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Conjunctive Search for One and Two Identical Targets

Robert Ward and James L. McClelland
Carnegie Mellon University

The assumptions of feature integration theory as a blind, serial, self-terminating search (SSTS)
mechanism are extended to displays containing 2 identical targets.The SSTS predicts no differ-
ences in negative-response displays, which require an exhaustive search of the display. Quanti-
tative predictions are confirmed for the positive responses, but not for the negatives, suggesting
that the SSTS model is incorrect. Two possible explanations for the results in the negative
conditions, differential search rates and early quitting in the negatives, are rejected. It is suggested
that using any self-terminating search mechanism will lead to difficulty in interpreting the results,
including accounts for which the search is parallel over small groups of items. A resource-limited
parallel model, which is based on the diffusion model of Ratcliff (1978), appears to fit the data
well.

The feature integration theory has been successful in pre-
dicting and explaining the results of numerous experiments
(for example, see Treisman & Gelade, 1980). A central tenet
of the feature integration theory is that attention must be
focused on a single location in order to conjoin the separable
feature dimensions present at that location. The empirical
distinction between conjunctive and feature search is generally
assumed to show that although information concerning the
presence of visual features is available preattentively, the
relations among features can only be recovered with focal
attention (Treisman & Gelade). The conclusion that search
for a conjunctive target is a serial, self-terminating search
(SSTS) process is based on the approximation to 2:1 slope
ratios found between the negative and positive conditions of
a typical conjunctive search experiment. A blind, serial search
of the display implies that there is no information available
to distinguish conjunctive targets from their distractors with-
out sequentially focusing attention on single items.

However, in some respects, the claim that search for a
conjunctive target is serial and self-terminating has been tested
only within a limited methodology. Typically, subjects in a
conjunctive search task are asked to search for a single target
(e.g., Treisman & Gelade, 1980; Treisman, Sykes, & Gelade,
1977; Egeth, Virzi, & Garbart, 1984). Thus, whether search
for conjunctive targets could occur in parallel is difficult to
determine. In this article, we develop and test predictions
based upon feature integration theory for searches involving
one and two identical targets. Our predictions explicitly test
the assumption that search for a conjunctive target is a blind,
self-terminating search. In developing our predictions, we will
first map the blind search mechanism of feature integration
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onto a simple urn model. Then we will use this model to
generate predictions for searches involving one and two re-
dundant targets.

A blind search, such as conjunctive search as understood
in the feature integration theory, can be conceptualized as a
classical urn problem. Imagine that we fill an urn with a
number of balls, N. There are d black balls in the urn,
equivalent to the number of distractors in the display. There
are TV— d, or t, white balls in the urn, representing the number
of targets in the display. Drawing randomly from the urn is
equivalent to choosing a location to attend to in the conjunc-
tive search display. The task is to sample randomly from the
urn without replacement until it is determined whether the
urn contains at least a requisite number, g, of target balls.
The variable g is then the minimum number of targets the
subject must find to distinguish between the positive and
negative displays. It can be seen that the standard visual search
task, in which there is a single target in the positive conditions
and no targets in the negative conditions, corresponds to an
urn model in which g = 1 and t = 1 in the positive conditions
and t = 0 in the negative conditions. We will use the term
display composition to refer to the values of t and g for a
given search task. A particular display composition will be
notated by giving the number of targets in the positive and
negative conditions. For example, a display composition with
2 targets in the positive conditions and 0 targets in the negative
conditions would be notated as 2/0. Note that in order to
force subjects to attempt to locate g targets, g must always be
1 greater than the number of targets in the negative conditions;
the 2/0 notation thereby fully satisfies the requirements of a
display composition. The experiments reported here use three
display compositions: 1/0, which is a replication of the stand-
ard conjunctive search task; 2/0, in which subjects must find
1 of the 2 targets present in the positive conditions; and 2/1,
in which subjects must find both of the targets in the positive
conditions.

Having mapped the visual search task onto an urn model,
we can now develop predictions for an SSTS model in the
various display compositions. This is simple for the negative
conditions, in which the number of targets is less than the
number of goals, that is, t < g. In order to completely ensure
that an urn does not contain g targets, the subject must make
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Figure 1. Expected number of searches for a serial, self-terminating
search model for all display compositions as a function of t, g, and
N.

an exhaustive search so that the number of balls left un-
searched is less than g.

