

NOLLONGO甘LNI 'I

 -do оч өןn ג bability distributions but they were limited to discrete variables. Simulations

 eчt smoןid s! gradient descent on an error function that captures differences between desired

> James L. MCCLELLAND
University of California, San Diego
NVTTEлON '\& yヨInvf

the same inputs. This tendency to average samples of outputs with common

 the total sum of squared errors (TSS) between desired and obtained out-

 For example, back propagation networks (Bryson \& Ho, 1969; Le Cun, values of the outputs. only be applied in situations where the goal is to learn only the expected

 much less likely ones. Whereas the Necker cube is, of course, an artifact,
 other vertices. With the necker cube there are in fact two very probable the front face of the cube is strongly dependent on how we see each of the value. Furthermore, the probability that we will see one vertex as being on vertex are possible, and these are not well characterized by their average tinctive and particular way. Two quite different interpretations of each
 perception of the individual elements of the cube-each vertex, for exam-

 economic policies may have an effect on the average income or the average

иәш әио әчи о1 ле!!ய!

correspond to acceptable actions, we will have learned to solve the problem. bility distribution that is nonzero only in those regions of the space that
 angles. Such combinations can be viewed as regions in a multidimensional an acceptable reach for the object is a particular combination of joint values for each of the two joint angles independently; rather, what counts as general get a satisfactory result if we merely choose one of the acceptable ent dimensions of the output. In the robot arm example, we do not in problem, is that it looses information about dependencies among the differ-

 need not fall within the set of possible solutions, as the figure makes clear. learn such a mapping, it finds an average; the difficulty is that the average quite a different place. When a deterministic network such as BP is used to same goal location but the average of these two settings places the arm in two different settings of joint angles in a robot arm place the arm at the space (Jordan \& Rumelhart, 1992). Figure 2 shows one such case in which which the set of acceptable actions forms a nonconvex region in action from outcomes to actions is one-to-many. Most problematic are cases in mapping from actions to outcomes is many-to-one, so that the mapping (1992) discussed a difficulty faced with this approach. In many cases, the This method is known as direct-inverse modeling. Jordan and Rumelhart network to select appropriate actions when desired outputs are specified. a network with samples of "action \rightarrow outcome" pairs and then use the trained bination of joint angles to reach desired locations. One approach is to train A similar situation arises in motor control when one has to choose a comtwo road images, clearly an undesirable solution. ${ }^{1}$ particular configuration back propagation learns the same output for the but not the average value, of the distribution of desired actions. With this Figure 1 displays a case where two input images have an effect on the shape, Positive and negative values represent the degree of right and left steering. the steering direction is represented by the activation of an output unit.

Consider for instance the vehicle navigation problem displayed on Figure rect solution.

 inputs is shared by all regression methods but it is not appropriate in all
us say at the phonetic feature level) totally uninterpretable mumbling.

 or translated from one language to another, in several different ways. In

 variation of the continuous Hopfield (1984) model. The diffusion in this in-

 -ләэрр әч І

SOIWVNXG NOILVAILDV ${ }^{\boldsymbol{\tau}}$

imate discrete and continuous probability distributions of various types. also present simulations showing that SNDs can indeed be trained to approx-

 learn continuous as well as discrete probability distributions. continuous stochastic networks and showing how they can be trained to
 can be seen in part as an investigation of this relatively neglected property of works such as BP or deterministic Boltzmann machines (DBMs). Our work

 teractive processing. Our approach there was based on the ideas of contrasand another instantiation of the principles of continuous, stochastic, inMcClelland, in press), we presented initial work with the CHL algorithm stochastic Boltzmann machine (SBM). In a previous article (Movellan and

 algorithm or formal desciption of the network behavior was proposed. The
 ue!ssned uo yrom u! (686I) os!f \% 'enn!fex 'entuseurex 'eurity u! ралоןdхә криәриәдәри! sem sұломұәu pp!!doн snonu!̣uos u! әs!ou simple diffusion process to model memory retrieval. The use of Gaussian

and a diffusion matrix given by $\sigma \mathbf{I}$, where I is the unit matrix.

