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In this article w
e present sym

m
e trl~ diffusion n ~

tw
orks, a fam

ily of netw
orks that

Instantiate the principles of continuous, stochastic, adoptive and Interactive pro-
pagation of Inform

ation. U
sing m

ethods of M
arkovian diffusion theory, w

e for-
m

alize the activation dynom
ics of these netw

orks and then show
 that they con be

trained to reproduce entire m
ultivariate probability distributions on their outputs

using the contrastive H
ebbian learning rule (C

H
L

kW
e show

 that C
H
L
 
p
e
r
f
o
r
m
s

gradient descent on on error function that captures differences betw
een desired

and obtained continuous m
ultivariate probobllity distributions. T

his allow
s the

learning algorithm
 to go beyond expected values of output units ond to approxi-

m
ate com

plete probability distributions on continuous m
ultivoriate octlvatlon

spaces. W
e argue that learning continuous distributions is an Im

portant task
underlying a variety of real- life situations that w

ere beyond the scope of previous
connectionist netw

orks. D
eterm

inistic netw
orks, like back propagation, cannot

learn this task becouse they are lim
ited to learning average values of Indepen-

dent output units. Previous stochastic connectionist netw
orks could learn pro-

bability distributions but they w
ere lim

ited to discrete vorlables. Sim
ulations

s
h
o
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r
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i
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w
i
t
h
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h
e
 
C
H
L
 
r
u
l
e
 
t
o
 
o
p
-

proxlm
ote discrete and continuous probability distributions of various types.
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C
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Learning can be seen as the process of detecting and storing how
 som

e
events (inputs) affect the behavior of other events (outputs). If the inputs
have no effect on the outputs they are statistically independent, otherw

ise
there is a contingency. C

ontingencies can be seen as a class of functions
m

apping the space of inputs onto the space of possible probability distri-
b
u
t
i
o
n
s
 
o
f
 
t
h
e
 
o
u
t
p
u
t
s
.
 
C
o
n
t
i
n
g
e
n
c
i
e
s
 m

ay occur w
hen the inputs have an
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. effect on the a
v
e
r
a
g
e
 
v
a
l
u
e
 
o
f
 
i
n
d
i
v
i
d
u
a
l
 
o
u
t
p
u
t
 
v
a
r
i
a
b
l
e
s
.
 
F
o
r
 exam

ple, .
econom

ic policies m
ay have an effect on the average incom

e or the average
level of education of a country. T

here m
ay also be contingencies that affect

other aspects of the output's behavior such as the shape of the probability
distribution of the outputs or the w

ay these outputs correlate w
ith each

other. For exam
ple, different econom

ic policies m
ay affect the distribution

of w
ealth or the correlation betw

een w
ealth and education w

ithout affecting
the average incom

e. Such exam
ples com

e up all the tim
e in cognitive and

perceptual dom
ains. T

he N
ecker cube is perhaps the m

ost fam
ous case. T

he
p
e
r
c
e
p
t
i
o
n
 
o
f
 
t
h
e
 
i
n
d
i
v
i
d
u
a
l
 
e
l
e
m
e
n
t
s
 
o
f
 
t
h
e
 cube-each vertex, for exam

-
p
l
e
,
 
o
r
 
e
a
c
h
 
l
i
n
e
-is certainly contingent on the stim

ulus, but in a very dis-
tinctive and particular w

ay. T
w

o quite different interpretations of each
vertex are possible, and these are not w

ell characterized by their average
value. Furtherm

ore, the probability that w
e w

ill see one vertex as being on
the front face of the cube is strongly dependent on how

 w
e see each of the

other vertices. W
ith the necker cube there are in fact tw

o very probable
:
 
w
h
o
l
e
 
p
e
r
c
e
p
t
s
-full sets of interpretations of the v

e
r
t
i
c
e
s
-
a
n
d
 
m
a
n
y
 
o
t
h
e
r

,
 
m
u
c
h
 less likely ones. W

hereas the N
ecker cube is, of course, an artifact,

m
any natural stim

uli-shadow
s, for exam

ple, I;)r am
biguous w

ords or sen-
tences-often support a distribution of interpretations that is very poorly
characterized by the central tendency of individual elem

ents. It is, there-
fore, desirable to develop learning algorithm

s capable of learning contin-
gencies that go beyond effects on average vaiues. C

onnectionist learning
algorithm

s have proven to be useful contingency detectors but m
ost can

only be applied in situations w
here the goal is to learn only the expected

v
a
l
u
e
s
 
o
f
 
t
h
e
 
o
u
t
p
u
t
s
.

For exam
ple, back propagation netw

orks (B
ryson &

 H
o, 1969; L

e C
un

1985; P
arker, 1985; R

um
elhart, H

inton, &
 W

illiam
s, 1986; W

erbos, 1974)
are functions defined from

 the space of possible inputs to the space of possi-
ble outputs. T

hey are typically trained w
ith a learning rule that m

inim
izes

the total sum
 of squared errors (T

SS) betw
een desired and obtained out-

puts. It is easy to show
 that am

ong all possible functions from
 the space of

inputs to the space of outputs there is one that achieves m
inim

um
 T

SS. T
his

: function, w
hich is called the regression function

, assigns to each input vec-
tor the average of the training outputs conditional on that input (Papoulis,
1990). B

ack-propagation learning and other form
s of nonlinear regression

can be seen as m
ethods for estim

ating regression functions. T
his is precisely

w
hat is needed w

ith a particular type of contingency, w
hich w

e refer to as
signal +

 noise" contingencies. In this type . of contingency, the underlying
association betw

een input and output (the signal) is determ
inistic but per-

turbed by the effects of an additive independent random
 variable (the

noise). T
he signal is the expected value of the output for each of the inputs,

and can be estim
ated by averaging sam

ples of training outputs that share
the sam

e inputs. T
his tendency to average sam

ples of outputs w
ith com

m
on

inputs is shared by all regression m
ethods but it is not appropriate in all

cases. T
his is particularly clear in situations w

here there is m
ore than one

correct output for each input but the average of these outputs is not a cor-
rect solution.

C
onsider for instance the vehicle navigation problem

 displayed on Figure
1. A

 back- propagation (B
P) netw

ork is presented w
ith road im

ages as input
and w

ith appropriate steering directions as desired output. In the exam
ple

the steering direction is represented by the activation of an output unit.
Positive and negative values represent the degree of right and left steering.
Figure I displays a case w

here tw
o input im

ages have an effect on the shape,
but not the average value, of the distribution of desired actions. W

ith this
particular configuration back propagation learns the sam

e output for the
tw

o road im
ages, clearly an undesirable solution. 

A
 sim

ilar situation arises in m
otor control w

hen one has to choose a com
-

bination of joint angles to reach desired locations. O
ne approach is to train

a
 
n
e
t
w
o
r
k
 
w
i
t
h
 
s
a
m
p
l
e
s
 
o
f
 

action-outcom
e

pairs and then use the trained
netw

ork to select appropriate actions w
hen desired outputs are specified.

T
his m

ethod is know
n as direct- inverse m

odeling. Jordan and R
um

elhart
(
1
9
9
2
)
 
d
i
s
c
u
s
s
e
d
 
a
 
d
i
f
f
i
c
u
l
t
y
 
f
a
c
e
d
 
w
i
t
h
 
t
h
i
s
 approach. In m

any cases, the
m

apping from
 actions to outcom

es is m
any- to-one, so that the m

apping
from

 outcom
es to actions is one- to-m

any. M
ost problem

atic are cases in
w

hich the set of acceptable actions form
s a nonconvex region in action

space (Jordan &
 R

um
elhart, 1992). Figure 2 show

s one such case in w
hich

tw
o different settings of joint angles in a robot arm

 place the arm
 at the

sam
e goal location but the average of these tw

o settings places the arm
 in

quite a different place. W
hen a determ

inistic netw
ork such as B

P is used to
learn such a m

apping, it finds an average; the difficulty is that the average
need not fall w

ithin the set of possible solutions, as the figure m
akes clear.

T
here are tw

o problem
atic features to the averaging problem

. O
ne is that

it com
putes an average value for each unit, thereby losing inform

ation
about the actual range or distribution of allow

ed values. T
he other, deeper

problem
, is that it looses inform

ation about dependencies am
ong the differ-

ent - d
i
m
e
n
s
i
o
n
s
 
o
f
 
t
h
e
 
o
u
t
p
u
t
.
 
I
n
 
t
h
e
 
r
o
b
o
t
 arm

 exam
ple, w

e do not in
general get a satisfactory result if w

e m
erely choose one of the acceptable

values for each of the tw
o joint angles independently; rather, w

hat counts as
a
n
 
a
c
c
e
p
t
a
b
l
e
 
r
e
a
c
h
 
f
o
r
 
t
h
e
 
o
b
j
e
c
t
 
i
s
 
a
 particular com

bination of joint
angles. Such com

binations can be view
ed as regions in a m

ultidim
ensional

space. If w
e can choose such com

binations in a w
ay that m

atches a proba-
bility distribution that is nonzero only in those regions of the space that
correspond to acceptable actions, w

e w
ill have learned to solve the problem

.

I T
he purpose of this exam

ple is to illustrate the need of going beyond expected values.
D
e
a
n
 
P
o
m
e
r
l
e
a
u

s (1991) A
LV

IN
N

 system
 encountered a problem

 sim
ilar to the one m

en-
tioned here, but he solved it using another approach.
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Probability density of desired steering

fi\
tJI

\..

S
o
l
u
t
i
o
n
 
1

L
eft(-l)

S
traight (0)

A
ativatioD

R
ight ( 1)

S
olution 2

Probability density of desired steering

L
eft(-l)

S
traight (0)

A
ativatioD

R
ight ( 1)

FIgure 2. T
he overage of the tw

o solutions does not generate a correct action.

Figure 1. T
hese tw

o Input patterns produce the som
e overage desired output but theprob.

ability distribution Is dlH
erent. T

he overage Is
a correct response for the first Input but

w
ould not w

ork for the second Input pattern.

A
s a concrete exam

ple of a sim
ple version of this problem

, consider
translating w

ords from
 one l

a
n
g
u
a
g
e
 
t
o
 
a
n
o
t
h
e
r
,
 
s
a
y
 
f
r
o
m
 
E
n
g
l
i
s
h
 
t
o

Spanish. H
ere there are cases w

here the sam
e w

ord has tw
o different trans-

lations in the other language. For exam
ple the english w

ord " olive" has tw
o

approxim
ately equally likely translations into S

p
a
n
i
s
h
;
 
o
n
e
 
i
s
 
o
f
 
L
a
t
i
n

origin, 
oliva. 

a
n
d
 
o
n
e
 
o
f
 
A
r
a
b
i
c
 
o
r
i
g
i
n
,
 

aceituna. 
Suppose that the utterance

oliva 
is represented phonologically as som

e pattern of activation (e.
g
.
,
 
1
.

0
,
 
0
.
0
,
 
1
.
0
,
 
1
.
0
)
,
 
a
n
d
 
t
h
e
 
u
t
t
e
r
a
n
c
e
 

aceituna 
is represented as another,

quite different pattern (0. 0
,
 
1
.

,
 
1
.
0
,
 
0
.
0
,
 
1
.
0
)
.
 
I
n
 
t
h
i
s
 
c
a
s
e
,
 
d
e
t
e
r
m
i
n
i
s
t
i
c

netw
orks such as B

P
 or the determ

inistic B
oltzm

ann m
achine w

ould learn
the expected values of each elem

ent as if these w
ere independent, producing

t
h
e
 
m
e
a
n
i
n
g
l
e
s
s
 
r
e
s
u
l
t
i
n
g
 
o
u
t
p
u
t
 

5, .5, .5, .
5, 

1.0). T
his conveys som

e in.
form

ation about the w
ord (e.g., the value that the w

ords share in com
m

on
is produced correctly), and indeed, in this case, the activations reflect the
probability that each elem

ent should be independently active in the correct

C
onsider, next, issues that arise in the representation and processing of

language. O
ne of the central properties of language is am

biguity: in general,
a w

ord, a sentence, even a w
hole book or play m

ay have several alternative
interpretations. Sim

ilarly, a concept or thought can be conveyed in language,
or translated from

 one language to another, in several different w
ays. In

general, it is not appropriate to take the average of tw
o different interpreta-

tions of the sam
e text, or to produce a blend of tw

o acceptable texts to convey
an intended m

eaning; depending on the grain of the blending, the result could
b
e
 
a
 
h
a
s
h
 
o
f
 
p
o
t
e
n
t
i
a
l
l
y
 
m
e
a
n
i
n
g
f
u
l
 
f
r
a
g
m
e
n
t
s
 
o
r
 

(it 
the blending occurs let

I us say at the phonetic feature level) totally uninterpretable m
um

bling.