In the positive conditions, where t > g, the situation is more
complex. We want to know, on the average, how many draws
will be necessary to select g target balls. The number of
expected searches can be calculated using the negative hyper-
geometric distribution. The expected number of searches
required to find g targets by sampling without replacement
from a group of TV total elements and t targets is simply (g *
N+ 1) / (t + 1) (e.g., Johnson & Kotz, 1977). Figure 1 plots
the expected number of searches for the three display com-
positions for different values of N. It can be seen that for
given values of t and g, the expected number of searches
increases linearly with the total number of display elements,
N. The slopes of the lines representing the predicted increase
in searches with display elements vary in the positives but are
the same in the negatives for all display compositions. The
predicted ratio of negative to positive slopes is 2:1, 3:1, and
3:2 for the 1/0, 2/0, and 2/1 display compositions, respec-
tively. We evaluate the SSTS model with respect to these
predictions.

Method

Subjects. All 25 subjects were Carnegie Mellon undergraduates
participating for class credit.

Design. Subjects were asked to determine if a specific number of
targets, either one or two, were present in the display. A four-factor
design was used. The first factor was whether the display contained
the requisite number of targets—positive displays had the required
number, negative did not. The second factor was level of display size,
which refers to the total number of elements in the display including
targets: 5, 10, 20, or 30 elements. These two factors were always
varied within subjects. The third factor was display composition,
which was varied between subjects. There were three levels of this
factor, and within each level the number of targets present in both
the positive and negative conditions was varied. In the notation
described earlier, the three levels of display composition were 1/0, 2/
0, and 2/1. The fourth factor was subject group. Subjects participated
in two of the three display compositions. The first group of 13 subjects
participated in the 1/0 and 2/1 display compositions; the second
group of 12 subjects participated in the 1/0 and 2/0 display compo-
sitions.

Stimuli. Stimulus materials were presented on an IBM PC. In all
cases, the target letter was a magenta N. Distractors were green Ns
and magenta Os. The numbers of green N and magenta O distractors
within a display were made as nearly equal as possible. In these
displays, neither form nor color is sufficient in itself to identify the
target, making this a conjunctive search task (Treisman & Gelade,
1980). Target elements, if any, were placed randomly on the display,
and distractors were added so that the numbers of display elements
in each quadrant of the screen were as nearly equal as possible. Each
letter subtended about 0.8 x 0.8°, and the displays were presented in
an area subtending about 12 x 12°.

Procedure. Trials were organized into 16 blocks of 64 trials each.
The level of display composition alternated every 4 blocks. Each
subject therefore ran 512 trials in each of two display composition
conditions. The order of alternation was counterbalanced between
subjects. Within a block, the subject received 8 trials of each display
size in both the positive and negative condition. Subjects were in-
structed to determine as quickly as possible if the display contained
the required number of targets. It was made clear to the subjects how
many targets they would need to find in order to make a positive
response (i.e., 1 target in the 1/0 and 2/0 sets and 2 targets in the 2/
1 set). The presentation of a trial was as follows: A fixation cross
appeared in the center of the screen for 1 s. The fixation cross was
followed by the stimulus display. The display remained on the screen
until the subject responded. Subjects responded by pressing a key on
the keyboard, using their dominant hand to make a positive response.
Subjects were informed if their response was in error. If the subject's
error rate rose to more than 10%, the subject was instructed to slow
down and proceed more carefully. Following subject errors, a random
trial was presented for which the results were not recorded. After the
subject had made a response, the fixation cross would appear again,
and the cycle of trials would be repeated for the rest of the block. The
entire task took about 45 min.

Results

The mean reaction times (RT) for correct trials are shown
for each condition in Figure 2a. Reaction times that were
more than 3 standard deviations from the condition mean
were not included in the analysis. Data from all blocks are
included in the analyses here, as the relative slopes of the
different conditions did not appear to change significantly
with practice. The factors used in the ANOVA to make this
determination were subject group, number of targets in the
positive displays, display size, positive or negative display,
and block number. The five-way interaction was not signifi-
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Figure 2. a. Mean reaction times as a function of display size. b. Variances as a function of display
size.

cant, F(21, 483) = 0.617, indicating that the relative slopes
for combinations of the display composition and positive/
negative factors did not change significantly with block num-
ber. Means for the 1/0 display composition include scores
from both subject groups. There was no significant difference
in reaction time between the two groups, F(\, 23) = 0.016,
and subject group did not interact with any other factor in
the experiment.

