 
single-clause sentences such as ‘At breakfast, the man eats eggs in the kitchen’, 
stripped of articles as well as inflectional markers of tense, aspect and number. 
They are presented as a sequence of constituents, each consisting of a content 
word and possibly one closed-class word such as a preposition or passive marker. 
A single input unit is dedicated to each word in the model’s vocabulary. In the 
example above, the constituents are ‘at breakfast’, ‘man’, ‘eats’, ‘eggs’ and ‘in kitchen’, 
and presentation of the first constituent corresponds to activating the input units 
for ‘at’ and ‘breakfast’. The events are characterized as sets of role-filler pairs, in this 
case: agent, man; action, eat; patient, eggs; location, kitchen; situation, breakfast. 
Each thematic role is represented by a single unit at the probe and output layer. 
For the filler concepts, we used feature-based semantic representations such that 
each concept was represented by a number of units (at the probe and output layer), 
each corresponding to a semantic feature. For instance, the concept ‘daisy’ was 
represented by five units. The units have labels that allow the reader to keep track 
of their roles but the model is not affected by the labels themselves, only by the 
similarity relationships induced by them. For example, the semantic features of 
‘daisy’ are labelled ‘can grow’, ‘has roots’, ‘has petals’, ‘yellow’ and ‘daisy’. The feature-
based representations were handcrafted to create graded similarities between 
concepts roughly corresponding to real world similarities as in other models of 
semantic representation80,81.

For instance, all living things shared a semantic feature (‘can grow’), all plants 
shared an additional feature (‘has roots’) and all flowers shared one more feature 
(‘has petals’). The daisy then had two individuating features (‘yellow’ and its name 
‘daisy’), so that the daisy and the rose shared three of their five semantic features, 
the daisy and the pine shared two features, the daisy and the salmon shared only 
one feature, and the daisy and the email did not share any features (Supplementary 
Table 1 lists all concepts and features). Comparison of a similarity matrix of the 
concepts based on our handcrafted semantic representations and representations 
based on a principal component analysis (PCA) performed on semantic word 
vectors derived from co-occurrences in large text corpora82 showed a reasonable 
correspondence (r =  0.73; Supplementary Fig. 12b), suggesting that similarities 
among the handcrafted representations roughly matched real world similarities  
(as far as they can be derived from co-occurrence statistics).

Training protocol. The training procedure approximates a situation in which a 
language learner observes an event and thus has a complete representation of the 
event available, and then hears a sentence about it so that learning can be based 
on a comparison of the current output of the comprehension mechanism and the 
event. This is not a principled theoretical assumption but rather just a practical 
consequence of the training approach. We do not assume that listeners can only 
learn when they simultaneously experience a described event; first, because neural 
networks can generalize12, and, second, because the SG model can also learn 
from listening or reading based on the SU-driven learning rule (see Simulation 
16 and Supplementary Discussion). The training procedure also implements the 
assumption that listeners anticipate the full meaning of each sentence as early as 
possible83,84, so that the model learns to probabilistically pre-activate the semantic 
features of all role fillers involved in the described event based on the statistical 
regularities in its environment.

Each training trial consists in randomly generating a new [sentence, event] 
pair based on the simple generative model depicted in Supplementary Fig. 12a, 
and then going through the following steps (please refer to Fig. 1a for the model 
architecture). At the beginning of a sentence, all units are set to 0. Then, for each 
constituent of the sentence, the input unit or units representing the constituent 
are turned on and activation flows from the input units and—at the same time 
via recurrent connections—from the SG units to the units in the first hidden 
layer (‘hidden 1’), and from these to the units in the SG layer where the previous 
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representation (initially all 0) is replaced by a new activation pattern which reflects 
the influence of the current constituent. The SG activation pattern is then frozen 
while the model is probed concerning the described event in the query part of 
the model. Specifically, for each probe question, a unit (representing a thematic 
role) or units (representing feature-based representations of fillers concepts) at 
the probe layer are activated and feed into the hidden layer (‘hidden 2’), which 
simultaneously receives activation from the SG layer. Activation from the SG and 
the probe layer combine and feed into the output layer where the units representing 
the complete role-filler pair (that is, the unit representing the thematic role and the  
units corresponding to the feature-based representation of the filler concept) 
should be activated. After each presented constituent, the model is probed once for 
the filler of each role and once for the role of each filler involved in the described 
event. For each response, the model’s activation at the output layer is compared 
with the correct output, the gradient of the cross-entropy error measure for each 
connection weight and bias term in the query network is back-propagated through 
this part of the network, and the corresponding weights and biases are adjusted 
accordingly. At the SG layer, the gradient of the cross-entropy error measure for 
each connection weight and bias term in the update network is collected for the 
responses on all the probes for each constituent before being back-propagated 
through this part of the network and adjusting the corresponding weights and 
biases. We used a learning rate of 0.00001 and momentum of 0.9 throughout.