process with a drift vector
Equation 1 is known as a Langevin description of a Markovian diffusion second term noise being controlled by the parameter σ. required net input, net $t_{\text {, }}$ the activation Gaussian noise to this process with the tain an activation value of a_{i}. If the actual net mpu, if ${ }^{\text {a }}$, it increases. The small. The term nêt $t_{i}=1 / g_{i} f\left(a_{i}\right)$ represents the net input required to man limiting solution of a difference equation where the Δt is made infinitesimally but for the purpose of this article it is sufficient to view it as determining the tion 1 can be given in reference to Ito's stochastic calculus (Gardiner, 1985) where max and min bound the activation range. A precise treatment of Equa- logistic tions we use a scaled version of the logit function, also known as the inverse into the entire real line (e.g., the logit or the probit functions). In our simulafunction maps the bounded real-valued activation space ($\min , \max) \subset \Re$, inverse of a bounded continuous monotonic activation function f^{-1}; the $f(x)$ nêt $t_{i}=1 / g_{i} f\left(a_{i}\right) ; g_{i}$ is a gain term that scales the response of $f(x) ; f(x)$ is the where $Z_{i}(t)$ is a standard independent Gaussian random variable; $n t_{i}=\mathbf{a}^{7} \mathbf{w}_{i}$;

[^0]following system of stochastic differential equations:
connections to the unit i. The evolution of the activations is governed by the
one-unit SDN. Figure 3 exhibits an example of how these histograms evolve in the simplest, in state a_{0} at time t_{0}. We denote this probability density as $P\left(a ; t \mid a_{0} ; t_{0}\right)$. probability density of each particular state a at time t, given that we started restarts, our histograms would become closer and closer to the actual
 time slices, we would have m different histograms. So far, each histogram activations for each of the time slices. In our experiment, since we have m
 would probably observe a different trajectory through time because the netour clocks and put the network back in the initial activation state, a a_{0}, we
 Suppose we start a network from a particular point a at time t_{0} and observe

 probability. The Laplacian is the divergence of the gradient and, thus, it

 The symbol $\nabla \cdot$ is the divergence operator

:шној Зu!моן! ity, according to the previously mentioned principles. In the SDN case, the

 diffusion parameter, σ. Eventually, we may guess, the probability of the nêti $\mathrm{i}_{\text {) }}$; and (2) local optimization of entropy, a principle controlled by the
 two opposing principles: (1) local optimization of goodness: move in directhen flows or diffuses to other states according to Equation 1, which reflects concentration of all the available probability in that one state. Probability

ing equilibrium distribution statistics. distribution. We will use this property to design efficient methods of collectergodic, this second estimate also converges to the equilibrium probability portion of time spent in that region in this single trial. If the network is region at time t_{c}. We may also use a single trial and record the long-run proestimated by collecting the proportion of trials that the network is in that

 preted in two very different ways: We may use several trials restarting the network is ergodic, the equilibrium probability distribution can be interе иәчм Ки!

 portion of time that the process will be in each of the hypercubes. tions; and (3) this limiting probability distribution equals the long-run pro(2) the limiting distribution is unique and independent of the starting condiantees the three following properties: (1) there exists a limiting distribution;

 To simplify the proof that these networks exhibit stochastic stability, we learning stable distributions over a set of output variables. This is an important issue in our present work because we are interested in and whether these stable distributions depend on the starting conditions

 We already know that for the deterministic kernel, the activations stabilize 2.2 Stochastic Stability
said to be at stochastic equilibrium. state receives as much probability as it sends. At that point, the network is progresses, the probability distribution equilibrates at a point where each Equation 10 is governed by the σ parameter. We will now show that as time
 bility from states with more probability towards states with less probability. to the gradient of the probability. The result of this flow is to move proba-
 value of goodness, and $<\ln (1 / p)>_{p}$ represents the expected value of the entire probability distribution p. The term $\langle G\rangle_{p}$ denotes the expected where the $F(p)$ notation is used to emphasize that the function depends on a