Results from the ANOVA on the RT data in Figure 2 only
confirm what seems apparent from the figure. The 2/0 con-
ditions were the fastest, followed by the 1/0 and then the 2/1
conditions. The significance of these differences are indicated
by the interaction of group and target number, F(l, 23) =
53.1, p < .001. There were significant main effects of display
size, F(3, 69) = 160.5, p < .001, and positive versus negative
displays, F( 1,23) = 99.0, p < .001. There was also a significant
interaction of display size and positive versus negative dis-
plays, F(3,69) = 75.0, p< .001, so that the difference between
positive and negative displays became greater with increasing
display size. The four-way interaction of all of these factors
was significant, F(3, 69) = 13.5, p < .001, so that there was
less interaction of the positive versus negative and display size
factors in the display compositions producing the lower RTs.

In all conditions, search time increased roughly linearly
with display size. Table 1 summarizes the linear regression
data, and shows that the least squares fit to the average RTs
accounts for over 99% of the variance in all conditions. Table
1 also shows the error rates for the positive and negative
conditions. The overall error rate was less than 4%. False-
positive rates were low and showed no systematic variance
with increasing display size. However, in all display compo-
sitions, the false-negative rate increased with display size, as
is typical in studies of this type (Egeth, et al., 1984; Pashler,
1987; Treisman & Gormican, 1988).

The 1/0 display composition in this experiment is intended
as a replication of the standard conjunctive search task de-
scribed in Experiment 1 of Treisman and Gelade (1980). As
found by Treisman and Gelade, linear fits to the data in the
1/0 condition account for over 99% of the variance. In
addition, the ratio of negative to positive slopes in the 1/0 set
is 2.25:1, which is roughly in line with a similar ratio of 2.34:1
found by Treisman and Gelade.

The variances illustrated in Figure 2b are not consistent
with those found by Treisman and Gelade (1980); they report
that the positive variances increase faster than the negative
variances with display size. Not only in the 1/0 display
composition but also in all three display compositions, the
negative variances grow at a greater rate than the positive
variances. The rank ordering of RTs across conditions corre-
lates almost perfectly with the rank ordering of variances. It
is not likely that the discrepancy is due to the blocking of
display compositions in this study. The greater increase in the
negative variances over the positive variances is observed in
all blocks, including the first four blocks, through which
subjects have seen only one type of display composition.

Finally we examine the fit of the SSTS model to our RT
data. Table 2 compares the observed RT slopes with those
predicted by the SSTS model. The significance of the differ-
ences indicated by this comparison was assessed by first
equating the different conditions for the number of searches
predicted by the SSTS model. Figure 3 plots the mean RT for
each condition against the expected number of searches pre-
dicted by the SSTS model. If we assume that the time to
execute a single search is constant across display composi-
tions, then the SSTS model predicts data from all conditions
will fall along a single line, the slope of which would represent
the time required per search. Figure 3 shows that these esti-
mated search times coincide quite closely for the 1 /O negatives
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Table 1
Summary of Regression Analysis: Mean Reaction Times and
Percentages of Errors by Condition

Positive
conditions

Display size
Mean RT

(ms)

Negative
conditions

% Mean RT
error (ms)

%
error

1/0 display composition
5

10
20
30

Intercept (ms)
Slope (ms/item)
R2

583
655
760
873

532
11.4
.998

2.0
3.7
6.7

12.6

631
740

1,004
1,265

494
25.6
.999

2.3
1.5
1.6
1.4

2/0 display composition
5

10
20
30

Intercept (ms)
Slope (ms/item)
R2

541
603
674
756

508
8.33
.992

1.9
3.0
4.2
8.1

593
658
801
925

526
13.42
.999

3.5
1.8
1.8
3.3

2/1 display composition
5

10
20
30

Intercept (ms)
Slope (ms/item)
R2

661
716
901

1,073
564
16.9
.996

2.4
3.0
6.1

12.0

662
884

1,257
1,578

503
36.4
.996

3.0
3.6
3.0
3.4

Note. RT = reaction time; R2 = coefficient of determination.