\
 
.
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response. B
ut it does not convey enough inform

ation to specify w
hich com

-
binations of features m

ust be on or off to produce one or the other of the
possible correct alternatives.

In this article w
e explore the use of stochastic netw

orks to solve the types
of problem

s described previously. In doing so, w
e hope t

o
 
h
e
l
p
 
t
o
 
c
o
n
-

solidate a w
ay of thinking about stochastic netw

orks that has not received
as m

uch explicit treatm
ent as it deserves. T

his is the idea that stochastic net-
w

orks should be view
ed as com

puting functions of their inputs, just like
determ

inistic netw
orks. In this case, the function is not from

 inputs to ex-
p
e
c
t
e
d
 
v
a
l
u
e
s
 
o
f
 
o
u
t
p
u
t
s
,
 
b
u
t
 from

 inputs to entire probability distributions
of outputs. T

his idea is certainly an im
portant part of the s

t
o
c
h
a
s
t
i
c
 
n
e
t
-

w
ork theory introduced by G

em
an and G

em
an (1984), A

ckley, H
inton, and

Sejnow
ski (1985), and w

as particularly em
phasized by Sm

olen s
k
y
 
(
1
9
8
6
)
.

B
ut in the m

ain
, stochastic netw

orks have been used in neural netw
ork

research as procedures for finding the single best pattern, through the pro-
cess of sim

ulated annealing, and not for actually m
odeling distributions of

d
e
s
i
r
e
d
 
s
t
a
t
e
s
.
 

O
nce w

e see stochastic netw
orks as m

appings from
 inputs to m

ultivariate
probability distributions, w

e can treat learning as a m
atter of m

odifying
connection w

eights betw
een units to m

ake the obtained and desired probabil-
ity distributions as sim

ilar as possible. In this article w
e use this approach

w
ith a class of netw

orks that w
e w

ill call "sym
m

etric diffusion netw
orks

(S
O

N
). S

O
N

's are one instantiation of the principles of continuous, sto-
chastic, adaptive, and interactive hum

an inform
ation processing proposed

by M
cC

lelland (in press) on the basis of earlier com
putational and psycho-

logical research. T
hese principles w

ere put together to provide a
 
g
e
n
e
r
a
l

fram
ew

ork for m
odeling norm

al and disordered cognition. SO
N

s are collec-
tions for processing units organized in m

odules w
ith sym

m
etric bidirectional

connections. E
ach unit collects a net input from

 all the units to w
hich it is

connected and generates a real valued. bounded activation. T
hese activation

values are continuous random
 variables w

ith a probability density controlled
by the net input.

U
sing M

arkovian diffusion theory (G
illespie, 1

9
9
2
)
 
w
e
 
d
e
r
i
v
e
 
t
h
e
 
e
q
u
i
l
i
b
-

rium
 distribution of SO

N
s and show

 that the contrastive H
ebbian learning

rule (C
H

L
) can be used to learn entire probability distributions. C

H
L

 is a
general learning rule previously applied to a variety of m

odels including the
discrete H

opfield m
odel (H

opfield, Feinstein
, &

 P
alm

er, 1983), the original
s
t
o
c
h
a
s
t
i
c
 
B
o
l
t
z
m
a
n
n
 
m
a
c
h
i
n
e
 
(
A
c
k
l
e
y
 
e
t
 
a
l
.
,
 1985), the harm

onim
um

(Sm
olensky. 1986), the determ

inistic B
oltzm

ann m
achine (G

alland &
 H

inton,
1989; H

inton
,
 
1
9
8
9
;
 
P
e
t
e
r
s
o
n
 &

 A
nderson

,
 
1
9
8
7
)
,
 
a
n
d
 
t
h
e
 
c
o
n
t
i
n
u
o
u
s

H
o
p
f
i
e
l
d
 
m
o
d
e
l
 
(
M
o
v
e
l
l
a
n, 1990). H

ere w
e show

 that in SO
N

s. the C
H

L
r
u
l
e
 
p
e
r
f
o
r
m
s
 
g
r
a
d
i
e
n
t
 
d
e
s
c
e
n
t
 
o
n
 
a
n
 
e
r
r
o
r
 
f
u
n
c
t
i
o
n
 
t
h
a
t
 
c
a
p
t
u
r
e
s
 differ.

ences betw
een entire distributions.

T
here are m

any im
portant precursors to this w

ork. R
atcliff (1978) used a

sim
ple diffusion process to m

odel m
em

ory retrieval. T
he use of G

aussian
noise in continuous H

opfield netw
orks w

as independently explored in
A

kiyam
a. Y

am
ashita, K

ajiura, &
 A

iso (1989) in w
ork on G

aussian
m

achines. T
his w

ork w
as focused in optim

ization problem
s and no learning

algorithm
 or form

al desciption of the netw
ork behavior w

as proposed. T
he

i
m
p
o
r
t
a
n
c
e
 
o
f
 learning probability distributions w

as p
o
i
n
t
e
d
 
o
u
t
 
b
y

S
m

olensky (1986) and certainly m
any of the ideas in this article are related

to the sem
inal w

ork in harm
ony theory (Sm

olensky, 1986), and the original
stochastic B

oltzm
ann m

achine (SB
M

). In a previous article (M
ovellan and

M
cC

lelland, in press), w
e presented initial w

ork w
ith the C

H
L

 algorithm
and another instantiation of the principles of continuous, stochastic, in-
teractive processing. O

ur approach there w
as based on the ideas of contras-

tive learning (B
aldi &

 P
ineda, 1991; M

ovellan
. 1990) rather than M

arkovian
diffusion theory. It should be noted that SB

M
 can learn discrete binary prob-

ability distributions. H
ow

ever to our know
ledge, this aspect of the SB

M
 has

hardly ever been explored. T
he SB

M
 has generally been used to learn deter-

m
inistic m

appings, w
here it is typically less efficient than determ

inistic net-
w

orks such as B
P or determ

inistic B
oltzm

ann m
achines (D

B
M

s). O
ur w

ork
. can be seen in part as an investigation of this relatively neglected property of
SB

M
s. W

e also extend the previous w
ork by form

alizing the behavior of
continuous stochastic netw

orks and show
ing how

 they can be trained to
learn continuous as w

ell as discrete probability distributions.
W

hat follow
s is a form

al presentation of SO
N

s and a derivation of the
C

H
L

 rule for learning probability distributions w
ith these netw

orks. W
e

also present sim
ulations show

ing that SN
D

s can indeed be trained to approx-
im

ate discrete and continuous probability distributions of various types.

2. A
C

T
IV

A
T

IO
N

 D
Y

N
A

M
IC

S

F
rom

 a m
athem

atical point of view
, S

O
N

s ar M
arkovian diffusion pro-

cesses governed by a system
 of stochastic differential equations. T

hese
e
q
u
a
t
i
o
n
s
 
c
o
n
s
i
s
t
 
o
f
 
a
 

drift 
t
e
r
m
 
a
n
d
 
a
 

diffusion 
term

s. T
he drift is the deter-

m
inistic kernel of the process controlling the instantaneous average velocity

o
f
 
t
h
e
 
a
c
t
i
v
a
t
i
o
n
 
v
e
c
t
o
r
.
 T

he diffusion term
 controls the instantaneous

variance of the activations. SO
N

s m
ay be instantiated in a variety of w

ays.
T

he specific instantiation that w
e use in this article has a drift controlled by a

variation of the continuous H
opfield (1984) m

odel. T
he diffusion in this in-

s
t
a
n
t
i
a
t
i
o
n
 
i
s
 
a
 
c
o
n
s
t
a
n
t
,
 

a, 
w

hich controls the level of noise in the netw
ork.

M
o
r
e
 
s
p
e
c
i
f
i
c
a
l
l
y
,
 
l
e
t
 
a
 
=
 

(aJ,... .
be a real-valued activation colum

n
vector. L

et W
 =

 (w
J,.. .,

) be a real valued sym
m

etric m
atrix of con-

nections. w
here each W

i =
 (W

I, ;
,
.
.
.
,
 
w
n
.;JT

 is the fan- in colum
n vector of

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil
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connections to the unit i. T
he evolution of the activations is governed by the

follow
ing system

 of stochastic differential equations:

daj 
(neti 

n
e
t
j
)
d
t
+
 
a

.
J
d
i
 
Z
i
(
t
)
;
 i =

 I,..., n 
(I)

w
here 

Z
j(t) 

i
s
 
a
 
s
t
a
n
d
a
r
d
 
i
n
d
e
p
e
n
d
e
n
t
 
G
a
u
s
s
i
a
n
 
r
a
n
d
o
m
 
v
a
r
i
a
b
l
e
;
 

nett 
=
 
a

w
i;

nett 
=
 
1
 
/
 

g
i
 
f
(
a
j
)
;
 
g
j
 
i
s
 
a
 

gain 
tenn that scales the 

r
e
s
p
o
n
s
e
 
(
j
f
 

f
(
x
)
;
 
f
(
x
)
 

is the

i
n
v
e
r
s
e
 
o
f
 
a
 
b
o
u
n
d
e
d
 
c
o
n
t
i
n
u
o
u
s
 
m
o
n
o
t
o
n
i
c
 
a
c
t
i
v
a
t
i
o
n
 
f
u
n
c
t
i
o
n
 

j- 

;
 
t
h
e
 f(x)

f
u
n
c
t
i
o
n
 
m
a
p
s
 
t
h
e
 
b
o
u
n
d
e
d
 
r
e
a
l
-
v
a
l
u
e
d
 
a
c
t
i
v
a
t
i
o
n
 
s
p
a
c
e
 

(m
in,

m
ax) 

!R
,

into the entire real line (e. g., the logit or the probit functions). In our sim
ula-

tions w
e use a scaled version of the logit function, also know

n as the inverse
logistic 

i
s
 
t
h
e
 
w
e
i
g
h
t
e
d
 
s
u
m
 
o
f
 
p
e
n
a
l
t
y
 
t
e
r
m
s
,
 

Sf, 
for the activations departing from

rest value.
 
r
 

Si 
=
 
J
 

rest j(x)dx 
(7)

w
here 

rest 
=

 f(0). In our im
plem

entation, the stress is given by the follow
-

ing equation

Sj 
(aj 

m
in)/og(aj 

m
;n) 

(m
ax 

aj)/og(m
ax 

aj)
(8)

nett 

..!.. 

j(ai) 

=
 
.
.
!
.
.
 log 

aj 
m

;n

gj gi 
m

ax 
ai.

w
here 

m
ax 

and 
m

in 
bound the activation range. A

 precise treatm
ent of E

qua-
t
i
o
n
 
1
 
c
a
n
 
b
e
 
g
i
v
e
n
 
i
n
 
r
e
f
e
r
e
n
c
e
 
t
o
 
I
t
o

s stochastic calculus (G
ardiner, 1985)

but for the purpose of this article it is sufficient to view
 it as d

e
t
e
r
m
i
n
i
n
g
 
t
h
e

lim
iting solution of a difference equation w

here the A
t is m

ade infinitesim
ally

s
m
a
l
l
.
 
T
h
e
 
t
e
n
n
 

nett 
=
 
I
 
/
 

g
i
 
f
(
a
i
)
 
r
e
p
r
e
s
e
n
t
s
 
t
h
e
 
n
e
t
 inp1.Jt required to m

ain-

t
a
i
n
 
a
n
 
a
c
t
i
v
a
t
i
o
n
 
v
a
l
u
e
 
o
f
 

at. 
I
f
 
t
h
e
 
a
c
t
u
a
l
 
n
e
t
 
:
i
n
p
u
t
,
 

nett, 
is sm

aller than the

r
e
q
u
i
r
e
d
 
n
e
t
 
i
n
p
u
t
,
 

nett, 
the activation decreases; if bigger, it increases. T

he
second term

 in the equation adds up G
aussian noise to this process w

ith the
a
m
o
u
n
t
 
o
f
 
n
o
i
s
e
 
b
e
i
n
g
 
c
o
n
t
r
o
l
l
e
d
 
b
y
 
t
h
e
 
p
a
r
a
m
e
t
e
r
 

E
quation 1 is know

n as a Langevin description o
f
a
 
M
a
r
k
o
v
i
a
n
 diffusion

p
r
o
c
e
s
s
 
w
i
t
h
 
a
d
r
i
f
t
 
v
e
c
t
o
r

drifteR
) =

 net(a) -
 
n
e
t
(
a
)

and a diffusion m
atrix given by aI, w

here I is the unit m
atrix.