Simulation of empirical findings. Because the SU at any given point is determined 
by the statistical regularities in the training set, we try to provide clarity on how the 
observed effects depend on the training corpus (refer to Supplementary Fig. 12a).

Basic effects. To simulate semantic incongruity (simulation 1), cloze probability 
(simulation 2) and categorically related semantic incongruity (simulation 4), for 
each condition one agent (‘man’) was presented once with each of the ten specific 
actions (excluding ‘like’ and ‘look at’). The agent was not varied because the 
conditional probabilities depend very little on the agents (the only effect is that 
the manipulation of cloze probability is stronger for ‘man’ and ‘woman’ (0.7 versus 
0.3) than for ‘girl’ and ‘boy’ (0.6 versus 0.4); Supplementary Fig. 12a). To simulate 
semantic incongruity, objects/patients were the high-probability objects in the 
congruent condition (for example, ‘The man plays chess’) and unrelated objects in 
the incongruent condition (‘The man plays salmon’). To simulate cloze probability, 
objects were the high-probability objects in the high-cloze condition (‘The man 
plays chess’) and the low-probability objects in the low-cloze condition (‘The 
man plays monopoly’). To simulate categorically related semantic incongruities, 
the congruent and incongruent conditions from the incongruity simulation were 
kept and there was an additional condition with objects from the same semantic 
category as the high and low cloze probability objects related to the action (which 
therefore shared semantic features at the output layer, for example ‘The man plays 
backgammon’), but which were never presented as patients of that specific action 
during training (so that their conditional probability to complete the presented 
sentence was 0). Instead, these objects only occurred as patients of the unspecific 
‘like’ and ‘look at’ actions (Supplementary Fig. 12a). For all these simulations, there 
were 10 items per condition; the SU was computed as the difference in SG layer 
activation between presentation of the action (word n −  1) and the object (word n).

To simulate influences of a word’s position in the sentence (simulation 3), 
we presented the longest possible sentences, that is, all sentences that occurred 
during training with a situation and a location. There were 12 items per condition; 
the SU was computed over the course of the sentences, that is, the SG difference 
between first and second word constitutes the SU at the second word, the SG 
difference between second and third word constitutes the SU at the third word, 
the SG difference between third and fourth word constitutes the SU at the fourth 
word, and the SG difference between fourth and fifth word constitutes the SU at 
the fifth word. See Supplementary Note 5 for the conditional probabilities of the 
constituents over the course of the sentence.

To simulate lexical frequency (simulation 5), the high-frequency condition 
comprised the high-probability objects from the 10 semantic categories, the two 
high-probability agents (‘woman’ and ‘man’) and two high-probability locations 
(‘kitchen’ and ‘living room’). The low-frequency condition contained 10 low-
probability objects, the two low-probability agents (‘girl’ and ‘boy’) and two low-
probability locations (‘balcony’ and ‘veranda’). High- and low-frequency locations 
were matched pairwise concerning the number and diversity of objects they 
are related to (‘kitchen’ with ‘balcony’ and ‘living room’ with ‘veranda’). Before 
presenting the high- versus low-frequency words, we presented a blank stimulus 
(an input pattern consisting of all 0) to evoke the model’s default activation, 
reflecting the encoding of base-rate probabilities in the model’s connection 
weights. There were 14 items per condition; SU was computed as the SG difference 
between blank stimulus (word n −  1) and high- or low-frequency word (word n).