and all the positive conditions. However, it is apparent from
Figure 3 that the 2/0 and 2/1 negatives differ from the
predictions of the SSTS model. In pairwise comparison of the
slopes shown in Figure 3, the slopes for 2/0 negative and 2/1
negative conditions were significantly different from all other
conditions, p < .05, with one exception (2/1 negative and
2/1 positive, p < .06). Linear regression provides one means
of assessing the fit of the SSTS model. A regression of RTs
on the number of searches predicted by the SSTS model
produces a coefficient of determination (r2) of .79. If the 2/0
and 2/1 negative conditions are excluded from the regression,
the r2 is .985.

Discussion

The SSTS model has two major failings in accounting for
our data: (a) It does not explain the variances we observe, and
(b) the RTs in the 2/1 and 2/0 negative conditions are not as
predicted. We will examine both of these problems in detail
and then propose a model that seems consistent with our
results.

The SSTS model fails to predict both the relative variances
between the positive and negative conditions and the rate of
increase in variance in the negative conditions. In the SSTS
model, search is terminated upon finding the target in the

positive conditions, and search proceeds exhaustively through
all display elements in the negative conditions (or through all
but one element in the 2/0 displays). Thus the variability in
the number of searches performed would be greatest in the
positive conditions. This does not seem consistent with our
finding that variance in the negative conditions is greater and
increases faster than variance in the positive conditions. A
second potential source of variance in RTs in the SSTS model
is the variance in the time required to search a single display
element. Because the SSTS model predicts more searches in
the negative conditions than in the positive conditions, it is
theoretically possible for variance in the negative conditions
to exceed variance in the positive conditions when single-item
search times are highly variable. The SSTS model could
therefore be consistent with a wide range of variance results.
However, variance in single-item search times can most likely
be ruled out as an account of the present variance data. A
linear regression comparing the standard deviation of RTs
observed in the 1/0 positives with the standard deviation in
the number of searches expected by the SSTS model in the
1/0 positives resulted in an r2 of .992. Thus, according to the
SSTS model, the expected variance in the number of searches
would account for virtually all of the variance in RTs observed
in the 1/0 positive condition. If variance in single-item search
times is so small a factor in the 1/0 positive condition, then
it is difficult to see how this source of variance could produce
such large effects in the 1/0 negatives. It therefore seems
unlikely that the greater variance observed in the negative
conditions over the positive conditions is the result of variance
in single-item search times. Interestingly, however, the time
to conduct a single search as estimated by the slope of the
above regression equation was 25.5 ms per search, a figure in
good agreement with the time per search as estimated by the
slope of RTs in the 1/0 negative condition (25.6 ms per
search) shown in Table 1.

The increase of variances in our data appears to violate
another prediction of the SSTS model. The increase in vari-
ance in both positive and negative conditions appears to be
faster than linear with display size. Schneider and Shiffrin
(1977) have shown that if the negative displays are being
searched serially and exhaustively, then variance should in-
crease only linearly with display size. Theoretically, RTs in
the negative conditions reflect the summation of a number of
comparison processes, one comparison for each display ele-
ment. The variance in the sum of comparison processes
should then be equal to the sum of the variances for each
comparison process. Variance should therefore increase lin-
early with the number of comparison processes in the nega-
tives. The fact that they do not suggests that, under an SSTS

Table 2
Comparison of Predicted and Observed Slopes in
Milliseconds per Item

Display
composition

1/0
2/0
2/1

Positive conditions

Predicted

1.5
1
2

Observed
1.37
1
2.02

Negative conditions

Predicted

3
3
3

Observed

3.07
1.61
4.37
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Figure 3. Mean reaction time as a function of expected number of
searches computed by the serial, self-terminating search model.

model, there would be sources of variance in the negatives
other than variance in the comparison process.

As noted earlier, the variances we report here do not agree
with previous reports by Treisman and Gelade (1980). In their
conjunctive search task, positive variances increased faster
than negative variances. The significance of this failure to
replicate the form of variances found by Treisman and Gelade
is not clear. The normative form of variance to be expected
in conjunctive search is not established at this time because,
unfortunately, variance in RTs has generally not been re-
ported in conjunctive search tasks. In unpublished results, A.
Treisman (personal communication, August 9, 1988) reports
cases of conjunctive search tasks where variance increases
faster in the negatives than in the positives. Presently, it seems
that the characteristics of positive and negative variance in
conjunctive search require further examination.