It is easy to show
 (H

opfield, 1984) that w
hen the w

eight m
atrix is sym

-
m

etric, the drift vector is the exact gradient of a H
opfield 

style 
goodness

function of the follow
ing fonn

(2)

m
ax 

m
;n

m
ax 

m
;n 

m
ax 

m
;n

m
ax 

m
;n

og 
og 

T
he goodness of a particular activation vector is com

m
only interpreted

as the degree of consistency of this vector w
ith the know

ledge captured in
the netw

ork'
s
 
w
e
i
g
h
t
s
 
a
n
d
 
g
a
i
n
.
 
T
h
e
 
h
a
r
m
o
n
y
 
t
e
r
m
,
 

H
, 

captures the degree
of m

atch w
ith the expected correlations betw

een pairs of units. T
his know

l-
edge is em

bedded in the w
eights: U

nits connected w
ith positive w

eights are
m
o
r
e
 
"

harm
onious

"
 
i
f
 
t
h
e
y
 
h
a
v
e
 
a
c
t
i
v
a
t
i
o
n
s
 
o
f
 
t
h
e
 sam

e sign
, and units

w
ith negative w

eights are m
ore " harm

onious " w
hen their activations have

opposite signs. T
he stress term

, S, captures how
 extrem

e the activations are
e
x
p
e
c
t
e
d
 
t
o
 
b
e
.
 
W
h
e
n
 
t
h
e
 
g
a
i
n
 
t
e
r
m
s
,
 

gi, 
are large, extrem

e activation values
are expected.

Since the drift is the exact gradient of the goodness function

(3)

drifteR
) =

 V
G

(a) =
 net(a) - net(a) 

(9)

t
h
e
n
 
-
 
O
(
a
)
 
c
a
n
 
b
e
 
s
e
e
n
 
a
s
 
a
 

p
o
t
e
n
t
i
a
l
 
f
i
e
l
d
 

and the drift as the force field
generated by that potential. W

hen the diffusion term
 vanishes, the netw

ork
becom

es determ
inistic and goodness can only increase through tim

e. Since
the goodness function is bounded upw

ard, the activations stabilize at local
m
a
x
i
m
a
 
o
f
 

O
. 

I
t
 
i
s
 
a
l
s
o
 
k
n
o
w
n
 
t
h
a
t
 
t
h
i
s
 
d
e
t
e
r
m
i
n
i
s
t
i
c
 
k
e
r
n
e
l
 
(
w
h
e
n
 

=
 0) is

trainable w
ith the C

H
L

 rule, but that instabilities m
ay occur due to the

e
x
i
s
t
e
n
c
e
 
o
f
 
m
u
l
t
i
p
l
e
 
m
a
x
i
m
a
 
i
n
 
t
h
e
 

f
u
n
c
t
i
o
n
 
(
H
i
n
t
o
n
,
 
1
9
8
9
;
 
M
o
v
e
l
l
a
n
,

1990; Peterson &
 A

nderson
, 1987; Peterson &

 H
artm

an
,
 
1
9
8
9
)
.

G
(
a
)
 
=
 

H
(a) 

-
 
S
e
a
)

w
here

(4)

H
(a) 

T
W

 a

i
s
 
t
h
e
 

harm
ony 

or consistency betw
een the netw

ork activations and the
w
e
i
g
h
t
 
c
o
n
s
t
r
a
i
n
t
s
.
 
T
h
e
 

stress 

(5)

1 T
he D

iffusion of Probability
T

he stochastic nature of SO
N

s encourages a revision of the language used to
describe the behavior of the netw

ork. B
ecause the netw

ork is not determ
in-

istic, the trajectory of the activations can no longer be predicted from
 initial

states. W
hat w

e can say is that, m
ost of the tim

e, the netw
ork activations

w
ill be in certain regions, less of the tim

e in other regions, and so on. T
hus,

w
e need to describe the netw

ork in term
s of probability distributions and

its dynam
ics in term

s of changes in probability distributions throughout
tim

e. 
Sea) =

 j
 
=
 
I
 

(6)
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e

Let us try to understand this evolution from
 yet another point of view

.
W

e can think of probability density as an abstract " substance " that propa-
gates through the different states of the netw

ork according to som
e sim

ple
diffusion principles. W

e m
ay think of a restart in a particular state, 80, as a

concentration of all the available probability in that one state. Probability
then flow

s or diffuses to other states according to E
quation I, w

hich reflects
tw

o opposing principles: (1) local optim
ization of goodness: m

ove in direc-
t
i
o
n
s
 
t
h
a
t
 
m
a
x
i
m
i
z
e
 
g
o
o
d
n
e
s
s
,
 
a
 
p
r
i
n
c
i
p
l
e
 
e
m
b
e
d
d
e
d
 
i
n
 
t
h
e
 
d
r
i
f
t
 
t
e
r
m
 

(net;-
n
e
t
i
)
;
 
a
n
d
 
(
2
)
 
l
o
c
a
l
 
o
p
t
i
m
i
z
a
t
i
o
n
 
o
f
 

entropy, 
a principle controlled by the

d
i
f
f
u
s
i
o
n
 
p
a
r
a
m
e
t
e
r
,
 

C
T

. E
ventually, w

e m
ay guess, the probability of the

a
c
t
i
v
a
t
i
o
n
 
s
t
a
t
e
s
 
s
t
a
b
i
l
i
z
e
s
 
i
n
t
o
 
a
n
 

e
q
u
i
l
i
b
r
i
u
m
 
d
i
s
t
r
i
b
u
t
i
o
n
 

w
here each state

receives as m
uch probability as it sends. In fact, our guesses can be proven

tothe right. A
 w

ell- know
n

result in M
arkovian diffusion theory (G

ardiner,
1985) is that processes defined by a Langevin- t

y
p
e
 
s
t
o
c
h
a
s
t
i
c
 
e
q
u
a
t
i
o
n

s
a
t
i
s
f
y
 
t
h
e
 

f
o
r
w
a
r
d
 
P
o
k
k
e
r
-
P
l
a
n
c
k
 
d
i
f
f
u
s
i
o
n
 
e
q
u
a
t
i
o
n
.
 

It is also know
n that

this equation m
odels the diffusion of a " substance, " in this case probabil-

ity, according to the previously m
entioned principles. In the SO

N
 case, the

Fokker-Planck equation can be show
n to assum

e the follow
ing form

:

ap(a; tlso); to)
at 

=
 
-
 
v
 
.
 
(
d
n
f
t
(
a
)
 
p
(
a
;
 
t
l
s
o
;
 

to)) 
+
 
2
"
 
V
'
 

Pea; 
tlso; 

to).
(10)

-
 
-
-

T
he F

okker- Planck equation fully describes the tem
poral evolution of

the probability density of the activation states, a, given a starting point, 80.
T
h
e
 
s
y
m
b
o
l
 
V
 
.
 
i
s
 
t
h
e
 

d
i
v
e
r
g
e
n
c
e
 
o
p
e
r
a
t
o
r

Figure 
3. E

volution of the probability distribution of a one-unit netw
ork. T

he initial activa-
tion Is zero. T

he probability distribution of the activotion changes through tim
e and settles

into a B
oltzm

ann distribution defined In continuous activation spoce. T
he graph w

as obtained
b
y
 
s
i
m
u
l
a
t
i
n
g
 
4
0
.
0
0
0
 
t
i
m
e
s
 
a
 
o
n
e
-
u
n
i
t
 S

D
N

 through 1, 000 settling cycles.
V
 
.
 
(
d
r
i
f
t
(
a
)
 
p
(
a
;
 
t
l
s
o
;
 

to)) 
, E

 
(
d
r
i
f
t
(
a
)
 
p
(
a
;
 
t
l
a
o
;
 

to))
,
 
=
 
I
 
u
S
i

(11)

O
ur purpose now

 is to analyze the evolution of the m
ultivariate probabil-

ity distribution of activation states as tim
e progresses. B

ut before w
e go into

m
ore form

al grounds let us first build our intuitions w
ith a sim

ple exam
ple.

Suppose w
e start a netw

ork from
 a particular point 80 a

t
 
t
i
m
e
 

to 
a
n
d
 
o
b
s
e
r
v
e

the activation patterns at several tim
e 

s
l
i
c
e
s
:
 
t
I
t
 

t2,. 

.
 
.
 

tm
. 

If w
e- now

 restart

our clocks and put the netw
ork back in the initial activation state, 80, w

e

w
ould probably observe a different trajectory through tim

e because the net-
w

ork is not determ
inistic. In this fashion w

e could build a histogram
 of the

activations for each of the tim
e slices. In our experim

ent, since w
e have 

t
i
m
e
 
s
l
i
c
e
s
,
 
w
e
 
w
o
u
l
d
 
h
a
v
e
 

different histogram
s. So far , each histogram

w
ould contain only tw

o activation states. A
s w

e increase the num
ber of

restarts, our histogram
s w

ould becom
e closer and c

l
o
s
e
r
 
t
o
 
t
h
e
 
a
c
t
u
a
l

p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y
 
o
f
 
e
a
c
h
 
p
a
r
t
i
c
u
l
a
r
 
s
t
a
t
e
 
a
 
a
t
 
t
i
m
e
 

t, 
given that w

e started
i
n
 
s
t
a
t
e
 
8
0
 
a
t
 
t
i
m
e
 

to. 
W
e
 
d
e
n
o
t
e
 
t
h
i
s
 
p
r
o
b
a
b
i
l
i
t
y
 
d
e
n
s
i
t
y
 
a
s
 

P
ea; tlao;to).

F
igure 3 exhibits an exam

ple of how
 these histogram

s evolve in the sim
plest,

one-unit SO
N

.

a
n
d
 
V
2
 
i
s
 
t
h
e
 
d
i
v
e
r
g
e
n
c
e
 
o
f
 
t
h
e
 
g
r
a
d
i
e
n
t
,
 
a
l
s
o
 
k
n
o
w
n
 
a
s
 
t
h
e
 

Laplace operator,

a2 
a' 

V
'
 
p
(
a
;
 
t
l
s
o
;
 

to) 
=
 
V
 
.
 
V
 
p
(
a
;
 
t
l
s
o
;
 

to) 
=
 
E
 

' ,

s
o
,
 
0

;
 
=
 
I
 

aa;
(12)

T
he divergence of a vector field has the follow

ing standard interpretation:
C

onsider a substance spreading at each point, a, in a m
ultidim

ensional field
w

ith velocity v(a). It can be show
n that the negative of the divergence of v(a)

r
e
p
r
e
s
e
n
t
s
 
t
h
e
 
i
n
f
l
o
w
 
o
f
 
s
u
b
s
t
a
n
c
e
 
p
e
r
 
u
n
i
t
 
v
o
l
u
m
e
 
a
t
 
t
h
a
t
 
p
o
i
n
t
.
 B

ecause
the first term

 in the right side of E
quation 10 has a negative sign, it tells us

that the probability is flow
ing throughout the entire activation space w

ith a
velocity com

ponent equal to the drift tim
es the probability. T

he effect 
this term

 is to spread m
ore probability tow

ards the better states.
T

he second term
 in the right side of E

quation 10 is the L
aplacian of the

probability. T
he L

aplacian is the d
i
v
e
r
g
e
n
c
e
 
o
f
 
t
h
e
 
g
r
a
d
i
e
n
t
 
a
n
d
,
 
t
h
u
s
,
 

tells us that probability is also flow
ing w

ith a velocity com
ponent opposite

common
Pencil

common
Pencil

common
Pencil


common
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common
Pencil
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;.-

to the gradient of the probability. T
he resi.llt of this flow

 is to m
ove proba-

bility from
 states w

ith m
ore probability tow

ards states w
ith less probability.

T
he relative im

portance of the first and second term
s in the right side of

E
q
u
a
t
i
o
n
 
1
0
 
i
s
 
g
o
v
e
r
n
e
d
 
b
y
 
t
h
e
 

param
eter. W

e w
ill now

 show
 that as tim

e
progresses, the probability distribution equilibrates at a point w

here each
state receives as m

uch probability as it sends. A
t that point, the netw

ork is
said to be at stochastic equilibrium

.

K
now

ing that there is one and only one equilibrium
 distribution m

akes
the derivation of the equilibrium

 probability density a m
uch easier task. T

he
equilibrium

 distribution
P(a), 

is defined as

p
(
a
)
 
=
 

!im
a
o
 
P
(
a
;
 

tlao; to).
(13)

2 S
tochastic S

tabU
ity

W
e already know

 that for the determ
inistic kernel, the activations stabilize

in local m
axim

a of the goodness function. In the stochastic case. it is clear
that activations cannot stabilize because G

aussian noise is constantly in-
jected to the netw

ork. H
ow

ever
,
 
i
n
 
t
h
e
 
s
t
o
c
h
a
s
t
i
c
 
c
a
s
e
 w

e can investigate
w

hether the probability distribution of activation states stabilizes over tim
e

and w
hether these stable distributions depend on the starting conditions. .

T
his is an im

portant issue in our present w
ork because w

e are interested in
learning stable distributions over a set of output variables.