To simulate semantic priming (simulation 6), for the related condition, the 
low- and high-probability objects of each of the 10 semantic object categories were 
presented subsequently as a prime-target pair (such as ‘monopoly chess’). For the 
unrelated condition, primes and targets from the related pairs were re-assigned 
such that there was no semantic relationship between prime and target (‘sunfish 
chess’). To simulate associative priming (simulation 7), the related condition 
consisted of the 10 specific actions as primes followed by their high-probability 

patients as targets (‘play chess’). For the unrelated condition, primes and targets 
were re-assigned such there was no relationship (‘play eggs’). To simulate repetition 
priming (simulation 8), the high-probability object of each semantic category was 
presented twice (‘chess chess’). For the unrelated condition, a high-probability 
object from another semantic category was presented as prime. For all priming 
simulations, there were 10 items per condition; SU was computed as the SG 
difference between prime (word n −  1) and target (word n).

Specificity of the N400 effect. For the first simulation of reversal anomalies 
(simulation 9), each of the eight situations was presented, followed by the high-
probability object related to that situation and the action typically performed 
in that situation (for example, ‘At breakfast, the eggs eat… ’). For the congruent 
condition, the situations were presented with a possible agent and the action 
typically performed in that situation (‘At breakfast, the man eats… ’), and for the 
incongruent condition, with a possible agent and an unrelated action (‘At breakfast, 
the man plants… ’). There were eight items per condition; the SU was computed 
as the SG difference between the second constituent, which could be an object or 
agent (‘eggs’ or ‘man’; word n −  1) and the action (word n). Supplementary Note 6 
describes relevant aspects of the environment.

We also simulated another type of reversal anomaly where a relationship 
between two nouns is established before encountering the verb66 (simulation 10; for 
example ‘De speer heft de atleten geworpen’, literally ‘The javelin has the athletes 
thrown’; Supplementary Methods 1 and Supplementary Fig. 4).

Finally, we simulated reversal anomalies where both noun phrases could 
be agents in events (simulation 11) such as in ‘De vos die op de stroper joeg’ 
(literally ‘The fox that on the poacher hunted’)37 or ‘De zieken die in de chirurg 
sneden’ (literally ‘The patient that into the surgeon cut’). Both participants in 
such sentences can be agents, even in events involving the relevant action, and in 
events involving both of them and different actions. For details on the training for 
this simulation see Supplementary Methods 2 and Supplementary Fig. 5. For the 
congruent condition we presented a sentence describing the most typical event, 
for example ‘The poacher on the fox hunted’; for the incongruent condition, we 
presented an unrelated action, for example ‘The poacher on the fox planted’; and 
for the reversal anomaly, we presented the most typical action with agent and 
patient reversed, for example ‘The fox on the poacher hunted’. There were eight 
items per condition; the SU was computed as the SG difference between the third 
word (typical agent or typical patient, for example ‘poacher’ or ‘fox’; word n −  1) 
and the action (word n). The model exhibited uncertainty in its interpretation of 
these reversal anomalies (Supplementary Note 2 and Supplementary Fig. 6).

To simulate influences of violations of word order38 (simulation 12), we 
presented two types of word order changes for each sentence, focusing on 
sentences starting with a situation, because this allows to keep changes in 
conditional probabilities of semantic features relatively low when changing word 
order. For each sentence, we presented (1) a version where we changed the position 
of action and patient (such as ‘On Sunday, the man the robin feeds’ versus ’On 
Sunday, the man feeds the robin”; with the SU computed as the SG difference 
between the agent (word n −  1) and the patient or action, respectively (word n)), 
and (2) a version where we changed the position of agent and action (such as ‘On 
Sunday, feeds the man the robin’ versus ‘On Sunday, the man feeds the robin’; with 
the SU computed as the SG difference between the situation (word n −  1) and 
the action or agent, respectively (word n)). Supplementary Note 7 describes the 
conditional probabilities of semantic features associated with the presented words 
in both versions. There were 16 items (8 of each type) per condition (normal versus 
changed word order).