The second major problem with the SSTS model is that it
fails to predict our mean RT results in the 2/1 and 2/0
negatives. Although the SSTS model can explain effects of
display composition on RT in the positive conditions, it is
basically insensitive to display composition in the negative
conditions, predicting exhaustive search in all display com-
positions. In contrast, it appears that subjects are sensitive to
display composition in both positive and negative conditions
and adjust their search accordingly. The problem in reconcil-
ing the SSTS model to the data is in making the SSTS model

similarly sensitive to display composition in the negative
conditions without disrupting sensitivity in the positive con-
ditions.

Some minor variants of the SSTS model can be quickly
discounted. The rate of search within each different display
composition could be adjusted to fit the negative conditions;
but from Figure 3, it seems that the time to execute a single
search is constant for all three display compositions in the
positive conditions. Proposed differences in processing speed
between display compositions must explain why this differ-
ence in speed would be apparent only in the negative condi-
tions. Another variant of the SSTS model assumes that sub-
jects are not searching every location in the display but are
quitting early after searching some large portion. Search will
therefore be terminated before finding the target in a small
number of positive displays, providing a reasonable amount
of the false negatives. Because subjects would presumably find
the target before reaching the cutoff in most of the positive
displays, early quitting would reduce search times in the
negative more than in the positive conditions, thereby low-
ering the ratio of negative-to-positive slopes. Early quitting
might therefore explain why ratios of negative to positive
slopes would be lower than predicted, as in the 2/0 composi-
tion, but would not explain why these ratios would be greater
than predicted, as in the 2/1 composition.

Cluster models. Recently, Pashler (1987) and Treisman
and Gormican (1988) have both suggested models in which
search for a conjunctive target can occur in parallel within
small clusters of display elements and continue in a process
that is serial and self-terminating between clusters. The pre-
dictions generated for the relative slopes in the standard SSTS
model may be largely applicable to these models. However,
there are complications in considering how RTs in the cluster
model might be affected by display composition. Since the
cluster model predicts exhaustive search over clusters in the
negatives, it faces one of the central difficulties of the SSTS
model: unless it is assumed that some variable of the cluster
model varies with display composition, such as cluster size or
the search time within a cluster, the cluster model will be
unable to account for the differences between display com-
position in the negative conditions. Unfortunately, including
these types of variables considerably complicates analysis of
the cluster model, making predictions about performance
between display compositions difficult. Nevertheless, we can
still make some useful characterizations about the cluster
model by examining the predictions of the model on the ratios
of negative-to-positive slopes within the three display com-
positions. As noted by Pashler (1987), the cluster model
predicts differences in positive and negative slopes only when
cluster size is less than the number of elements in the display.
Accordingly, we will limit our discussion to cases in which
cluster size is smaller than total display size.

The 1/0 composition is simplest. When only one or zero
targets appear in a cluster, the cluster model can be mapped
directly to the SSTS model already developed. Rather than
operating over single elements representing targets and dis-
tractors, the SSTS process operates over larger units that can
be determined to represent the presence or absence of a target.
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The cluster model should therefore predict a negative-to-
positive slope ratio of 2:1 in the 1/0 compositions, just as in
the standard SSTS model.

In the 2/0 positive conditions, it is possible that a cluster
will contain both targets. This situation is analogous to the
1/0 composition, because in this case there is only a single
cluster in the display that can terminate the search process.
The likelihood of both targets appearing in the same cluster
decreases as we decrease the proportion of the total display
contained within each cluster. Thus, in the 2/0 compositions,
we would expect the ratio of negative to positive slopes in the
cluster model to have a conservative lower bound of 2:1 and
we would expect this ratio to increase toward the standard
SSTS prediction of 3:1, as the probability of both targets
appearing in a single cluster decreases. This would be the case
if we held the cluster size constant as we increased the total
number of elements in the display.