T
o sim

plify the proof that these netw
orks exhibit stochastic stability, w

e
discretize tim

e and partition the activation space into an arbitrarily large
n
u
m
b
e
r
 
o
f
 hypercubes. SO

N
s satisfy the conditions of an im

portant
theorem

 in M
arkov process theory know

n as the M
arkovian basic lim

it
theorem

 (T
aylor &

 K
arlim

, 1984). SO
N

s are M
arkovian because the m

ost
recent state provides all available inform

ation about future states. T
hey are

also 
regular 

processes because given enough cycles, there is a nonzero prob-
ability of m

oving from
 any hypercube to any other hypercube in activation

space. G
iven these tw

o conditions, the M
arkovian basic lim

it theorem
 guar-

antees the three follow
ing properties: (1) there exists a lim

iting distribution;
(2) the lim

iting distribution is unique and independent of the starting , condi-
tions; and (3) this lim

iting probability distribution equals the long-run pro-
p
o
r
t
i
o
n
 
o
f
 
t
i
m
e
 
t
h
a
t
 
t
h
e
 
p
r
o
c
e
s
s
 
w
i
l
l
 
b
e
 
i
n
 
e
a
c
h
 
o
f
 
t
h
e
 hypercubes.

T
he fact that there is a lim

iting distribution that is unique w
ill, in princi-

ple, solve the problem
 of m

ultistability that w
e find in determ

inistic net-
w
o
r
k
s
.
 
T
h
e
 
t
h
i
r
d
 
p
r
o
p
e
r
t
y
 
i
s
 
s
o
m
e
t
i
m
e
s
 
r
e
f
e
r
r
e
d
 
t
o
 
a
s
 

ergod;c;ty. 
W

hen a
netw

ork is ergodic, the equilibrium
 probability distribution can be inter-

preted in tw
o very different w

ays: W
e m

ay use several trials restarting the
netw

ork from
 random

 points and letting it settle for a sufficient criterion
tim

e, 
tc 

2!: 
to. 

T
he equilibrium

 probability of a state hypercube can then be
estim

ated by collecting the proportion of trials that the netw
ork is in that

r
e
g
i
o
n
 
a
t
 
t
i
m
e
 

tc. 
W

e m
ay also use a single trial and record the long-run pro-

portion of tim
e spent in that region in this single trial. If the netw

ork is
ergodic, this second estim

ate also converges to the equilibrium
 probability

distribution. W
e w

ill use this property to design efficient m
ethods of collect-

ing equilibrium
 distribution statistics.

S
ince, at equilibrium

, the probabilities do not change, it m
ust be true that

the left side of E
quation 10 vanishes:

aPes)
=
 
0

ot 

.
 
.

(14)

Since w
e know

 from
 the basic lim

it theorem
 that the lim

it distribution is
unique, w

e just need to find a solution to E
quation 14. Such a solution can

b
e
 
f
o
u
n
d
 
b
y
 
m
a
k
i
n
g
.

roG
(a)

P(a ~
 
=

Z
 
o~~a)

i =
 I,...

o
a
;
 
l
o
a
;
 

w
hich can be w

ritten as

oG
(a)

p(a~
O
Z
 
p
(
a
)
 
..
 
O
;
i
=
I
,
.
.
.

oa; 
oa; 

oa;

(IS)

(16)

It is easy to see that the B
oltzm

ann distribution

p(a) =

.!. 

2G
(1)/o

(17)

w
h
e
r
e
 
Z
 
=
 

e2G
(I)/o 

I da represents the m
ultiple integral over the w

hole

activation space, satisfies E
quation 16, and therefore, is the unique lim

iting
distribution.

I
t
 
i
s
 
a
 
w
e
l
l
- know

n fact, derivable using calculus of variations, that the
continuous B

oltzm
ann distribution optim

izes the continuous version of
H

elm
holtz

s function. T
his distribution assigns a real value to each possible

m
ultivariate probability

distribution. T
his real value reflects a trade-off

betw
een tw

o term
s: (1) a term

 . that gets larger as the expected goodness
. value increases; and (2) a term

 that gets larger as the entropy of the net-
w

ork increases. In the SO
N

, H
elm

holtz
s
 
f
u
n
c
t
i
o
n
 
a
s
s
u
m
e
s
 
t
h
e
 
f
o
l
l
o
w
i
n
g

form
:

,r 
F(P) 

.:;: 
:;:. 

+
 "2 

.:;: In 

Ii 

:;:. 

(18)

w
h
e
r
e
 
t
h
e
 

F(p) 
notation is used to em

phasize that the function depends on a
e
n
t
i
r
e
 
p
r
o
b
a
b
i
l
i
t
y
 
d
i
s
t
r
i
b
u
t
i
o
n
 

p. 

T
h
e
 
t
e
r
m
 

c:::: G
 

d
e
n
o
t
e
s
 
t
h
e
 
e
x
p
e
c
t
e
d

value of goodness, and c:::: In (
1
 
/
 

p) 

represents the expected value of the
logarithm

 of one over the probabilities, also know
n as entropy. T

he tw
o

common
Pencil

common
Pencil

common
Pencil
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principles reflected in H
elm

holtz
s function are in contradiction. O

n one
hand, m

axim
um

 entropy is achieved by providing an equal share of proba-
bility to all the activation states, no m

atter how
 good they are. O

n the other
hand

, m
axim

um
 expected value is achieved by giving m

axim
um

 probability
to the best state. A

m
ong all possible continuous m

ultivariate distributions,
the B

oltzm
ann distribution is the one that achieves the optim

al balance
betw

een these tw
o principles, m

axim
izing H

elm
holtz

s function. W
e can

now
 see the dynam

ics of the activation from
 yet another perspective. U

sing

sim
ple local com

putations, SO
N

s perform
 a rem

arkable optim
ization pro-

c
e
s
s
;
 
t
h
e
y
 
s
e
a
r
c
h
 
i
n
 
t
h
e
 
s
p
a
c
e
 
o
f
 
a
l
l
 
p
o
s
s
i
b
l
e
 
c
o
n
t
i
n
u
o
u
s
 
m
u
l
t
i
v
a
r
i
a
t
e

distributions for the one that optim
izes H

elm
holtz

s
 
f
u
n
c
t
i
o
n
:
 
t
h
e
 
c
o
n
-

tinuous B
oltzm

ann distribution.
F

igure 3 exhibits how
 a sim

ple one-unit netw
ork approaches the equilib-

rium
 distribution as settling tim

e progresses. T
he figure w

as obtained by ini-
tializing the unit' s activation to zero and letting it settle for a certain period
o
f
 
t
i
m
e
,
 

t. 
T

his settling process w
as repeated 40, 000 tim

es w
ith histogram

s
being com

puted at different tim
e fram

es. Figure 3 show
s how

 these histo-
gram

s approach the B
oltzm

ann distribution as tim
e advances. T

he obtained
histogram

 after 2, 000 cycles w
as in agreem

ent w
ith the theoretical

B
oltzm

ann distribution to the third decim
al place.

d
e
s
i
r
e
d
 
p
r
o
b
a
b
i
l
i
t
y
 
d
i
s
t
r
i
b
u
t
i
o
n
-
n
o
t
 
j
u
s
t
 
t
h
e
 
a
v
e
r
a
g
e
 
v
a
l
u
e
s
 
o
f
 individual

u
n
i
t
s
-
a
r
e
 
e
x
a
c
t
l
y
 equal. Follow

ing analogous steps as in the SB
M

, it can be
show

n that the gradient descent learning rule for w
eights is given by the

follow
ing equation (see A

ppendix):

A
w

ij 
=
 
E
 

fFd(E
xy

(a;aj)) 
(a;aj))

(20)

w
here .:1 w

ij 
i
s
 
t
h
e
 
i
n
c
r
e
m
e
n
t
 
f
o
r
 
t
h
e
 
w
e
i
g
h
t
 

w
ij. 

T
h
e
 
t
e
r
m
 

E
xy

(a;aj) 
represents

t
h
e
 
e
x
p
e
c
t
e
d
 
v
a
l
u
e
 
o
f
 
t
h
e
 
p
r
o
d
u
c
t
 
o
f
 
t
h
e
 
a
c
t
i
v
a
t
i
o
n
s
 
o
f
 
t
h
e
 

ith 
a
n
d
 
j
t
h
 
u
n
i
t
s

w
hen the input units are fixed to pattern x

, the output units are fixed to pat-
t
e
r
n
 
y
 
a
n
d
 
t
h
e
 

h
i
d
d
e
n
 
u
n
i
t
s
 

a
r
e
 
f
r
e
e
 
t
o
 
e
v
o
l
v
e
 
a
c
c
o
r
d
i
n
g
 
t
o
 
E
q
u
a
t
i
o
n
 
1
0
;
 

E
dO

is the expected value using the desired probability distribution of the output
vectors; 

(a;aj) 
represents the expected value of this product w

hen the input
units are fixed to pattern x but the output and hidden units are free, and E

 
i
s

a
 
s
m
a
l
l
 
c
o
n
s
t
a
n
t
 
u
s
u
a
l
l
y
 
k
n
o
w
n
 
a
s
 
t
h
e
 

step-size 
o
r
 
t
h
e
 

learning rate.
T

he contrastive learning rule for the gain param
eters is as follow

s (see
A

ppendix):

q2 

A
gk 

=
 
E

"2 
(Sk) 

E
d(E

xy(Sk)))
(21)
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E

A
R

N
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G
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O
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T
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U
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U
S PR

O
B

A
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Y
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R
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U

T
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N
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T
he problem

 is defined in the follow
ing w

ay: W
e fix the activations of a set

of 
i
n
p
u
t
 
u
n
i
t
s
 

t
o
 
a
 
p
a
r
t
i
c
u
l
a
r
 
v
e
c
t
o
r
,
 
x
 
E
 

and our objective is to get
v
e
c
t
o
r
s
 
o
f
 

o
u
t
p
u
t
 
u
n
i
t
s
,
 

y
 
E
 

to exhibit a desired joint probability density
function. T

his desired probability is represented by l'xd(y). T
he set of units

considered as inputs or outputs m
ay vary from

 pattern to pattern.
In this case the derivation follow

s sim
ilar steps as in the discrete B

oltzm
ann

m
a
c
h
i
n
e
 
(
A
c
k
l
e
y
 
e
t
 
a
t
,
 1985). T

he only differences in the continuous case
are: (1) w

e substitute sum
s by integrals; and (1) w

e can also calculate the
gradient descent rule for the gain param

eters. T
o begin w

e define an error
function that captures the difference betw

een obtained and desired continu-
ous probability distributions:

w
here 

(Sk) 
i
s
 
t
h
e
 
e
x
p
e
c
t
e
d
 

stress 
of the kth unit w

hen the inputs are fixed
t
o
 
p
a
t
t
e
r
n
 
x
,
 
a
n
d
 

E
xy

(Sk) 
i
s
 
t
h
e
 
e
x
p
e
c
t
e
d
 

stress 
w

hen the outputs are also fiX
ed

to pattern y. In the case w
here m

ore than one
input..... probability distribu-

tion
pair have to be learned, the appropriate rule is obtained by averaging

the gradients for the different input patterns.

r
 
P
x

cA
Y

)
T

IG
x 

=
 
J
 

y
 
p
x
d
C
y
)
 

I
n
 
(
 

(y)

) dy
(19)

1 Sam
pling M

ethods
T

he learning rules call for expected values of several quantities. U
nfor-

tunately, w
e cannot derive analytically these statistics and thus w

e need to
estim

ate them
 by running sim

ulations and approxim
ating the desired statistics

based on a finite num
ber of sam

ples. T
he C

H
L

 rule requires running the net-
w

ork in tw
o different phases: a free phase w

here the input units are fixed w
ith

hidden and output units running free, and a fixed phase w
here the outputs

are also fixed to a vector sam
pled from

 the desired probability distribution.
A

n im
portant issue is d

e
v
e
l
o
p
i
n
g
 
m
e
t
h
o
d
s
 
t
o
 
o
b
t
a
i
n
 
e
s
t
i
m
a
t
e
s
 
o
f
 
t
h
e

term
s in the learning rules in a fast and accurate fashion. O

ne approach is to
use 

a
n
n
e
a
l
i
n
g
 
s
c
h
e
d
u
l
e
s
,
 

like in the SB
M

, by starting the settling process
w

ith a large noise com
ponent and gradually dim

inishing it. A
nother approach

i
s
 
t
o
 
u
s
e
 

s
h
a
r
p
e
n
i
n
g
 
s
c
h
e
d
u
l
e
s
 

(A
kiyam

a et al., 1989) w
here initially sm

all
gain values are slow

ly replaced through setting by larger ones. C
om

bina-
tions of sharpening and annealing are also possible. D

ue to the exponential
nature of the B

oltzm
ann distribution, the desired statistics are m

axim
ally

influenced by the activation states w
ith m

axim
um

 goodness. A
nnealing and

w
h
e
r
e
 
P
x (y) represents the obtained equilibrium

 probability density func-
t
i
o
n
,
 
a
n
d
 
I
 

dy represents the m
ultiple integral in the space of output units.