 :wnof

 Helmholtz's function. This distribution assigns a real value to each possible continuous Boltzmann distribution optimizes the continuous version of

It is a well-known fact, derivable using calculus of variations, that the distribution. activation space, satisfies Equation 16, and therefore, is the unique limiting where $Z=\int_{A} e^{2 G(\mathbf{a}) / \sigma^{1}} d \mathrm{a}$ represents the multiple integral over the whole

$P(\mathrm{a})=\frac{1}{Z} e^{2 G(\mathrm{a}) / \sigma^{2}}$

It is easy to see that the Boltzmann distribution

be found by making unique, we just need to find a solution to Equation 14. Such a solution can

$\frac{1 e}{(\mathrm{~B}) d \rho}$

the left side of Equation 10 vanishes:
Since, at equilibrium, the probabilities do not change, it must be true that

$$
\cdot\left(0,!0 p \mid \eta:(\mathrm{s})_{d}{ }^{\infty 0} \mathrm{uII}\right]^{\prime}=(\mathrm{B})_{d}
$$

equilibrium distribution, $P(\mathrm{a})$, is defined as

 чэеолdde seч!ouv 'т! su!

 are also fixed to a vector sampled from the desired probability distribution. hidden and output units running free, and a fixed phase where the outputs

 estimate them by running simulations and approximating the desired statistics
 The learning rules call for expected values of several quantities. Unfor-

3.1 Sampling Methods

 tion' pair have to be learned, the appropriate rule is obtained by averaging
 to pattern \mathbf{x}, and $E_{x y}\left(s_{k}\right)$ is the expected stress when the outputs are also fixed рәх!џ әле sındu! әчү иәцм a small constant usually known as the step-size or the learning rate.

 Indıno әч јо uо!̣nq! 1 !! tern \mathbf{y} and the hidden units are free to evolve according to Equation 10; $E_{d} 0$ when the input units are fixed to pattern \mathbf{x}, the output units are fixed to pat-
 where $\Delta w_{i j}$ is the increment for the weight $w_{i j}$. The term $E_{\mathrm{xy}}\left(a_{i} a_{j}\right)$ represents

following equation (see Appendix): shown that the gradient descent learning rule for weights is given by the

Results on some of these problems with a previous model instantiating the
 XOR governed probability distributions: A problem that requires
 various types of multidimensional continuous distributions with and Multidimensional continuous probability distributions: Learning of discrete multidimensional representations for connectionist networks.

Completion exclusive-or (XOR): A variation on a standard benchmark four following problems: and continuous distributions of various types. We present simulations of the

Here we will focus on the CHL rule and the problem of learning discrete SNOLIVTINIS * \quad We did not use annealing or sharpening schedules. technique in combination with an exponential moving average technique. previous learning epochs. In our simulations we used the multiple restarts weights based on a temporal moving average of the gradients obtained in ple restarts method. A similar effect may be achieved by changing the stochastic equilibrium statistics are approximated faster by using the multiusing one or many restarts converge, but in practice we have found that the over the several restarts. Since the network is ergodic, equilibrium statistics case the probability of visiting different attractors is obtained by averaging different random points, but with less time at equilibrium each time. In this several different ones. We could also restart the network several times from trial, giving enough time at equilibrium to jump out of attractors and visit either one of two things: We could let the network settle once per learning large attractors before changing the weights. We could achieve this by doing In such cases, we have found it beneficial to let the network visit several statistics will be unstable and will lead to instabilities in the learning process. schedules are designed to visit only one of the maxima at a time, the obtained a corresponding maximum with the same goodness value. Because annealing vation for the same input. In this case each of the desired patterns will have distributions where there is more than one equally desirable pattern of actithese procedures run into problems when the network has to learn probability (maxima in the Goodness function) avoiding smaller attractors. However, sharpening methods try to focus the sampling time to the largest attractors