The predictions for the 2/1 compositions depend on specific
assumptions about the nature of the parallel within-cluster
search process and in particular on whether it is assumed that
the parallel search can distinguish between one and two targets
in a cluster. Unless the ability to make this distinction is
assumed, the nature of the task in the 2/1 compositions
requires that cluster size be small to reduce the possibility of
two targets within a cluster. With only one target per cluster,
the cluster model will produce the same predictions for neg-
ative to positive slope ratios as the standard SSTS model. If
the parallel search process is presumed to be capable of
detecting the presence of two targets within a cluster, the
situation changes. As mentioned earlier, when there is only
one cluster in the display that can terminate search, the
situation is analogous to the 1/0 composition. We would then
expect a negative to positive slope ratio with an upper bound
of 2:1 and would expect this ratio to approach the SSTS
prediction of 3:2, with increasing numbers of clusters in the
display.

In summary, although the cluster model does improve
somewhat upon the predictions of the standard SSTS model
in predicting our data, it still seems to share many of the
difficulties of the SSTS model in predicting the RT data we
observe. First, unless it is assumed that the parallel search
process is capable of counting the number of targets in a
cluster, the cluster model will not differ at all from the SSTS
model in the 2/1 compositions. Second, as the number of
clusters per display increases, the predictions of the cluster
model tend to look like the standard SSTS model. Only when
cluster sizes are so large that both targets are likely to occur
in the same cluster do the 2/0 and 2/1 compositions approach
the 2:1 ratios of negative to positive slopes that approximate
our findings. However, if both targets tend to always appear
in the same cluster, the 2/0 and 2/1 compositions will look
identical to the cluster model in the positive conditions. In
both compositions, there would be a single cluster in the
positive conditions, containing both targets, that would ter-
minate the search when found. In this case, the cluster model
would not predict the relative speed of the 2/0 composition
over the 2/1 composition unless it is further assumed that
search rate within a cluster varies between display composi-

tions. Finally, the cluster model is exhaustive over the negative
conditions, and self-terminating over the positive conditions;
as such, it makes the same qualitative predictions for variance
as the standard SSTS model.

The diffusion model. An alternative model that may be
able to account for both our RT means and variance trends
is based on the Ratcliff (1978) diffusion model. Similar models
have been used to reproduce the 2:1 negative-to-positive slope
ratio characteristic of a serial, self-terminating search (Broad-
bent, 1987). In the diffusion model, one views processing as
an evidence-accumulation process, much like a random walk,
that proceeds simultaneously over all display locations. The
important assumptions of the diffusion model, as we have
adapted it for the present task, are as follows: (a) For each
item in the display, there is a corresponding detector that
accumulates evidence for and against the hypothesis that the
item is a target, so that search occurs in parallel over the
display. One such detector is illustrated in Figure 4. (b) For
all detectors, there is a resting activation level (z), a positive
threshold (a), and a negative threshold (fixed at 0.0). Search
terminates with a positive decision when enough (i.e., g)
detectors have crossed their positive threshold, (c) Search
terminates with a negative decision when all but (g — 1)
detectors have crossed their negative threshold, (d) Although
this was not assumed in the original Ratcliff model, we assume
that search for a conjunctive target is subject to limitations
on attentional resources. This assumption is operationalized
by making the rate at which evidence accumulates for and
against target presence inversely proportional to the square
root of N, the number of elements in the display. In the
diffusion model, each detector is assigned a base evidence-
accumulation rate, with a mean of u for targets and v for
nontargets and with a variance of rf. The rate of evidence
accumulation for a particular detector on a particular trial is
then a normally distributed random variable with a mean of
u/\iN for targets (v/V^V for distractors) and variance of r/2.

The diffusion process

Distribution of finishing times
at the positive threshold (hits)

variance in drift = S

time

Distribution of finishing times
at the negative threshold (misses)

Figure 4. Illustration of the diffusion process for a detector process-
ing a target item. (The base drift rate of the detector, indicated by the
direction of the arrow in bold, emanating at time 0 from point z, is
sampled from a distribution with mean u/VN and variance tj2. At
each time step, the actual direction of movement varies normally
around this base drift rate with variance s2.)
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The mean rate of movement, or drift, toward the thresholds
will be equal to a detector's base rate. At each time step, the
actual direction of drift varies normally around this base drift
rate with a variance ofs2, the sixth and final parameter of the
model.