.
 
T
h
e
 
n
o
t
a
t
i
o
n
 

T
IG

x
and 

Px is used to em
phasize that the functions are specific

to particular values of the input vector. T
his error function is a continuous

v
e
r
s
i
o
n
 
o
f
 
t
h
e
 

t
o
t
a
l
 
i
n
f
o
r
m
a
t
i
o
n
 
g
a
i
n
 

function used in the S
B

M
 (A

ckley et
a
t
,
 
1
9
8
5
)
.
 
I
t
 
i
s
 a
l
w
a
y
s
 
p
o
s
i
t
i
v
e
 
a
n
d
 
i
t
 vanishes w

hen the obtained a~d

common
Pencil

common
Pencil

common
Pencil
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sharpening m
ethods try to focus the sam

pling tim
e to the largest attrflctors

(m
axim

a in the G
oodness function) avoiding sm

aller attractors, H
ow

ever
these procedures run into problem

s w
hen the netw

ork has to learn probability
distributions w

here there is m
ore than one equally desirable pattern of acti-

vation for the sam
e input, In this case each of the desired patterns w

ill have
a corresponding m

axim
um

 w
ith the sam

e goodness value, B
ecause annealing

schedules are designed to visit only one of the m
axim

a at a tim
e, the obtained

statistics w
in be unstable and w

ill lead to instabilities in the learning process,
11'1 such cases. w

e have found it beneficial to let the netw
ork visit several

large attractors before changing the w
eights, W

e could achieve this by doing
either one of tw

o things: W
e could let the netw

ork settle once per learning
trial. giving enough tim

e at equilibrium
 to jum

p out of attractors and visit
several different ones, W

e could also restart the netw
ork several tim

es from
different random

 points, but w
ith less tim

e at equilibrium
 each tim

e, In this
case the probability of visiting different attractors is obtained by averaging
over the several restarts, Since the netw

ork is ergodic, equilibrium
 statistics

using one or m
any restarts converge, but in practice w

e have found that the
s
t
o
c
h
a
s
t
i
c
 
e
q
u
i
l
i
b
r
i
u
m
 
s
t
a
t
i
s
t
i
c
s
 
a
r
e
 
a
p
p
r
o
x
i
m
a
t
e
d
 
f
a
s
t
e
r
 
b
y
 
u
s
i
n
g
 
t
h
e
 

m
ulti-

p
l
e
 
r
e
s
t
a
r
t
s
 
m
e
t
h
o
d
,
 

A
 sim

ilar effect m
ay be achieved by changing the

w
eights based on a tem

poral m
oving average of the gradients obtained in

previous learning epochs, In our sim
ulations w

e used the m
ultiple restarts

technique in com
bination w

ith an exponential m
oving average technique,

W
e
 
d
i
d
 
n
o
t
 
u
s
e
 
a
n
n
e
a
l
i
n
g
 
o
r
 
s
h
a
r
p
e
n
i
n
g
 
s
c
h
e
d
u
l
e
s
,
 

1 G
eneral S

pecifications
T

he continuous L
angevin equation w

as approxim
ated using a discrete tim

e
difference equation of the follow

ing form
:

A
. 

aiel) 
A

.t(neti(t) 
neti(t)) 

a
 
.
.
r
&
Z
i
(
t
)
;
 

;
 
=
 
I
.
.
"
 

w
here 

neti 
is the logit transform

 of the scaled activations
(22)

R
esults on som

e of these problem
s w

ith a previous m
odel instantiating the

principles of continuous. stochastic, interactive
' processing are also

presented in M
ovellan and M

cC
lelland (in press),

ai 
m

;n
ne4 

=
 
-
-
 

Jta~ 

=
 
-
-log 

gi gi 
m

ax 

Z
i(t) 

is a standard G
aussian variable w

ith zero m
ean and unit variance; T

he
param

eters 
m

ax 
and 

m
in 

control the bounds of the activation values, T
hey

w
ere set ~

o 1,0 and - 1,0 respectively, T
o avoid overflow

 problem
s w

ith the
l
o
g
a
r
i
t
h
m
s
,
 
w
e
 
d
i
d
 
n
o
t
 
l
e
t
 
t
h
e
 
a
c
t
i
v
a
t
i
o
n
s
 
g
e
t
 
l
a
r
g
e
r
 
t
h
a
n
 

m
ax-(m

ax-m
in)/

1
0
0
 
o
r
 
s
m
a
l
l
e
r
 
t
h
a
n
 

m
in 

(
m
a
x
-
 
m
i
n
)
/
I
0
0
,
 

W
e
 
u
s
e
d
 
t
i
m
e
 
i
n
c
r
e
m
e
n
t
s
 

I1t 
in the order of ,

1
,
 
I
n
 
o
u
r
 
s
i
m
u
l
a
t
i
o
n
s
 
w
e

trained the netw
ork to reproduce probability distributions rather than single

o
u
t
p
u
t
 
v
e
c
t
o
r
s
,
 
I
n
 
s
u
c
h
 
c
a
s
e
s
,
 
w
e
 
f
o
u
n
d
 
i
t
 
b
e
n
e
f
i
c
i
a
l
 
t
o
 
u
s
e
 
t
h
e
 

m
ultiple re-

starts 
technique. T

he num
ber of restarts ranged from

 1 to 80 depending on
the problem

, In each restart trial w
e random

ly chose a particular target out-
put vector from

 the desired distribution and collected covariance statistics
for the free and fIX

ed phases, T
he phases in each "restart" trial consisted of

about 
SO

 
iterations w

here activation convariance statistics w
ere not col-

l
e
c
t
e
d
,
 
f
o
l
l
o
w
e
d
 
b
y
 
a
b
o
u
t
 

SO
 

iterations w
here statistics w

here collected,
W

hen training netw
orks to approxim

ate discrete outputs, w
e have found

it beneficial to use non-extrem
e teacher values, For instance, for the SD

N
version of X

O
R

 and translation problem
S

 the teachers w
ere set to either

- .9 or ,9
 
i
n
s
t
e
a
d
 
o
f
 
-

0
 
o
r
 
1
,0, T

he w
eights w

ere sym
m

etric. and the gain
p
a
r
a
m
e
t
e
r
s
 
w
e
r
e
 
m
a
i
n
t
a
i
n
e
d
 
c
o
n
s
t
a
n
t
 
a
n
d
 
e
q
u
a
l
 
f
o
r
 all units. A

daptive
gains m

ay prove im
portant in hardw

are im
plem

entations w
ith lim

ited preci-
sion w

eights but are not particularly r
e
l
e
v
e
n
t
 
f
o
r
 
o
u
r
 
s
i
m
u
l
a
t
i
o
n
s
,
 
A
s

discussed in M
ovellan (1990), gradient descent calls for the self-connections

to be changed at half the rate of the other w
eights, O

ur sim
ulations follow

ed
this rule. T

he activation covariance statistics necessary for the learning rule
w

ere estim
ated using the m

ultiple restarts m
ethod in com

bination w
ith an

exponential m
oving average of previous gradients. N

etw
orks w

ere allow
ed

to settle several tim
es per pattern w

ith different random
 starting values, and

the activation covariances w
ere accum

ulated for all the patterns before
changing the w

eights. T
he m

oving average of the gradient w
as calculated

according to the follow
ing equation:

T
IG

.
(epoch) 

=
 
(
I
 
-
 
a
)
 

tJ 
T

IG
.(epoch) 

a'V
T

IG
.

(epoch - I) 
(24)

w
h
e
r
e
 
f
7
 

T
IG

.(epoch) 
i
s
 
t
h
e
 
e
x
p
o
n
e
n
t
i
a
l
l
y
 
a
v
e
r
a
g
e
d
 
g
r
a
d
i
e
n
t
 
a
n
d
 
'
V
 

T
IG

.(epoch)
is the obtained gradient on the current epoch, T

he w
eights w

ere m
odified

p
r
o
p
o
r
t
i
o
n
a
l
l
y
 
t
o
 
t
h
e
 
e
x
p
o
n
e
n
t
i
a
l
l
y
 
a
v
e
r
a
g
e
d
 
g
r
a
d
i
e
n
t
:

(23)

4. S
IM

U
LA

T
IO

N
S

H
ere w

e w
ill focus on the C

H
L rule and the problem

 o
f
 
l
e
a
r
n
i
n
g
 
d
i
s
c
r
e
t
e

and continuous distributions of various types, W
e present sim

ulations of the
four follow

ing problem
s:

1
,
 
C
o
m
p
l
e
t
i
o
n
 exclusive-or (X

O
R

): A
 variation on a standard benchm

ark
for connectionist netw

orks, 
2
.
 
W
o
r
d
 translation problem

: L
earning bidirectional stochastic m

appings
of discrete m

ultidim
ensional representations,

3, M
ultidim

ensional continuous probability d
i
s
t
r
i
b
u
t
i
o
n
s
:
 
L
e
a
r
n
i
n
g

various types of m
ultidim

ensional continuous distributions w
ith and

w
i
t
h
o
u
t
 
i
n
t
e
r
d
e
p
e
n
d
e
n
c
i
e
s
 
i
n
 
t
h
e
 
o
u
t
p
u
t
 
u
n
i
t
s
,
 

4
,
 
X
O
R
 

governed probability distributions: A
 problem

 that requires
learning high-order output-unit statistics, and the use of hidden unis,

common
Pencil


common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil


common
Pencil


common
Pencil

common
Pencil

common
Pencil

common
Pencil
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A
w

(epoch) 
E

(~T
IG

x
(epoch)). 

(25)

W
e
 
d
r
o
p
p
e
d
 
t
h
e
 
2
 
/
 

constant in the gradient calculations. T
herefore, the

learning rates, (E
), are reported w

ith respect to the gradient tim
es q

Z
 
/
 
2
.
 

annealing or sharpening schedules w
ere used. T

he training process w
as

s
t
o
p
p
e
d
 
w
h
e
n
 
t
h
e
 

t
o
t
a
l
 
i
n
f
o
r
m
a
t
i
o
n
 
g
a
i
n
 

(T
IG

) w
as low

er than a ctrtain
criterion. In practice, w

e approxim
ated the integral in E

quation 19 by defin-
i
n
g
 
a
 
r
e
g
i
o
n
 
s
u
r
r
o
u
n
d
i
n
g
 
e
a
c
h
 
o
f
 
t
h
e
 
d
e
s
i
r
e
d
 
d
i
s
t
r
i
b
u
t
e
d
 
s
t
a
t
e
s
,
 
t
h
e
 

tolerance
region, 

and assessing the proportion of tim
e that the activations fell w

ithin
that region w

hen statistics are collected. T
he state w

as treated as falling in
the tolerance region w

hen all the obtained activations w
here in the interval

defined by the desired activations :t tolerance.

W
ord T

ranslation Problem

1 C
om

pletion E
xclusive- O

r (X
O

R
)

T
he purpose of this sim

ulation w
as to test w

hether SD
N

s could do com
ple-

tionsrequiring the use of hidden units (R
um

elhat1, H
inton

,
 
&
 
W
i
l
l
i
a
m
s
,

1986). In this version of X
O

R
, there w

ere no input units, nine hidden units,
and three output units. T

he four pattern com
binations of the X

O
R

 problem
,

1
 
-

1
;
 
-
I
l
l
;
 
1
 
-
1
1
;
1
1
 
-

1), w
ererepeatedlypresentedtotheout-

p
u
t
 
u
n
i
t
s
.
 
T
h
e
 
t
a
s
k
 
w
a
s
 
t
o
 
l
e
a
r
n
 
t
o
 
r
e
p
r
o
d
u
c
e
 
w
i
t
h
 
e
q
u
a
l
 
p
r
o
b
a
b
i
l
i
t
y
 

(p 
=

 .25)

each of the four X
O

R
 patterns in the absence of any input. A

fter training,
w

e tested the netw
ork by clam

ping O
. 1, or 2 inputs and seeing w

hether it
generated a proper com

pletion.

Specifications: T
he netw

ork consisted of i2 fully connected units (3 output
units, 9 hidden units). Initial w

eights w
ere sam

pled from
 a (

-
 
i
,
 
1
)
 uniform

 dis-

tribution. L
earning w

as done w
ith 80 settling restarts per pattern, E

ach settling
started w

ith random
 activation values in the (- .9, , 9) range, follow

ed by
50 initial cycles of synchronous activation update w

here statistics w
ere not

collected, and 50 additional cycles w
here activation covariance statistics w

ere
collected. G

ains w
ere fiX

ed at 10. 0, A
/at .