To simulate influences of constraint on unexpected endings (simulation 13), 
we presented semantically incongruent sentences in the high constraint condition 
(for example, ‘The man eats the email’) and sentences containing an action that 
was presented with all 36 objects equally often in the low constraint condition (for 
example, ‘The man likes the email’). This captures the crucial point that, in both 
conditions, the presented object is unexpected; in the high constraint condition, 
another object is highly expected and in the low constraint condition, no specific 
object is expected. While this slightly differs from the empirical experiment39, 
where both continuations were low cloze but plausible, it is the best way to 
approximate the experimental situation within our environment. There were  
10 items per condition; SU was computed as SG difference between the action 
(word n −  1) and the object (word n).

Development and learning. To simulate the developmental trajectory of N400 
effects (simulation 14) we examined the effect of semantic incongruity on SU 
(as described above) at different points in training, specifically after exposure to 
10,000 sentences, 100,000 sentences, 200,000 sentences, 400,000 sentences, and 
800,000 sentences. To examine the relation between update at the SG layer and 
update at the output layer, at each point in training we computed the update of 
activation at the output layer (summed over all role-filler pairs) analogously to the 
SG activation.

To simulate semantic priming effects on N400s during near-chance lexical 
decisions (simulation 15), we examined the model when it had been presented 
with just 10,000 sentences, and failed to understand words and sentences, that 
is, to activate the corresponding units at the output layer (Fig. 5a). At this stage 

NatuRe HuMaN BeHaviouR | VOL 2 | SEPTEMBER 2018 | 693–705 | www.nature.com/nathumbehav 703

http://www.nature.com/nathumbehav


Articles NaTure HumaN BeHaviour

in training, we simulated semantic priming, associative priming and semantic 
incongruity in sentences, as described above.

To simulate the interaction between incongruity and repetition (simulation 16),  
all sentences from the simulation of semantic incongruity (above) were presented 
twice, in two successive blocks (running through the first presentation of all 
sentences before running through the second presentation) with connection 
weights being adapted during the first round of presentations (learning rate =  0.01). 
Sentences were presented in a different random order for each model, with the 
restrictions that the presentation order was the same in the first and second block, 
and that the incongruent and congruent version of each sentence directly followed 
each other. The order of conditions (whether the incongruent or congruent version 
of each sentence was presented first) was counterbalanced across models and 
items—for half of the models, the incongruent version was presented first for one 
half of the items; for the other half of the models, the incongruent version was 
presented first for the other half of the items.

It is often assumed that learning is based on prediction error45–47. Because the 
SG activation at any given time represents the model’s implicit prediction of the 
semantic features of all aspects of the described event, the change in activation 
induced by the next word corresponds to the prediction error contained in the 
previous representation (at least as far as revealed by that next word). Thus, in 
accordance with the view that prediction errors drive learning, we used a temporal 
difference learning approach, assuming that in the absence of observed events, 
learning is driven by this prediction error concerning the next internal state. Thus, 
the SG activation at the next word serves as the target for the SG activation at the 
current word, so that the error signal becomes the difference in activation between 
both words: SGn – SGn-1 (see Supplementary Discussion). There were 10 items per 
condition; the SU was computed during the first and second presentation of each 
sentence as the SG difference between the presentation of action (word n −  1) and 
object (word n).

Simple recurrent network model. Details on the SRN simulations are described in 
Supplementary Methods 3.

Statistics. Details on the statistics are reported in Supplementary Methods 4.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary.

Code availability. The computer code used to run the simulations and analyse the 
results is available on GitHub (https://github.com/milenarabovsky/SG_model).

Data availability. The datasets generated and analysed during the current study are 
available on GitHub (https://github.com/milenarabovsky/SG_model).
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