$\dot{\nabla} T I G_{\mathrm{x}}($ epoch $)=(1-\alpha) \nabla T I G_{\mathrm{x}}($ epoch $)+\alpha \nabla T I G_{\mathrm{x}}($ epoch -1$)$
according to the following equation: changing the weights. The moving average of the gradient was calculated the activation covariances were accumulated for all the patterns before
 exponential moving average of previous gradients. Networks were allowed were estimated using the multiple restarts method in combination with an this rule. The activation covariance statistics necessary for the learning rule

 gains may prove important in hardware implementations with limited preciparameters were maintained constant and equal for all units. Adaptive

 it beneficial to use non-extreme teacher values. For instance, for the SDN
 lected, followed by about 50 iterations where statistics where collected about 50 iterations where activation convariance statistics were not colfor the free and fixed phases. The phases in each 'restart'' trial consisted of put vector from the desired distribution and collected covariance statistics the problem. In each restart trial we randomly chose a particular target outstarts technique. The number of restarts ranged from 1 to 80 depending on

We used time increments Δt in the order of .1. In our simulations we 100 or smaller than $\min +(\max -\min) / 100$. logarithms, we did not let the activations get larger than max - (max - min)/ were set to 1.0 and -1.0 respectively. To avoid overflow problems with the parameters max and min control the bounds of the activation values. They $Z_{i}(t)$ is a standard Gaussian variable with zero mean and unit variance. The

nét $t_{i}=\frac{1}{g_{i}} f\left(a_{i}\right)=\frac{1}{g_{i}} \log \frac{a_{i}-\min }{\max -a_{i}}$

where $n e{ }^{t_{i}}$ is the logit transform of the scaled activations

difference equation of the following form:
The continuous Langevin equation was approximated using a discrete time
4.1 General Specifications CONTINUOUS PROBABILITY DISTRIBUTIONS
number of correct 1-bit completions was 967 . networks with the 240 possible 1-bit completion problems. The average percentage of correct 2-bit completions was .975 . Finally, we tested the 20 20 networks with the 120 possible 2 -bit completion problems. The average were correct (they were one of the four XOR patterns). We then tested the tained on cycle 1,001 . All the 3 -bit completions, with no units clamped, 1,000 cycles. We tested each network based on the pattern of activation obthe four possible binary combinations and let the other units run free for
 The average number of epochs to criterion was 198.4 ($\min 20, \max 558$). times with different random starting weights. was smaller than .1 (tolerance was .8). The training process was repeated 20 for weight adjustment was set at .025 . Learning was stopped when the TIG collected. Gains were fixed at $10.0, \Delta t$ at .1 , and σ at .1 . The step-size constant collected, and 50 additional cycles where activation covariance statistics were 50 initial cycles of synchronous activation update where statistics were not started with random activation values in the ($-.9, .9$) range, followed by tribution. Learning was done with 80 settling restarts per pattern. Each settling units, 9 hidden units). Initial weights were sampled from a $(-1,1)$ uniform disSpecifications: The network consisted of 12 fully connected units (3 output generated a proper completion. we tested the network by clamping 0,1 , or 2 inputs and seeing whether it each of the four XOR patterns in the absence of any input. After training, put units. The task was to learn to reproduce with equal probability ($p=.25$) ($-1-1-1 ;-111 ; 1-11 ; 11-1$), were repeatedly presented to the outand three output units. The four pattern combinations of the XOR problem, 1986). In this version of XOR, there were no input units, nine hidden units, tions requiring the use of hidden units (Rumelhart, Hinton, \& Williams,

The purpose of this simulation was to test whether SDNs could do comple-

 the tolerance region when all the obtained activations where in the interval that region when statistics are collected. The state was treated as falling in
 ing a region surrounding each of the desired distributed states, the tolerance criterion. In practice, we approximated the integral in Equation 19 by definstopped when the total information gain (TIG) was lower than a certain annealing or sharpening schedules were used. The training process was learning rates, (ϵ), are reported with respect to the gradient times $\sigma^{\mathbf{2}} / 2$. No We dropped the $2 / \sigma^{2}$ constant in the gradient calculations. Therefore, the