1
,
 
a
n
d
 

at . 1. T
he step-si~

e constant

for w
eight adjustm

ent w
as set at . 025, L

earning w
as stopped w

hen the T
IG

w
as sm

aller than ,1 (tolerance w
as . 8). T

he training process w
as repeated 20

tim
es w

ith different random
 starting w

eights.

S
panish" M

odule

FIgure 4. T
he architecture used for the translation problem

. " S
panish" arid " E

nglish" w
ords

w
ere encoded as eight- dim

ensional discrete randam
 patterns.

T
he average num

ber of epochs to criterion w
as 198.4 (m

in 20, m
ax 558).

A
fter training w

e clam
ped none, one, or tw

o of the output units to each of
the four possible binary com

binations and let the other units run free for
000 cycles. W

e tested each netw
ork based on the. pattern of activation ob-

tained on cycle 1, 0
0
1
.
 
A
l
l
 
t
h
e
 
3
- bit com

pletions, w
ith no units clam

ped,
w

ere correct (they w
ere one of the four X

O
R

 patterns). W
e then tested the

20 netw
orks w

ith the 120 possible 2- bit com
pletion problem

s. T
he average

percentage of correct 2-bit com
pletions w

as . 975. Finally, w
e tested the 20

n
e
t
w
o
r
k
s
'
 
w
i
t
h
 
t
h
e
 
2
4
0
 
p
o
s
s
i
b
l
e
 
I
- bit com

pletion problem
s. T

he average
num

ber of correct I-bit com
pletions w

as . 967.

3 W
ord T

ranslation Problem
In this sim

ulation w
e trained SD

N
s to approxim

ate discrete probabilistic
m

appings w
ith arbitrary output unit interdependencies. W

e also in-
vestigated w

hether C
H

L
 can be used to train bidirectional m

appings w
here

each visible unit m
ay act as input or output depending on the situation.

T
he inspiration for this sim

ulation w
as the translation problem

 presented
in the introduction. T

he goal w
as to translate " w

ords
"
 
f
r
o
m
 
o
n
e
 
"

lan-
guage" to another. T

he requirem
ents w

ere to encode the w
ords in a distrib-

uted m
anner, to allow

 m
ore than one acceptable translation per w

ord, and
to produce bidirectional translations w

ith the sam
e netw

ork (e. g., E
nglish-

Spanish, Spanish- E
nglish). T

his is a problem
 that cannot be com

puted w
ith

determ
inistic netw

orks such as B
P or D

B
M

s.
In this sim

ulation, w
ords w

ere encoded as random
 binary patterns dis-

tributed am
ong eight E

nglish and eight Spanish units (see Figure 4 and
T

able 1). T
here w

ere four additional hidden units and all 4 +
 8 +

 8 units w
ere

fully, interconnected. H
alf the tim

e Spanish units w
ere clam

ped to get a

common
Pencil

common
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common
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common
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common
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common
Pencil

common
Pencil

common
Pencil

common
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T
A

B
L

E
 1

T
ransl(itlon Problem

:
E
n
c
o
d
i
n
g
 
o
f
 
t
h
e
 
D
i
f
f
e
r
e
n
t
 
S
p
a
n
i
s
h
 
a
n
d
 
E
n
g
l
i
s
h
 W

ords

T
A

B
L

E
 2

T
ranslation Problem

W
ord"

bit code
aceituna

casa
estar

1, -
hater

1. -
oliva

ser

l' 
hom
house
m

ake
olive

Input
T

hanslatJon
house

coso
1.000

1.000
hom

e
coso

1.000
1.000

hater
1.000

1.000
m

ake
hater

1.000
(1.000

olive
aceituna

700
657

oliva
300

289
ser

500
0.495

estar
500

0.486
caB

O
house

700
674

hom
e

300
303

hacer
500

(0.464
m

ake
500

531
aceituna

olive
1.000

(1,000
oliva

olive
1.000

(1.000)
ser

1.000
000)

estar
1.000

1.000)

translation in the E
nglish m

odule; otherw
ise. the E

n
g
l
i
s
h
 
u
n
i
t
s
 
w
e
r
e

clam
ped to get a translation in the Sp~sh m

odule.

C
olum

n 1 show
s the input pottern ond colum

ns 2 and 3 the possible transla-
tions. T

he tw
o num

bers for each translatlan represent the desired probability
. and, in brackets, the obtained probability of the translotions after training. A
pattern w

as considered correct If each output unit activation w
as w

ithin a .
r
a
n
g
e
 
o
f
 
t
h
e
 
d
e
s
i
r
e
d
 
v
a
l
u
e
 
(
-

9 or +
 ,
9
)
,
 
E
v
e
n
 
w
i
t
h
 
t
h
i
s
 
t
o
l
e
r
a
n
c
e
 
l
e
v
e
l
,
 
a
 
t
a
r
g
e
t

region is still less than 0,07%
 of the eight-dim

ensional output space.

Specifications: Initi81 w
eights w

ere sam
pled from

 a (-
1. 1) uniform

 distribu-
tion, L

earning w
as done in batch m

ode w
ith 20 settling restarts per pattern.

E
ach settling started w

ith activations set at 0. 0
,
 
f
o
l
l
o
w
e
d
 
b
y
 

SO
 initial cycles of

a
c
t
i
v
a
t
i
o
n
 
u
p
d
a
t
e
 
w
h
e
r
e
 
s
t
a
t
i
s
t
i
c
s
 
w
e
r
e
 
n
o
t
 
c
o
l
l
e
c
t
e
d
,
 
a
n
d
 

SO
 
a
d
d
i
t
i
o
n
a
l
 
c
y
c
l
e
s

w
here statistics w

ere collected. G
ain w

as fIX
ed at 1.

0, 
/1t 

at .1, (1 at . 1, a at .
T

he stepsize constant for w
eight adjustm

ent w
as . 000S. T

raining w
as stopped

w
hen T

IG
 w

as below
 . 1 (tolerance . 8). T

his w
as follow

ed by an additional
fID

e-tuning training period w
ith 200 settling restarts per pattern (40 additional

epochs). T
he additional fine-tuning training w

as stopped w
hen T

IG
 w

as below
1. T

he entire procedure took 927 initial training epochs follow
ed by 40 addi-

tional fine-tuning epochs.

T
A

B
LE

 3

D
esired P

robability D
istributions

for E
ach of the F

ive O
utput U

nits

O
utput unit

D
istribution

E
x
p
e
c
t
e
d
 
V
a
l
u
e

B
inom

ial
U

nivalued
U

niform
U

nivalued
B

inom
ial

T
he netw

ork w
as then tested 1, 000 tim

es per pattern. E
ach testing trial

started w
ith activations set at zero. follow

ed by 50 cycles w
here probabilities

w
ere not collected and 50 additional cycles w

here probabilities w
ere collected.

T
he results after 967 training epochs are show

n in T
able 2. It can be seen

that a good approxim
ation to the desired probabilities is obtained. M

ost
im

portantly, . for the am
biguous w

ords, w
here m

ore than one translation is
possible. the netw

ork w
as nearly alw

ays in one of the correct alternatives
a
n
d
 
d
i
d
 
n
o
t
 
g
e
n
e
r
a
t
e
 
u
n
a
c
c
e
p
t
a
b
l
e
 
b
l
e
n
d
s
.
 

Iii this stim
ulation w

e used
. a relatively large num

ber of restarts per pat-
tern to allow

 the netw
ork to get a fair sam

ple of the probability distribution
over the alternative outputs for each input. T

he netw
ork can learn very fast

and w
ith far few

er restarts to r~trict itself to produce one of m
any acceptable

alternatives, but a larger num
ber of restarts is recom

m
ended w

hen conver-
gence to the exact probability distributions of the alternatives is needed.

4 L
earning C

ontinuous Probability D
istributions

o
f
 
M
u
l
t
i
p
l
e
 
O
u
t
p
u
t
 
U
n
i
t
s
 

T
he tw

o previous sim
ulations show

ed that C
H

L
 can be used to train discrete

probability distributions. T
he purpose of this sim

ulation is to show
 that w

e
can also approxim

ate continuous probability distributions. T
he netw

ork
consisted of 5 output units connected to 10 fully interconnected hidden
units. E

ach output unit w
as trained to reproduce a continuous probability

distribution. T
he desired probability distributions w

ere independent and
different for each output unit (see T

able 3).
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Figure 5. O
utput unit activations of a trained netw

ork. E
ach row

 represents the activation
o
f
 
o
n
e
 
o
u
t
p
u
t
 
u
n
i
t
 
t
h
r
o
u
g
h
o
u
t
 
1
0
, 000 settling cy cies.

:::tIJ
a.. 0.

"""10(').......(')10,..'"
9999900000

A
cIlw

tlo

~0.

10.
a.. 0.

Il)
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9999900000

A
ctIvation

A
verage

U
nit 1 0.0200

U
nit 2 0.0124

U
n
i
t
 
3
 
-

0163
U
n
i
t
 
4
 
.
 
0
. 4949

U
nit 5 - 0.4956

S
tandard D

eviation
9014
1099
5676
0970
7533

F
igure 6. H

istogram
s of the equilibrium

 probability distributions of the five output units. .

Specifications: Initial w
eights w

ere sam
pled from

 a ( - I, 1) uniform
 distribu-

tion. L
earning w

as done in batch m
ode. E

ach epoch the netw
ork w

as

presented w
ith the sam

e 64 patterns chosen to represent the desired distribu-
tion. E

ach settling started w
ith activations random

ly set in the (- ,9, . 9) range,

follow
ed by S

O
 initial cycles w

here statistics w
ere not collected, and S

O
 
a
d
d
i
-

tional cycles w
here statistics w

ere collected. G
ains w

ere set at 1. 0, 
!J.t 

at .1, (1 at

2, a at .1. T
he step-size constant for w

eight adjustm
ent w

as set at . 00025.
T

raining w
as done at 6, 0

0
0
 
e
p
o
c
h
s
.
 

Figure 5 show
s 2,0

0
0
 
a
c
t
i
v
a
t
i
o
n
 
c
y
c
l
e
s
 
o
f
 
t
h
e
 
f
i
v
e
 
o
u
t
p
u
t
 
u
n
i
t
s
 of a trained

netw
ork. T

he figure w
as obtained by settling the netw

ork 10 different tim
es

in sequence. E
ach settling period started w

ith activations random
ly , chosen

in the ( - .9, .9) range and w
as follow

ed by 200 settling cycles. T
his m

ade a
total of 10 x 200 settling cycles. T

he figure show
s the activations every 10

cycles. It can be seen that the output distributions successfully approxim
ate

the desired distributions given the constraints im
posed by noise. T

hus, the
first output unit settles w

ith about equal frequency in either one of the tw
o

desired state regions. T
he second output unit has a G

aussian distribution

centered at 0.0, the desired value. T
he third output unit activations are ap-

p
r
o
x
i
m
a
t
e
l
y
 
u
n
i
f
o
r
m
 
i
n
 
t
h
e
 
(
-

1, 1) interval, and the last tw
o output units

have the sam
e expected value (- .5) and approxim

ate a constant deter-
m

inistic teacher (output unit 4). and a binom
ial teacher (output unit 5). 

desired, all 10 pairw
ise correlations of the output u

n
i
t
 
a
c
t
i
v
a
t
i
o
n
s
 
a
f
t
e
r

.
 
t

training w
ere zero to the second decim

al place. H
istogram

s and statistics of
the obtained distributions are in F

igure 6.
W

e then perform
ed another sim

ulation w
ith the sam

e param
eter specifi-

cations to test w
hether interdependencies betw

een the output units could be
learned. In particular, w

e introduced the follow
ing d

e
p
e
n
d
e
n
c
y
 
b
e
t
w
e
e
n

output units 1 and 3: W
hen the teacher for output unit 1 w

as - 1.
0
,
 
t
h
e

teacher for output unit 3 could be anyw
here in the ( - 1.

0
,
 
0
.0) range, and

w
hen the teacher for output unit 1 w

as 1.0
,
 
t
h
e
 
t
e
a
c
h
e
r
 
f
o
r
 
o
u
t
p
u
t
 
u
n
i
t
 
3

could be anyw
here in the (0.0

,
 
1
.0) range. T

he other three output units
received the sam

e teacher distributions as in the previous sim
ulation. T

o
m

ake the problem
 m

ore difficult w
e did not allow

 direct connections betw
een
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O
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Figure 7. O
utput unit activations of a trained netw

ork. E
ach row

 represents the octivatlons
o
f
 
e
a
c
h
 
o
u
t
p
u
t
 
u
n
i
t
 
t
h
r
o
u
g
h
o
u
t
 
1
0
, 000 settling cycles.

the output units so that interdependencies could only be captured via hidden
unit connections. T

he netw
ork' s architecture and the learning param

eters
w

ere identical to the previous sim
ulations. Figure 7, w

hich w
as constructed

in the sam
e m

anner as Figure 6, show
s 2, 0

0
0
 
c
y
c
l
e
s
 
o
f
 
t
h
e
 
a
c
t
i
v
a
t
i
o
n
 
o
f
 
o
u
t
-

put units 1 and 3 of a trained netw
ork. 