First let us examine the qualitative performance of the
model when we hold all parameters constant across display
composition. The effects of display composition in the posi-
tive conditions follow in a straightforward manner. In the
2/0 display compositions, search time is determined by the
first of the two detectors in target locations to cross the positive
threshold, and in the 1/0 display compositions, search time
is determined by the time for the single detector in the target
position to cross the positive threshold. On average, the faster
of two random processes will be faster than a single random
process, and we would therefore expect the 2/0 display com-
positions to be faster than the 1/0 display compositions. False
negatives should also be less likely in the 2/0 than in the 1/0
composition, because there are two target detectors that must
cross the negative threshold in the 2/0 composition, as op-
posed to the single target detector in the 1/0 composition.
Similarly, in the 2/1 display compositions, where search time
is determined by the last of the two target detectors to cross
the threshold, the 2/1 display compositions should be slower
than the 1/0 display compositions, because the slower of two
random processes will be slower on average than a single
random process. The false-negative rate will be highest in the
2/1 composition, because false negatives are possible when-
ever either of the two target detectors crosses the negative
threshold.

The effects of display composition in the negative condi-
tions are also straightforward. As in the positive, display
composition determines not only search time, but also error
rates. In both the 2/1 and 1/0 compositions, search time in
the negatives is determined by the time for all distractors to
cross the negative threshold. Because there is one less distrac-
tor in the 2/1 negatives than in the 1/0 negatives, the 2/1
composition is slightly faster than and will produce fewer
errors than the 1/0 composition, when all parameters are
fixed. The 2/0 composition is faster and less errorful than the
other compositions, because in this case, search time is deter-
mined by the time for all but one of the distractors to cross
the negative threshold.

Thus, with all parameters fixed across display compositions,
the model captures most of the qualitative trends in RTs but
fails to capture the differences we observe between the 2/1
and 1/0 negatives and fails to account for the relatively
constant rate of false negatives across display compositions.
Both of these difficulties may be addressed by supposing that
subjects may vary their thresholds in response to task vari-
ables. A reasonable strategy would be to adopt an acceptable
rate of false negatives and adjust the resting activation level
and thresholds in response to display composition to maintain
this false-negative rate. For example, as we increase the dis-
tance between the resting level and the negative threshold, the
rate of false negatives decreases, and latency in the negatives,
as well as the rate of false positives, will increase.

In order to maintain roughly equivalent error rates in a
more difficult task, thresholds in the 2/1 composition must

be more widely separated than in the 1/0 composition. Con-
versely, the separation of positive and negative thresholds
should be smallest in the 2/0 composition. In the simulation
illustrated in Figure 5, thresholds were varied in each display
composition so that the simulation produced error rates ap-
proximating the actual error rates we observed. A comparison
of the error rates given in Table 3, those generated by the
simulation, with the error rates given in Table 1 shows that
the simulation captures the increase in false negatives with
display size, as well as the relatively low and stable false-
positive error rates. There is a tendency for the model to make
more false-positive errors on larger display sizes, but this
tendency is minimized by the ceiling effect of the almost
perfect performance in the negatives. Varying thresholds with
display composition not only produces roughly correct error
rates, but also brings search times between display composi-
tions closer to our observed RTs. In particular, the 1/0
negatives become faster than the 2/1 negatives. A linear
regression of mean RTs onto the search times generated by
the simulation produces an r2 of .966 when an additional
intercept parameter is added to negative RTs.

The predictions of the diffusion model for variance results
are complex. In the current simulation, the model generates
the variance functions shown in Figure 5b, which look similar
to those in our data. In particular, the variances in the negative
conditions increase faster than in the positive conditions,
although this difference is minimal in the 2/0 composition.
For both positive and negative conditions, the increase in
variance is faster than linear. However, the diffusion model
does not necessarily produce variance functions of this sort.
In predicting how variance changes with display size in the
diffusion model, there are two important factors to consider.
The first factor is the distribution of times expected for a
single detector to reach threshold. In the model, this factor is
a function of the rate of evidence accumulation. As the rate
of evidence accumulation decreases, the right tail of the
distribution is extended, but the left tail remains relatively
stable, resulting in increased mean RT and a greater variance
in the distribution. Because the rate of evidence accumulation
is assumed to be a function of the number of elements in the
display, this would tend to produce the largest variances in
the conditions with the slowest RTs, as observed in our results.
The second factor to be considered in estimating the variance
is the number of detectors that must finish before the response
can be selected. The variance of the last of n finishing times
generally decreases with n. So, as display size increases in the
negative conditions, there will be less variability in the time
for the last detector to cross negative threshold. In these
conditions, then, the change in variance with display size
predicted by the model will result from the interaction of two
variables: (a) how quickly variance in single-detector crossing
times increases with display size, and (b) how quickly variance
in the final detector's finishing time decreases with display
size. Within a particular display composition, the number of
detectors required to cross threshold in the positive conditions
does not change with display size. The change in variance
with display size for the positive conditions will only be a
function of the increased variability of single-detector crossing
times.
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Figure 5. Results from the diffusion simulation. (Parameters for the simulation were as follows: For
all display compositions: u = 6.025, v = —4.656, it = .07, j = 1.15. Thresholds varied between display
compositions: 1/0: a = 6.65, z = 1.23; 2/0: a = 5.0, z = .74; 2/1: a = 7.0, z = 1.65.) a. Search times
for all display compositions predicted by simulation of the diffusion model. (This figure includes an
additional intercept parameter of 1.45 time steps in all negative conditions.) b. Variance in search
times for the diffusion model simulation. (No intercept parameter has been included.)

The loosely constrained nature of variance predictions in
the diffusion model suggests a possible resolution of the
discrepancy between the variances we report and those of
Treisman and Gelade (1980). If we lower the rate of evidence
accumulation for targets, we predict greater positive variances.
A simulation of the Treisman and Gelade data was performed
by taking the parameters used in the simulation of our own
data and lowering the rate of evidence accumulation for
targets, u. In order to fit the error rates reported by Treisman
and Gelade, the positive and negative thresholds were sepa-
rated to compensate for the lower value of u, resulting in
greater search latencies. The resulting ratio of negative to
positive slopes for search time was 2.0:1, and the ratio of
negative to positive slopes for variance was 0.87:1, a result at
least qualitatively consistent with Treisman and Gelade. The

Table 3
Error Rates (Percentage Error) Generated by the Diffusion
Model Simulation

Display size

Condition

1/0
Positive
Negative

2/0
Positive
Negative

2/1
Positive
Negative

5

0.7
0.2

0.2
0.0

0.3
0.1

10

2.9
0.4

1.4
0.0

1.8
0.3

20

8.1
1.0

4.8
0.0

7.0
1.1

30

12.6
3.6

7.8
0.4

12.3
3.8

suggestion that targets in the Treisman and Gelade study were
less easily identified than in our study is consistent with the
fact that the materials used by Treisman and Gelade were
drawn with colored marker pens on white tachistoscopic cards
and probably provided considerably less contrast than our
CRT displays. Furthermore, the slopes of RT functions in the
Treisman and Gelade data are steeper than in our data. As
noted by Treisman and Gelade, increased RT slopes are
indicative of more difficult discriminations between targets
and nontargets. The diffusion model thereby offers a means
of explaining different variance results by providing a theo-
retical link between target identifiability and the relative var-
iance between positive and negative conditions.

Conclusion

Besides providing a good fit to mean RTs, the diffusion
model also accounts for error rate trends and some aspects of
RT variance trends and may even provide a means for ex-
plaining differences between experiments. Although it may
be possible to fashion some variant of a serial model that can
account for all of this data, this has not been done; the
evidence presented here suggests a parallel, rather than serial,
search. Given this, one may return to the fundamental issue
raised by Treisman and Gelade (1980): Is information con-
cerning the conjunction of features available before attention
is focused on a single location? In other words, do conjunctive
targets require serial search? Our present findings, as well as
recent arguments by Pashler (1987) and Treisman and Gor-
mican (1988), suggest that at least some form of information
regarding the conjunction of features is available preatten-
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lively, although exactly what information may be represented
is still an open question.

In any case, one thing should be very clear. It is perilous at
best to rely on linearly increasing RT functions and approxi-
mately 2:1 slope ratios between positive and negative RTs in
the 1/0 display compdsition as evidence of an SSTS process.
Models such as RatclifFs (1978) diffusion model have proven
capable of accounting for apparently serial findings, as well
as aspects of the data that do not conform well to a serial
account, both in this research and in other contexts. Such
models therefore deserve our consideration as we try to un-
derstand the process of visual search.
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