In this stimulation we used a relatively large number of restarts per patand did not generate unacceptable blends. possible, the network was nearly always in one of the correct alternatives importantly, for the ambiguous words, where more than one translation is that a good approximation to the desired probabilities is obtained. Most The results after 967 training epochs are shown in Table 2. It can be seen were not collected and 50 additional cycles where probabilities were collected. started with activations set at zero, followed by 50 cycles where probabilities The network was then tested 1,000 times per pattern. Each testing trial -syooda suluum-auly pruọ
 epochs). The additional fine-tuning training was stopped when TIG was below fine-tuning training period with 200 settling restarts per pattern (40 additiona

 where statistics were collected. Gain was fixed at $1.0, \Delta t$ at $.1, \sigma$ at $.1, \alpha$ at .4. activation update where statistics were not collected, and 50 additional cycles Each settling started with activations set at 0.0 , followed by 50 initial cycles of tion. Learning was done in batch mode with 20 settling restarts per pattern.
 clamped to get a translation in the Spanish module. translation in the English module; otherwise, the English units were

different for each output unit (see Table 3).

 can also approximate continuous probability distributions. The network probability distributions. The purpose of this simulation is to show that we The two previous simulations showed that CHL can be used to train discrete of Multiple Output Units 4.4 Learning Continuous Probability Distributions

region is still less than 0.07% of the eight-dimensional output space.
 pattern was considered correct if each output unit activation was within a . 8 and, in brackets, the obtained probability of the translations after training. A

			[000 ${ }^{\circ}$]	000' I	- 29	dD1s2
			(000 ${ }^{\circ}$)	$000^{\circ} \mathrm{L}$	29	128
			[000' 1$]$	000'	- 2n! 10	DR310
			[000' []	$000^{\circ} \mathrm{I}$	2nifo	Dนก7! ${ }^{\text {a }}$
[LE9'0]	$009^{\circ} 0$	дурия	[7970 ${ }^{\circ}$	$009^{\circ} 0$	op	$\stackrel{2004}{ }$
[808'0]	$008^{\circ} 0$	amoy	[$7129^{\circ} 0$]	002'0	$28 n 04$	0800
[988 $\left.{ }^{\circ} 0\right]$	$009^{\circ} 0$	d0182	[965 ${ }^{\circ}$]	009'0	. 128	29
[686 ${ }^{\circ}$)	$008^{\circ} 0$	Daypo	[$\left.299^{\circ} 0\right]$	0020	Dunj!20D	2at10
			[000 1$]$	000 ${ }^{\circ}$	d2004	2yous
			[000 ${ }^{\circ}$]	000'	42004	op
			$\left[000^{\circ} \mathrm{L}\right]$	000'	DsD0	2uоy
			$1000^{\circ} \mathrm{I}$	000'1	DSDO	2snoy
Holfeisuril						fnduI
welqosd uo!ppjsuns 1						

of one output unit throughout $\mathbf{1 0 , 0 0 0}$ settling cycles.
Figure 5. Output unit activations of a frained network. Each row represents the activation

 Training was done at 6,000 epochs.
 tional cycles where statistics were collected. Gains were set at $1.0, \Delta t$ at $.1, \sigma$ at
 tion. Each settling started with activations randomly set in the ($-.9, .9$) range, presented with the same 64 patterns chosen to represent the desired distribution. Learning was done in batch mode. Each epoch the network was

 the desired distributions given the constraints imposed by noise. Thus, the
 total of 10×200 settling cycles. The figure shows the activations every 10
 in sequence. Each settling period started with activations randomly chosen network. The figure was obtained by settling the network 10 different times

 modulated by the input vector. of multivariate Gaussian "experts" where the salience of each expert is

 ueissned әұе!иeл!
 correlations were zero to the third decimal place. Figure 8 shows the joint two units was .77 , the obtained correlation was .83 . As expected, all other the $(0,1)$ range. The expected Pearson correlation coefficient between these in the $(-1,0)$ range and when output unit 1 is in state 1 , output unit 3 is in interdependency. When output unit 1 is in state -1.0 , output unit 3 varies

It can be seen that the obtained activations approximate well the desired put units 1 and 3 of a trained network. in the same manner as Figure 6, shows 2,000 cycles of the activation of outwere identical to the previous simulations. Figure 7, which was constructed unit connections. The network's architecture and the learning parameters

Figure 7. Output unit activations of a trained network. Each row represents the activations
of each output unit throughout 10,000 settling cycles.