It can be seen that the obtained activations approxim
ate w

ell the desired
interdependency. W

hen output unit 1 is in state -
 
1
.
0
,
 
o
u
t
p
u
t
 
u
n
i
t
 
3
 
v
a
r
i
e
s

i
n
 
t
h
e
 

0) 
range and w

hen output unit 1 is in state 1, output unit 3 is in
the (0, 1) range. T

he expected Pearson correlation coefficient betw
een these

tw
o units w

as . 77, the obtained correlation w
as . 83. A

s expected, all other
correlations w

ere zero to the third decim
al place. Figure 8 show

s the joint
probability distribution of outpu t units 1 and 3 in a trained netw

ork. T
he

obtained distribution appears to be a m
ixture o

f
 
m
u
l
t
i
v
a
r
i
a
t
e
 
G
a
u
s
s
i
a
n

distributions that approxim
ate the desired joint distribution. T

his m
ay be

due to the fact that if the noise is sufficiently sm
all , the distribution of acti-

vations on the neighborhood of each attractor is approxim
ately G

aussian.
A

s a first approxim
ation w

e can see the obtained distributions as m
ixtures

of m
ultivariate G

aussian " experts
"
 
w
h
e
r
e
 
t
h
e
 salience of each expert is

m
odulated by the input vector.

5 L
earning X

O
R

 G
ovem

ed Probability D
istributions

T
his is a problem

 that cannot be learned w
ith B

oltzm
ann m

achines or B
P

netw
orks and that necessitates hidden units. T

here w
ere 2 input units, 1 out-
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oJ15

Q
;:

oJJ9

0.01

F
igure e. Joint distribution of output units 1 and 3 In a trained netw

ork.

T
A

B
LE

 ..
D

esired O
utput P

robability D
istributions

o
s
 
0
 
F
u
n
c
t
i
o
n
 
o
f
 
t
h
e
 
I
n
p
u
t
 
P
a
t
t
e
r
n
s

I
n
p
u
t
 
U
n
i
t
s

D
istribution

E
x
p
e
c
t
e
d
 
V
a
l
u
e

U
nivalued

B
inom

ial
B

inom
ial

U
nivalued

p
u
t
 
u
n
i
t
,
 
a
n
d
 
1
0
 hidden units, T

he probability distribution to be learned by
the output unit depended on the input conditions as indicated in T

able 4.
T

he requirem
ent w

as that the expected value of the probability distribu-
tion of the output unit should be the sam

e for the four input patterns but
the shape of the distribution should be different and governed by an X

O
R

sim
ilarity m

etric in the inputs. T
hus, input patterns (-

1
,
 
-

1) and (1
,
 
1
)

g
e
n
e
r
a
t
e
 
a
 
G
a
u
s
s
i
a
n
 
d
i
s
t
r
i
b
u
t
i
o
n
 
c
e
n
t
e
r
e
d
 
a
t
 
0
,
 
a
n
d
 
t
h
e
 
p
a
t
t
e
r
n
s
 
(
-

1, 1) and

(
1
,
 
-
 
1
)
 
g
e
n
e
r
a
t
e
 
a
 binom

ial distribution w
ith expected value 0.

Speetncatlons: T
he netw

ork consisted of 13 fully connected units (2 input
units, 10 hidden units, I output unit). Initial w

eights w
ere sam

pled from
 a
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t
h
e
 
f
o
u
r
 
d
i
f
f
e
r
e
n
t
 
I
n
p
u
t
 
p
a
t
t
e
r
n
s
.

1, 1) uniform
 distribution. L

earning w
as done in batch m

ode w
ith 80 settl-

ing restarts per pattern. E
ach settling started w

ith random
 initial activations in

t
h
e
 
(
 
-
 
. 9, . 9) range, follow

ed by S
O
 
a
c
t
i
v
a
t
i
o
n
 updates w

here statistics w
ere not

collected, and S
O
 
m
o
r
e
 
c
y
c
l
e
s
 w

here statistics w
ere collected. G

ains w
ere set at

0, 
bot 

at .
1, 

at . 2, a at . 2. T
he step,size constant for w

eight adjustm
ent w

as
set at . 0025. L

earning w
as stopped w

ith T
IG

, using a . 2 tolerance range, w
as

below
 . 7 (712 epochs). A

dditional fine-tuning training w
as then perform

ed
w

ith 200 restarts per pattern until a T
IG

 below
 .
5
 
w
a
s
 
a
c
h
i
e
v
e
d
 
(
5
9
6
 
a
d
d
i
t
i
o
n
a
l

epochs).

Figure 9 show
s the results , after training; four graphs show

 the desired and
botained distributions of the unique output unit under one of the four dif-
ferent patterns. It can be

' seen that the obtained probability distributions
, approxim

ate w
ell the desired distributions if w

e take into consideration the
constraints im

posed by the injected noise.
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T
he w

ork presented above builds on earlier w
ork ' on discrete stochastic net-

w
o
r
k
s
 
(
A
c
k
l
e
y
 
e
t
 
a
t
,
 1985; G

em
an &

 G
em

an
, 1984; S

m
olensky, 1986) and

extends this previous w
ork to the continuous diffusion case (SD

N
). First,

w
e show

ed that the equilibrium
 probability distribution of SD

N
s is continu-

ous B
oltzm

ann. T
his significant result is easily derivable from

 M
arkovian

diffusion theory, but to our know
ledge, had not been previously presented.

M
ost im

portantly, this result holds for' o
t
h
e
r
 
b
o
u
n
d
e
d
 
d
y
n
a
m
i
c
a
l
 
s
y
s
t
e
m
s

w
hose tim

e derivatives are the gradient of an objective function (the drift)
and additive G

aussian noise (the diffusion). T
his m

ay have im
portant im

pli-

~..cations for general optim
ization of continuous functions w

ith know
n deriv-

o 'atives. F
or exam

ple, the error function used in back propagation learning
(T

SS) could play the sam
e role as the goodness function in SD

N
s. If w

e add
G

aussian noise to the gradient of T
SS w

ith respect to w
eights, w

e w
ould

also obtain a M
arkovian diffusion system

. T
he evolution of the probability

d
i
s
t
r
i
b
u
t
i
o
n
 
o
f
 
t
h
e
 
w
e
i
g
h
t
s
 w

ould then be determ
ined by a Fokker- Planck

equation analogous to 10, but substituting activations by w
eights and good-

ness, G
(a), by 

T
SS(w

). 
If the w

eights are bounded, the noisy version of
the back propagation rule w

ould exhibit a B
oltzm

ann equilibrium
 distribu-

tion in w
eight space. U

sing a sufficiently slow
 annealing schedule w

e could
then guarantee achievem

ent of global m
inim

a in w
eight space. 

W
ith respect to learning, w

e have focused on the C
H

L
 rule and its ability

to learn entire distributions. W
e have show

n that w
hen applied to SD

N
s, it

perform
s gradient

d
e
s
c
e
n
t
 
o
n
 
t
h
e
 
t
o
t
a
l
 
i
n
f
o
r
m
a
t
i
o
n
 
g
a
i
n
 
e
r
r
o
r
 
f
u
n
c
t
i
o
n

(T
IG

). T
his function captures differences betw

een desired and obtained
continuous m

ultivariate probability distributions beyond expected values
and vanishes only w

hen obtained and desired probability distributions are
equal. Sim

ulations w
ere used to show

 that, indeed, C
H

L
 can be used to ap-

proxim
ate discrete probability distributions, continuous probability

distributions, and determ
inistic input-output m

appings.
C

onsiderable w
ork rem

ains to be done. W
e need to try C

H
L

 w
ith larger

problem
s. In its present form

 C
H

L
 learns very quickly in term

s of num
ber

of epochs but the processes of estim
ating the gradients m

ay take thousands
of cycles. D

eveloping fast m
ethods to estim

ate the desired gradients w
ill be

a m
ajor prerequisite for the developm

ent of practical applications. In our
sim

ulations w
e have used tem

poral averaging of the gradients to speed up
learning. W

e suspect that the spatial averaging that goes on in natural ner-
vous system

s m
ay also have positive effects. W

e believe that the m
ultiple

restarts technique; w
hich w

e used in our sim
ulations, m

ay serve a sim
ilar

purpose to this spatial averaging. T
he learning algorithm

 and the activation
dynam

ics can also be optim
ized w

ith m
assively parallel architectures or w

ith
V

L
SI im

plem
entations. In this r

e
s
p
e
c
t
 
t
h
e
 
c
h
i
p
 
d
e
v
e
l
o
p
e
d
 
a
t
 B

ellcore
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(A
lspector , Jayakum

ar, &
 L

una, 1992) is a prom
ising possibility. In its pre-

sent form
 it can im

plem
ent a 32-unit S

D
N

-style netw
ork trained w

ith the
C

H
L

 algorithm
 at a speed of 100, 000 input-output patterns per second.

W
e believe that SD

N
S m

ay excel in applications that take full advantage
of the principles of continuous, stochastic, and interactive processing. R

an-
dom

ness and graded activations allow
 learning continuous probability

distributions w
here the sam

e input m
ay have m

ore than one acceptable out-
put; noise is essential here, rather than sim

ply being a hindrance. Stochastic
diffusion netw

orks m
ay also prove useful in other kinds of learning para-

digm
s as w

ell. C
;H

L is based on m
inim

ization of the T
IO

, a very general error
function. T

his m
akes C

H
L

 very general and capable of learning entire pro\)-
ability distributions. In practice though, rules based on m

inim
ization of less

g
e
n
e
r
a
l
 
e
r
r
o
r
 functions-such as T

SS or the probability of being w
rong-

m
ay have advantages in particular learning situations. W

e have derived such

learning rules and w
e are presently com

paring their perform
ance w

ith the
C

H
L

 rule.
T

heoretically, w
e need to address im

portant issues regarding the learn-
ing, representational, and dynam

ical behavior of these netw
orks: H

ow

m
any probability distributions can be learned? W

hat kind of problem
s are

learnable w
ith the different algorithm

s? A
re these netw

orks subject to

catastrophic interference? A
re they universal contingency approxim

ators?
D

o they exhibit w
ell- know

n phenom
ena from

 the hum
an cognition litera-

ture? C
an w

e extend the learning algorithm
 to the m

ore general case of
learning probabilistic sequences?

T
he capacity of SD

N
s to tackle very general form

s of contingency extends
the possibilities of adaptive netw

orks to m
odel learning and developm

ent.
T

he capacity of infants to detect contingencies has . played an im
portant role

in m
any theories of developm

ent. A
spects such as the developm

ent of cross-
m

odal representations and sym
bolic reference (P

iaget, 1936), the develop~

m
ent of reaching and object perm

anence (Piaget, 1937), and early social
developm

ent (W
atson, 1985) have been linked to the infant' s capacity to

d
e
t
e
c
t
 
c
o
n
t
i
n
g
e
n
c
i
e
s
.
 
Y
e
t
,
 
v
e
r
y
 
f
e
w
 
t
h
e
o
r
i
e
s
 
p
a
y
 
a
t
t
e
n
t
i
o
n
 
t
o
 the types of

contingencies underlying these problem
s and the m

echanism
s necessary to

learn them
. F

or exam
ple, only recent articles (Jordan, 1989; Jordan &

R
um

elhart, 1992) have addressed the averaging problem
 that exists w

hen
learning how

 to reach. T
he capacity of SD

N
s to detect a very w

ide variety of
contingencies that go beyond expected values m

ay help us explore aspects of
developm

ent that w
ere not easily approached w

ith other adaptive netw
orks.

M
ost im

portantly, sym
m

etric diffusion netw
orks m

ay help expand our
notions of how

 natural nervous system
s m

ay represent inform
ation. In

determ
inistic netw

orks, the activation states can be
. seen as internal

representations of the inputs, and the m
axim

a in the goodness function as
interpretations the netw

ork settles into. T
his approach illustrates how

cognitive 
schem

ascould em
erge from

 the interaction of interconnected units
(R

um
elhart, Sm

olensky, &
 M

cC
lelland, 1986). Stochastic netw

orks (L
e.,

the S
B

M
, the harm

onium
, and SD

N
s) take us a step further. T

heir behavior
can only be stated in term

s of probabilities, and their stable states are no
longer activation vectors but probability distributions. In spite of the fact
that the activation states are constantly changing, there is an underlying in-
variant: the particular w

ay in w
hich probability density spreads through the

different states. In S
D

N
s this evolution is governed by the forw

ard diffu-
s
i
o
n
 
e
q
u
a
t
i
o
n
,
 
a
n
d
 
c
u
l
m
i
n
a
t
e
s
 
i
n
 stochastic equilibrium

. T
his underlying

structure m
ay not be d

e
t
e
c
t
e
d
 
d
i
r
e
c
t
l
y
 
i
n
 
a
 
s
i
n
g
l
e
 
o
b
s
e
r
v
a
t
i
o
n, but it is

reflected w
hen sam

pling the I:letw
ork's response over m

any trials. A
s A

ckley
et al., (1985) noted, the late von N

eum
ann (1958) thought of stochasticity as

an essential principle that differentiated the digital com
puter from

 the
brain. H

e suggested that noise m
ay not be a hindrance in natural nervous

-
 
s
y
s
t
e
m
s
,
 
b
u
t
 
a
n
 essential inform

ation-p
r
o
c
e
s
s
i
n
g
 
p
r
i
n
c
i
p
l
e
:
 

. . . the m
essage-system

 used in the nervous s
y
s
t
e
m
.
 
.
 
.
 
i
s
 
o
f
 
a
n
 
e
s
s
e
n
t
i
a
l
l
y
 

statist;-
cat 

character. . . . T
hus the nervous system

 appears to be using a radically dif-
ferent system

 of notation from
 the ones w

e are fam
iliar w

ith in ordinary arith-
m

etic and m
athem

atics: instead of the precise system
 of m

arkers w
here the

p
o
s
i
t
i
o
n
-
a
n
d
 
p
r
e
s
e
n
c
e
 
o
r
 
a
b
s
e
n
c
e
-
o
f
 
e
v
e
r
y
 
m
a
r
k
e
r
 
c
o
u
n
t
s
 decisively in

determ
ining the m

eaning of the m
essage, w

e have here a system
 of notations in

w
hich the m

eaning is conveyed by the statistical properties of the m
essage.

(von N
eum

ann, 1
9
5
8
,
 
p
.
 
7
9
)

It is hoped that S
D

N
s w

ill help in developing m
O

dels of cognition to understand
better the com

putational properties of stochastic distributed representations.
In the past, since m

ost em
phasis w

as given to learning speed, and since
sim

ulating random
ness greatly slow

ed dow
n learning, stochastic netw

orks
and the problem

 of learning probability distributions w
ere som

ehow
 for-

gotten. W
e hope our w

ork helps to em
phasize the possibilities of stochastic

netw
orks and the im

portance of learning contingencies that involve com
plete

real-valued probability distributions.
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o
 
b
e
g
i
n
,
 
w
e
 
p
a
r
t
i
t
i
o
n
 
t
h
e
 
a
c
t
i
v
a
t
i
o
n
 
v
e
c
t
o
r
,
 
a
 
E
 

A
, 

i
n
t
o
 
a
n
 
i
n
p
u
t
 
v
e
c
t
o
r
,

x
 
E
 

X
, 

a
 
v
e
c
t
o
r
 

of 
h
i
d
d
e
n
 
u
n
i
t
 
a
c
t
i
v
a
t
i
o
n
s
,
 

hE
N

, 
and an output vector,

y
 
E
 

Y
. 
T
h
u
s
,
 
a
T
 
=
 

, y1). T
he input, hidden, and output sets m

ay be
different for different patterns. T

he central problem
 is to obtain a netw

ork
t
h
a
t
 
m
i
n
i
m
i
z
e
s
 
a
 
p
e
r
f
o
r
m
a
n
c
e
 
e
r
r
o
r
 
f
u
n
c
t
i
o
n
 
i
n
 
t
h
e
 
s
e
t
 

of 
output units w

hen

the set of input units is fixed to particular vector x. T
his is achieved by per-

form
ing gradient descent w

ith respect to w
eights and w

ith respect to the
gains param

eters. A
s m

ost of. the results are com
m

on to both gains and .
w

eights, w
e w

ill proceed W
ith the derivations in term

s of a generic param
eter

8
,
 
w
h
i
c
h
 
c
o
u
l
d
 
b
e
 
a
 
w
e
i
g
h
t
 
p
a
r
a
m
e
t
e
r
 

w
i/, 

or a gain param
eter gk. O

ur objec..

tive is to calculate the partial derivative of a perform
ance error function

w
ith respect to the generic param

eter, 8. B
efore w

e get there, let us define a
r
a
n
d
o
m
 
v
a
r
i
a
b
l
e
,
 

T
, 

w
h
i
c
h
 
w
e
 
w
i
l
l
 
n
a
m
e
 
t
h
e
 

goodness signal

aG
xhy (8)

T
x
h
y
 
=
 

a8 

T
h
e
 
n
o
t
a
t
i
o
n
 
G
x
h
y
 
(
8
)
 represents the fact that the goodness value of the acti-

vation vector xhydepends on the generic param
eter 8; the goodness signal,

T
x
h
y
 
a
s
s
i
g
n
s
 
a
 
r
e
a
l
 
v
a
l
u
e
 
t
o
 
e
a
c
h
 
a
c
t
i
v
a
t
i
o
n
 
v
e
c
t
o
r
:
 
x
h
y
 
E
 

t-+
 T

xhy E
 ~ ,

w
here ~

 is the real line. B
ecause the activation vector is a random

 vector-
it has a: probability distribution- the goodness signal

T
, 

is also a random

variable. N
ow

 w
e are ready to obtain a closed form

 for T
xhy. From

'the

definition of goodness

(26)

G
(
a
)
 
=
 
H
(
a
)
 
-
 
S
e
a
)

(27)
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Since

(29)

fpxd(y)l
Pxd(y) 

In 

(Y
)
J
 
d
y
 

P
x
d
(
y
)
 
I
n
 
(
P
x
d
(
Y
)
)
 

d
y
 
-
 
I
 

P
x
d
(
y
)
 
I
n
 

(P
x(Y

)) dy

and since the first term
 in E

quation 34 is constant, it follow
s that

T
IG

x(fJ)
=
 
-
 
r
 

p
 
J
 

i. 
I
 
P
 

afJ 
xo,y 

a
f
J
 
n
 

x
 
Y

(34)

H
(a) 

-
 
a
T
w
 
a

(28)

and

Sea) =
 

-s;
;
 
=
 
1
 

~
 I

w
ith

Sk 
rest j(x)dx

it follow
s that the goodness signals are given by

aG
xhy 

(w
ij)

T
x
h
y
 
=
 

(a; 
aj)xhy

W
ij

w
hen training w

eights, and

aG
xhy 

(gk 
T
x
h
y
 
=
 

=
 
(
s
k
h
h
y

a(gk 

w
hen training the gain param

eters. In the preceding equations, (
S
k
)
x
h
y
 
i
s
 the

s
t
r
e
s
s
 
o
f
 
t
h
e
 
i
t
h
 
v
a
r
i
a
b
l
e
 
i
n
 
t
h
e
 
x
h
y
 
a
c
t
i
v
a
t
i
o
n
 
p
a
t
t
e
r
n
;
 

(a; 
aj)m

y is the product
of the ith and jth elem

ents in the xhy vector,

(35)

(32)

w
h
e
r
e
 
w
e
 
n
e
e
d
 
t
o
 
c
a
l
c
u
l
a
t
e
 

a
8
 
(
I
n
 

(y)) , T
he term

 Px(y) can be found by
integrating the netw

ork states w
hose output unit activations coincide w

ith
the vector y. T

herefore,

(
y
)
 
=
 
I
 

(b) 
db.

A
nd since the equilibrium

 distribution is B
oltzm

ann

(
y
)
 
=
 

eG
xbytll);ji db

w
h
e
r
e
 
Z
x
 
=
 
J
 

eG
xhrll);ji 

dhdy 
i
s
 
k
n
o
w
n
 
a
s
 
t
h
e
 

p
a
r
t
i
t
i
o
n
 
c
o
n
s
t
a
n
t
 

for the
SD

N
 w

ith fiX
ed inputs,

N
otice that

(30)

(31)
(36)

(37)

1 T
he C

ontrastive H
ebbian L

earning (C
H

L
) R

ule
T

his is a general purpose rule capable of learning c
o
n
t
i
n
g
e
n
c
i
e
s
 
i
n
v
o
l
v
i
n
g

w
hole probability distributions. T

he derivations of the C
H

L
 rule are sim

ilar
to the B

oltzm
ann m

achine learning derivations in A
ckley et al, (1985), but

replace sum
s by integrals, H

ow
ever, in SD

N
s, w

e can also derive rules for
the gain param

eters,
In this case w

e need an error function that vanishes only w
hen the obtained

and the desired probability distributions are exactly equal, T
his function is

t
h
e
 
c
o
n
t
i
n
u
o
u
s
 
v
e
r
s
i
o
n
 
o
f
 
t
h
e
 

t
o
t
a
l
 
i
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f
o
r
m
a
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g
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function (A
ckleyet ai"

1985),T
IG

.(fJ) 
=
 
J
 

Pxd(y) 
In 

(~:1:n dy (33)
w
h
e
r
e
 
t
h
e
 

T
IG

.
(8) 

notation is used to em
phasize that the function depends

on a generic param
eter 8; P

x(y) represents the obtained equilibrium
 prob-

ability of output vector y, w
hen the input activations are fixed to the vector

x
,
 
T
h
e
 
t
e
r
m
 

P,w
(y) 

represents the desired probability density of the-output
vector y w

hen: the environm
ent is in input state x,

P
(
x
y
)
 
Z
 

JH
 

eG
xbytll);ji db

P
(ylx) =

 

=
=

 

=
 P.(y)

p
(
x
)
 
Z
 

Y
 
J
H
 

G
xhy(II);ji db 

w
here P(xy) is the probability that a netw

ork w
ith all its units running free,

including the input units, exhibits an output vector y and an input vector x,
T

he term
 p(x) is the probability of the input vector x in the totally free

running netw
ork, P(ylx) is the conditional probability of y w

ith respect to x,
a
n
d
 
Z
 
=
 
J
 

eG
X

hY
(II)~ dxdhdy is the partition constant for the totally

free running netw
ork, It follow

s that

(38)

afJ
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(y)) =

i. 
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G
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.
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e
G
X
b
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!
-
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d
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d
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)
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afJ JH
 
a
f
J
 
J
H

T
he first term

 of the right side in E
quation 39 can be expanded as

(39)

(In 
I
 
e
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a
f
J
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G
X

hY
(II)~
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eG
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xhy
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P.q (b),.u, db =
 

E
.q(")

(42)

w
here Z

s, is the partition constant of an SD
N

 w
ith the inputs and outputs

f
I
X
e
d
 
t
o
 
t
h
e
 
v
e
c
t
o
r
s
 
x
 
a
n
d
 
y
 
r
e
s
p
e
c
t
i
v
e
l
y
;
 
P
s
,
(
b
)
 
r
e
p
r
e
s
e
n
t
s
 
t
h
e
 equilibrium

probability of a particular vector of hidden unit activations w
hen the input

units are fIX
ed to the input vector x and the output units to the vector y, and

E
.q

(7' ) represents the expected value of the goodness s
i
g
n
a
l
T
u
,
 
w
h
e
n
 
i
n
p
u
t
s

and outputs are fIX
ed.

U
sing steps analogous to 40 through 42, it is easy to show

 that

(In 
~
y
f
.
/
I
~
;
;
 
d
b
d
y
)
 
=
 

E
II (")

(43)

w
here E

II(T
) represents the expected value of the goodness signalT

u, w
hen

the input units are fIX
ed and the other units run free. C

om
bining E

quations
35 and 43 w

e get the derivative of the logarithm
 of the probability , of output

vector y

(In 
PIIC

Y
)
)
 
=
 

(E
.q

(") 

-
 
E
I
I ("))'

(44)

C
om

bining E
quation 44 w

ith 38 and 39 w
e obtain the derivative of the total

inform
ation gain error function:

aT
l~II(1)

=
 
-
 

t
I
 
Y
 
P
m
(
y
)
 
(
&
,
(
,
.
)
 
-
 E

II(")) dy)

and since the integral in E
quation 45 is an expected value operator

T
las(1)

=
 
-
 

f
E
d
 
(
E
.
q
(
"
)
)
 

E
II("))

a
8
 
g

w
here E

dQ
 is the expected value using the desired probability distribution of

output vectors. W
hen m

ore than one
input..... probability distribution

pair
is involved, the appropriate gradient is obtained by averaging over patterns.
T

he gradient descent learning rules for gains and w
eights easily follow

. (45)
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