5 fully connected hidden units

\qquad
 Output unit 3

3
\mathbf{W}
\mathbf{g}
\mathbf{n}
0
 ! yun indino

 generate a Gaussian distribution centered at 0 , and the patterns $(-1,1)$ and

 put unit, and 10 hidden units. The probability distribution to be learned by

Figure 8. Joint distribution of output units 1 and 3 in a trained network.

constraints imposed by the injected noise. approximate well the desired distributions if we take into consideration the ferent patterns. It can be seen that the obtained probability distributions botained distributions of the unique output unit under one of the four dif-
 (syroda with 200 restarts per pattern until a TIG below .5 was achieved (596 additional below .7 (712 epochs). Additional fine-tuning training was then performed

 collected, and 50 more cycles where statistics were collected. Gains were set a the ($-.9, .9$) range, followed by 50 activation updates where statistics were not

the four different input patterns.
Figure 9. Desired and obtained probability distributions in the output unit as a response to

SGDNARTATHE
real-valued probability distributions. networks and the importance of learning contingencies that involve complete gotten. We hope our work helps to emphasize the possibilities of stochastic

 It is hoped that SDNs will help in developing models of cognition to understand
 which the meaning is conveyed by the statistical properties of the message. determining the meaning of the message, we have here a system of notations in

 ferent system of notation from the ones we are familiar with in ordinary arith cal character. ...Thus the nervous system appears to be using a radically dif--ІІІ! systems, but an essential information-processing principle: brain. He suggested that noise may not be a hindrance in natural nervous an essential principle that differentiated the digital computer from the et al., (1985) noted, the late von Neumann (1958) thought of stochasticity as
 structure may not be detected directly in a single observation, but it is sion equation, and culminates in stochastic equilibrium. This underlying different states. In SDNs this evolution is governed by the forward diffuvariant: the particular way in which probability density spreads through the that the activation states are constantly changing, there is an underlying in-

 the SBM, the harmonium, and SDNs) take us a step further. Their behavior
 cognitive schemas could emerge from the interaction of interconnected units

$(\mathbb{E}) S-(\mathbb{B}) H=(\mathbf{B}) \boldsymbol{O}$

ssoupoos jo पо!̣!u!jop

$\kappa 4 \times \perp$

 random variable, τ, which we will name the goodness signal

 gains parameters. As most of the results are common to both gains and forming gradient descent with respect to weights and with respect to the
 that minimizes a performance error function in the set of output units when different for different patterns. The central problem is to obtain a network $\mathbf{y} \in Y$. Thus, $\mathbf{a}^{T}=\left[\mathbf{x}^{T}, h^{T}, \mathbf{y}^{T}\right]$. The input, hidden, and output sets may be o $\in X$ a vector of hidden unit activations, $\mathrm{h} \in H$, and an output vector,

To begin, we partition the activation vector, a $\in A$, into an input vector, XIGNAddV '9 sciences. Unpublished doctoral dissertation, Harvard University, Boston.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral
 Watson, J. (1985). Contingency perception in early social development. In T.M. Field \& Taylor, I., \& Karlin, S. (1984). An introduction to stochastic modeling. Olando. Academe,
von Neumann, J. (1958). The computer and the brain. New Haven: Yale University Press.

ing: Explorations
bridge, MA: MIT Press.

 Ratcliff, R. (1978). A theory of memory retrieval. Psychological Revew, 85 , 9 -

Pomerleau, D. (1991). Efficient training of artificial neural networks for autonomous navigaPiaget, J. (1936). Origins of inection of reality in the child. London: Routledge and Kegan Paul.

on, C., \& Anderson, J. (1987). A mean field theory learning algorithm for neural netin economics and management science. MIT Press.
Papoulis, A. (1950). Mrorning logic. Technical report TR-47, Center for computational research
Parker, D. (1985). Learn 2), Cambridge, MA: MIT Press.
 ings of the 1990 Summer $\operatorname{sch} 00$. Contrastive learning with graded random networks.

 letter perception: Part 1. An account of basic findings. Psychological Review, 88, 5.

 z60¢-880¢ ' 18 .

 space. Neurat
field, J., Feinstein, D., \& Palmer, R. (1983). Unlearning has a stabilizing effect in collec, ©.E. (18 Com э!иареру restoratio, $\begin{aligned} & \text { gence, } 61-741 . \\ & \text { pie, } \mathrm{D} \text {. (1992). Mark }\end{aligned}$.

 ($9-68$-4IL-DYO 'on day
 Brysol, A., \& Ho, Y. (1969). Applied optimal control. New York: Blaisdell.

 and $Z=\int_{Y} \int_{H} \int_{X} e^{G x h y}(\theta) \frac{2}{\sigma^{\prime}} d x d h d y$ is the partition constant for the totally

 where $Z_{\mathrm{x}}=\int_{Y} \int_{H} e^{G} \mathbf{x h y}{ }^{(\theta)} \sigma^{\frac{2}{2}} d h d y$ is known as the partition constant for the

And since the equilibrium distribution is Boltzmann， $\cdot \Psi p(4)^{x} d^{H} \int=(\mathbb{S})^{\mathbf{x}} d$

 $\frac{\partial T I G_{x}(\theta)}{\partial \theta}=-\int_{Y} P_{x d}(y) \frac{\partial}{\partial \theta}\left[\ln P_{x}(y)\right] d y$

$\kappa p\left[(\Lambda)^{\mathrm{x}} d\right] u_{l}(\Lambda)^{p x_{d}}{ }_{d}^{\lambda} \int-\kappa p\left[(\mathcal{\Lambda})^{p x_{d}}\right] u_{l}(\kappa)^{p x_{d}}{ }^{\lambda} \int$
$=\Lambda p\left[\frac{(\Lambda)^{\mathrm{x}} d}{(\Lambda)^{p \mathrm{x}} d}\right] u_{l}^{(\Lambda)^{p \mathrm{x}} d^{\Lambda} \int}$
20u！S

SNOILnaIyISIO ALlligヲaOyd SnONNIINOJ

 where the $T 1 G_{\mathbf{x}}(\theta)$ notation is used to emphasize that the function depends
on a generic parameter $\theta ; P_{\mathbf{x}}(\mathbf{y})$ represents the obtained equilibrium prob－

$\boldsymbol{\kappa p}\left[\frac{(\kappa)^{x} d}{(\mathcal{S})^{p x}}\right]$ ul $^{(\Lambda)^{p x}} d^{\Lambda} \int=(\theta)^{x} O I L$ $\left[\frac{P_{x d}(y)}{P_{X}(y)}\right]$
 ```^p```

（33）
the continuous version of the total information gain function（Ackley et al．，
1985），
 In this case we need an error function that vanishes only when the obtained replace sums by integrals．However，in SDNs，we can also derive rules for to the Boltzmann machine learning derivations in Ackley et al．（1985），but whole probability distributions．The derivations of the CHL rule are similar This is a general purpose rule capable of learning contingencies involving 6．1 The Contrastive Hebbian Learning（CHL）Rule of the i th and j th elements in the xhy vector． stress of the i th variable in the xhy activation pattern；$\left(a_{i} a_{j}\right)$ xhy is the product when training the gain parameters．In the preceding equations，$\left(s_{k}\right)_{x h y}$ is the

$\overline{\left(1-\frac{18}{}\right)^{K 4 x} 00}$

 weights，and $\frac{\partial G_{x h y}\left(w_{i j}\right)}{\partial w_{i j}}=\left(a_{i} a_{j}\right)$ xhy $S(\mathrm{a})=\sum_{i=1}^{n} \frac{1}{g_{i}} s_{i}$
$s_{k}=\int_{r e s t}^{a_{k}} f(x) d x$

[^0]:

