COGNITIVE SCIENCE 17, 463-496 (1993)

Learning Continuous Probability Distributions
with Symmetric Diffusion Networks

JAVIER R. MOVELLAN |
University of California, San Diego

JAMES L. MCCLELLAND
Carnegie Mellon University

In this article we present symmetric diffusion networks, a family of networks that
instantiate the principles of continuous, stochastic, adaptive and interactive pro-
- pagation of information. Using methods of Markovian diffusion theory, we for-
malize the activation dynamics of these networks and then show that they can be
trained to reproduce entire multivariate probability distributions on their outputs
using the contrastive Hebbian learning rule (CHL). We show that CHL performs
gradient descent on an error function that captures differences between desired
and obtained continuous multivariate probability distributions. This allows the
learning algorithm to go beyond expected values of output units and to approxi-
mate complete probability distributions on continuous multivariate activation
spaces. We argue that learning continuous distributions is an important task
underlying a variety of real-life situations that were beyond the scope of previous
connectionist networks. Deterministic networks, like back propagation, cannot
learn this task because they are limited to learning average values of indepen-
dent output units. Previous stochastic connectionist networks could learn pro-
bability distributions but they were limited to discrete variables. Simulations
show that symmetric diffusion networks can be trained with the CHL rule to ap-
proximate discrete and continuous probability distributions of various types.

1. INTRODUCTION

Learning can be seen as the process of detecting and storing how some
events (inputs) affect the behavior of other events (outputs). If the inputs
have no effect on the outputs they are statistically independent, otherwise
there is a contingency. Contingencies can be seen as a class of functions
mapping the space of inputs onto the space of possible probability distri-
butions of the outputs. Contingencies may occur when the inputs have an

The preparation of this article was supported by NIMH Career Development Award
MNO00385, NSF Grant BNS 88-12048, and by NIMH grant MH47566. The computational
resources used were supported by NSF grant DIR 91-02196.

We would like to thank Paul Smolensky and Brian MacWhinney for many useful com-
ments on an earlier draft of this article.]

Correspondence and requests for reprints should be sent to Javier R. Movellan, Depart-
ment of Cognitive Science, University of California @ San Diego, La Jolla, CA 92093-0515.

463

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

464 MOVELLAN AND McCLELLAND

effect on the average value of individual output variables. For example,
economic policies may have an effect on the average income or the average
level of education of a country. There may also be contingencies that affect
other aspects of the output’s behavior such as the shape of the probability
distribution of the outputs or the way these outputs correlate with each
other. For example, different economic policies may affect the distribution
of wealth or the correlation between wealth and education without affecting
the average income. Such examples come up all the time in cognitive and
perceptual domains. The Necker cube is perhaps the most famous case. The
perception of the individual elements of the cube—each vertex, for exam-
ple, or each line—is certainly contingent on the stimulus, but in a very dis-
tinctive and particular way. Two quite different interpretations of each
vertex are possible, and these are not well characterized by their average
value. Furthermore, the probability that we will see one vertex as being on
the front face of the cube is strongly dependent on how we see each of the
other vertices. With the necker cube there are in fact two very probable
whole percepts—full sets of interpretations of the vertices—and many other
much less likely ones. Whereas the Necker cube is, of course, an artifact,
many natural stimuli—shadows, for example, or ambiguous words or sen-
tences—often support a distribution of interpretations that is very poorly
characterized by the central tendency of individual elements. It is, there-
fore, desirable to develop learning algorithms capable of learning contin-
gencies that go beyond effects on average values. Connectionist learning
algorithms have proven to be useful contingency detectors but most can
only be applied in situations where the goal is to learn only the expected
values of the outputs.

For example, back propagation networks (Bryson & Ho, 1969; Le Cun,
1985; Parker, 1985; Rumelhart, Hinton, & Williams, 1986; Werbos, 1974)
are functions defined from the space of possible inputs to the space of possi-
ble outputs. They are typically trained with a learning rule that minimizes
the total sum of squared errors (TSS) between desired and obtained out-
puts. It is easy to show that among all possible functions from the space of
inputs to the space of outputs there is one that achieves minimum TSS. This
function, which is called the regression function, assigns to each input vec-
tor the average of the training outputs conditional on that input (Papoulis,
1990). Back-propagation learning and other forms of nonlinear regression
can be seen as methods for estimating regression functions. This is precisely
what is needed with a particular type of contingency, which we refer to as
‘‘signal + noise’’ contingencies. In this type of contingency, the underlying
association between input and output (the signal) is deterministic but per-
turbed by the effects of an additive independent random variable (the
noise). The signal is the expected value of the output for each of the inputs,
and can be estimated by averaging samples of training outputs that share
the same inputs. This tendency to average samples of outputs with common

CONTINUOUS PROBABILITY DISTRIBUTIONS 465

inputs is shared by all regression methods but it is not appropriate in all
cases. This is particularly clear in situations where there is more than one
correct output for each input but the average of these outputs is not a cor-

rect solution.

Consider for instance the <o_=n_o navigation problem displayed on Figure
1. A back-propagation (BP) network is presented with road images as input
and with appropriate steering directions as desired output. In the example
the steering direction is represented by the activation of an output unit.
Positive and negative values represent the degree of right and left steering.
Figure 1 displays a case where two input images have an effect on the shape,
but not the average value, of the distribution of desired actions. With this
particular configuration back propagation learns the same output for the
two road images, clearly an undesirable solution.'

A similar situation arises in motor control when one has to choose a com-
bination of joint angles to reach desired locations. One approach is to train
a network with samples of “‘action— outcome’’ pairs and then use the trained
network to select appropriate actions when desired outputs are specified.
This method is known as direct-inverse modeling. Jordan and Rumethart
(1992) discussed a difficulty faced with this approach. In many cases, the
mapping from actions to outcomes is many-to-one, so that the mapping
from outcomes to actions is one-to-many. Most problematic are cases in
which the set of acceptable actions forms a nonconvex region in action
space (Jordan & Rumelhart, 1992). Figure 2 shows one such case in which
two different settings of joint angles in a robot arm place the arm at the
same goal location but the average of these two settings places the arm in
quite a different place. When a deterministic network such as BP is used to
learn such a mapping, it finds an average; the difficulty is that the average
need not fall within the set of possible solutions, as the figure makes clear.

There are two problematic features to the averaging problem. One is that
it computes an average value for each unit, thereby losing information
about the actual range or distribution of allowed values. The other, deeper
problem, is that it looses information about dependencies among the differ-
ent dimensions of the output. In the robot arm example, we do not in
general get a satisfactory result if we merely choose one of the acceptable
values for each of the two joint angles independently; rather, what counts as
an acceptable reach for the object is a particular combination of joint
angles. Such combinations can be viewed as regions in a multidimensional
space. If we can choose such combinations in a way that matches a proba-
bility distribution that is nonzero only in those regions of the space that
correspond to acceptable actions, we will have learned to solve the problem.

' The purpose of this example is to illustrate the need of going beyond expected values.
Dean Pomerleau’s (1991) ALVINN system encountered a problem similar to the one men-
tioned here, but he solved it using another approach.

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

466 MOVELLAN AND MCcCLELLAND

i
1

Left(-1) Straight(0) = Right (1)
Activation

O ﬂ
| O\O\u mu 4/0 Probability density of desired steering

Il

Left(-1) Straight(0) Right (1)
Activation

Figure 1. These two input patterns produce the same average desired output but .ro, prob-
ability distribution is different. The average is a correct response for the first input but
would not work for the second input pattern.

Consider, next, issues that arise in the representation and processing of
language. One of the central properties of language is ambiguity: in general,
a word, a sentence, even a whole book or play may have several alternative
interpretations. Similarly, a concept or thought can be conveyed in language,
or translated from one language to another, in several different ways. In
general, it is not appropriate to take the average of two different interpreta-
tions of the same text, or to produce a blend of two acceptable texts to convey
an intended meaning; depending on the grain of the blending, the result could
be a hash of potentially meaningful fragments or (if the blending occurs let
us say at the phonetic feature level) totally uninterpretable mumbling.

CONTINUOUS PROBABILITY DISTRIBUTIONS 467

A
N Solution 1
N Solution 2

Figure 2. The average of the two solutions does not generate ‘a correct action.

As a concrete example of a simple version of this problem, consider
translating words from one language to another, say from English to
Spanish. Here there are cases where the same word has two different trans-
lations in the other language. For example the english word *“olive’’ has two

approximately equally likely translations into Spanish; one is of Latin

origin, oliva, and one of Arabic origin, aceituna. Suppose that the utterance
oliva is represented phonologically as some pattern of activation (e.g., 1.0,
0.0, 0.0, 1.0, 1.0), and the utterance aceituna is represented as another,
quite different pattern (0.0, 1.0, 1.0, 0.0, 1.0). In this case, deterministic
networks. such as BP or the deterministic Boltzmann machine would learn
the expected values of each element as if these were independent, producing
the meaningless resulting output (.5, .5, .5, .5, 1.0). This conveys some in-
formation about the word (e.g., the value that the words share in common
is produced correctly), and indeed, in this case, the activations reflect the
probability that each element should be independently active in the correct

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

468 MOVELLAN AND McCLELLAND

responsc:. But it does not convey enough information to specify which com-
binations of features must be on or off to produce one or the other of the
possible correct alternatives.

In this article we explore the use of stochastic networks to solve the types
of problems described previously. In doing so, we hope to help to con-
solidate a way of thinking about stochastic networks that has not received
as much explicit treatment as it deserves. This is the idea that stochastic net-
works should be viewed as computing functions of their inputs, just like
deterministic networks. In this case, the function is not from inputs to ex-
pected values of outputs, but from inputs to entire probability distributions
of outputs. This idea is certainly an important part of the stochastic net-
work theory introduced by Geman and Geman (1984), Ackley, Hinton, and
Sejnowski (1985), and was particularly emphasized by Smolensky (1986).
But in the main, stochastic networks have been used in neural network
research as procedures for finding the single best pattern, through the pro-
cess of simulated annealing, and not for actually modeling distributions of
desired states. :

Once we see stochastic networks as mappings from inputs to multivariate
probability distributions, we can treat learning as a matter of modifying
connection weights between units to make the obtained and desired probabil-
ity distributions as similar as possible. In this article we use this approach
with a class of networks that we will call “‘symmetric diffusion networks”’
(SDN). SDN’s are one instantiation of the principles of continuous, sto-
chastic, adaptive, and interactive human information processing proposed
'by McClelland (in press) on the basis of earlier computational and psycho-
logical research. These principles were put together to provide a general
framework for modeling normal and disordered cognition. SDNs are collec-
tions for processing units organized in modules with symmetric bidirectional
connections. Each unit collects a net input from all the units to which it is
connected and generates a real valued, bounded activation. These activation
values are continuous random variables with a probability density controlled
by the net input,

Using Markovian diffusion theory (Gillespie, 1992) we derive the equilib-
rium distribution of SDNs and show that the contrastive Hebbian learning
rule (CHL) can be used to learn entire probability distributions. CHL is a
general learning rule previously applied to a variety of models including the
discrete Hopfield model (Hopfield, Feinstein, & Palmer, 1983), the original
stochastic Boltzmann machine (Ackley et al., 1985), the harmonimum
(Smolensky, 1986), the deterministic Boltzmann machine (Galland & Hinton,
1989; Hinton, 1989; Peterson & Anderson, 1987), and the continuous
Hopfield model (Movellan, 1990). Here we show that in SDNs, the CHL
rule performs gradient descent on an error function that captures differ-
ences between entire distributions.

nOZq_ZcO.cM PROBABILITY DISTRIBUTIONS 469

There are many important precursors to this work. Ratcliff (1978) used a
simple diffusion process to model memory retrieval. The use of Gaussian

_noise in continuous Hopfield networks was independently explored in

Akiyama, Yamashita, Kajiura, & Aiso (1989) in work on Gaussian
machines. This work was focused in optimization problems and no learning
algorithm or formal desciption of the network behavior was proposed. The
importance of learning probability distributions was pointed out by
Smolensky (1986) and certainly many of the ideas in this article are related
to the seminal work in harmony theory (Smolensky, 1986), and the original
stochastic Boltzmann machine (SBM). In a previous article (Movellan and
McClelland, in press), we presented initial work with the CHL algorithm
and another instantiation of the principles of continuous, stochastic, in-
teractive processing. Our approach there was based on the ideas of contras-
tive learning (Baldi & Pineda, 1991; Movellan, 1990) rather than Markovian
diffusion theory. It should be noted that SBM can learn discrete binary prob-
ability distributions. However to our knowledge, this aspect of the SBM has
hardly ever been explored. The SBM has generally been used to learn deter-
ministic mappings, where it is typically less efficient than deterministic net-
works such as BP or deterministic Boltzmann machines (DBMs). Our work

-can be seen in part as an investigation of this relatively neglected property of

SBMs. We also extend the previous work by formalizing the behavior of
continuous stochastic networks and showing how they can be trained to
learn continuous as well as discrete probability distributions.

What follows is a formal presentation of SDNs and a derivation of the
CHL rule for learninig probability distributions with these networks. We
also present simulations showing that SNDs can indeed be trained to approx-
imate discrete and continuous probability distributions of various types.

2. ACTIVATION DYNAMICS

From a mathematical point of view, SDNs ar Markovian diffusion pro- -
cesses governed by a system of stochastic differential equations. These
equations consist of a drift term and a diffusion terms. The drift is the deter-
ministic kernel of the process controlling the instantaneous average velocity
of the activation vector. The diffusion term controls the instantaneous
variance of the activations. SDNs may be instantiated in a variety of ways.
The specific instantiation that we use in this article has a drift controlled by a
variation of the continuous Hopfield (1984) model. The diffusion in this in-
stantiation is a constant, o, which controls the level of noise in the network.

More specifically, let a = [a,...,a,]” be a real-valued activation column
vector. Let W = [wy,...,w,] be a real valued symmetric matrix of con-
nections, where each w; = [wy,..., wni7 is the fan-in column vector of

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

470 MOVELLAN AND McCLELLAND

connections to the unit i. The evolution of the activations is governed by the
following system of stochastic differential equations:

dai = (neti — nétydt + oVt Zi(t);i = 1,...,n [6))

where Z;(?) is a standard independent Gaussian random variable; net; = aTw;;
nét; = 1/ gifla); g is a gain term that scales the response of f{x); Ax) is the
inverse of a bounded continuous monotonic activation function f-1; the fix)
function maps the bounded real-valued activation space (min,max) C R,
into the entire real line (e.g., the logit or the probit functions). In our simula-
tions we use a scaled version of the logit function, also known as the inverse
logistic .

PGN g — M- V3]

. 1
neti = — f\aj) = :
= Nai) e max — a;-

where max and min bound the activation range. A precise treatment of Equa-
tion 1 can be given in reference to Ito’s stochastic calculus (Gardiner, 1985)
but for the purpose of this article it is sufficient to view it as determining the
limiting solution of a difference equation where the At is made infinitesimally
small. The term nét; = 1 / gi fla) represents the net input required to main-
tain an activation value of a;. If the actual net input, net;, is smaller than the
required net input, nét;, the activation decreases; if bigger, it increases. The
second term in the equation adds up Gaussian noise to this process with the
amount of noise being controlled by the parameter o. ,

Equation 1 is known as a Langevin description of a Markovian diffusion
process with a drift vector

drift(a) = net(a) — nét(a) . 3

and a diffusion matrix given by ol, where I is the unit matrix.

It is easy to show (Hopfield, 1984) that when the weight matrix is sym-
metric, the drift vector is the exact gradient of a Hopfield style goodness
function of the following form

G(a) = H(a) — S(a) . @
where

H(a) = .Wl a’ Wa _)

is the harmony or consistency between the network activations and the
weight constraints. The stress

S@ = L —si ©

1
1 &

CONTINUOUS PROBABILITY DISTRIBUTIONS 471

is the weighted sum of penalty terms, s;, for the activations departing from
rest value

si= m Mn?\.g&x. Q)

where rest = f{0). In our implementation, the stress is given by the follow-
ing equation

si = (@ — min)log(a; — min) + AEE« — a)log(max - aj) 8)
lSa.«l::.:S 5§|§.=|5§....§.=~e max + min
2 £ 2 £

The goodness of a particular activation vector is commonly interpreted
as the degree of consistency of this vector with the knowledge captured in
the network’s weights and gain. The harmony term, H, captures the degree
of match with the expected correlations between pairs of units. This knowl-
edge is embedded in the weights: Units connected with positive weights are
more “harmonious’’ :if they have activations of the same sign, and units
with negative weights are more ‘‘harmonious’’ when their activations have
opposite signs. The stress term, S, captures how extreme the activations are
expected to be. When the gain terms, g;, are large, extreme activation values
are expected.

Since the drift is the exact gradient of the goodness function

drift(a) = VG(a) = nét(a) — net(a) : ,)

then — G(a) can be seen as a potential field and the drift as the force field
generated by that potential. When the diffusion term vanishes, the network
becomes deterministic and goodness can only increase through time. Since
the goodness function is bounded upward, the activations stabilize at local
maxima of G. It is also known that this deterministic kernel (when o = 0) is
trainable with the CHL rule, but that instabilities may occur due to the
existence of multiple maxima in the G function (Hinton, 1989; Movellan,
1990; Peterson & Anderson, 1987; Peterson & Hartman, 1989).

2.1 The Diffusion of Probability

The stochastic nature of SDNs encourages a revision of the language used to
describe the behavior of the network. Because the network is not determin-
istic, the trajectory of the activations can no longer be predicted from initial
states. What we can say is that, most of the time, the network activations
will be in certain regions, less of the time in other regions, and so on. Thus,
we need to describe the network in terms of probability distributions and
its dynamics in terms of changes in probability distributions throughout
time.

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

472 MOVELLAN AND MCCLELLAND

ensi

oy

Probability D

Figure 3. Evolution of the probability distribution of a one-unit network. The initial activa-
tion is zero. The probability distribution of the activation changes through time and settles
into @ Bolizmann distribution defined In continuous activation space. The graph was obtained
by simulating 40,000 times a one-unit SDN through 1,000 settling cycles.

Our purpose now is to analyze the evolution of the multivariate probabil-
ity distribution of activation states as time progresses. But before we go into
more formal grounds let us first build our intuitions with a simple example.
Suppose we start a network from a particular point ao at time # and observe
the activation patterns at several time slices: #1, f2,. . .,fm. If we now restart
our clocks and put the network back in the initial activation state, ao, we
would probably observe a different trajectory through time because the net-
work is not deterministic. In this fashion we could build a histogram of the
activations for each of the time slices. In our experiment, since we have m
time slices, we would have m different histograms. So far, each histogram
would contain only two activation states. As we increase the number of
restarts, our histograms would become closer and closer to the actual
probability density of each particular state a at time ¢, given that we started
in state ap at time 7. We denote this probability density as P(a; |ao;%).
Figure 3 exhibits an example of how these histograms evolve in the simplest,
one-unit SDN.

CONTINUOUS PROBABILITY U_qu_wc._._OZm. 473

Let us try to understand this evolution from yet another point of view.
We can think of probability density as an abstract ‘‘substance’’ that propa-
gates through the different states of the network according to some simple
diffusion principles. We may think of a restart in a particular state, a9, as a
concentration of all the available probability in that one state. Probability
then flows or diffuses to other states according to Equation 1, which reflects
two opposing principles: (1) local optimization of goodness: move in direc-
tions that maximize goodness, a principle embedded in the drift term (net; —
nét;); and (2) local optimization of entropy, a principle controlled by the
diffusion parameter, . Eventually, we may guess, the probability of the
activation states stabilizes into an equilibrium distribution where each state
receives as much probability as it sends. In fact, our guesses can be proven
to the right. A well-known result in Markovian diffusion theory (Gardiner,
1985) is that processes defined by a Langevin-type stochastic equation
satisfy the forward Fokker-Planck diffusion equation. 1t is also known that
this equation models the diffusion of a ‘‘substance,”” in this case probabil-
ity, according to the previously mentioned principles. In the SDN case, the
Fokker-Planck equation can be shown to assume the following form:

0P 1) 1) v - farifte) PGl 1ol + 5 V* PU@: fao; 9. (10)

The Fokker-Planck equation fully describes the temporal evolution of
the probability density of the activation states, a, given a starting point, 0.
The symbol V - is the divergence operator

n

V - [drift(a) P(a; ¢|ao; to)] u..mu_ I%ﬂ [drift(a) P(a; t|ao; f0)] (11

and V2 is the divergence of the gradient, also known as the Laplace operator,

3 P(a; t]ao; to)
V! Pa; flags) = V + V PGa; flai 1) = B 12)
The divergence of a vector field has the following standard interpretation:
Consider a substance spreading at each point, a, in a multidimensional field
with velocity v(a). It can be shown that the negative of the divergence of v(a)
represents the inflow of substance per unit volume at that point. Because
the first term in the right side of Equation 10 has a negative sign, it tells us
that the probability is flowing throughout the entire activation space with a
velocity component equal to the drift times the probability. The effect of
this term is to spread more probability towards the better states.
The second term in the right side of Equation 10 is the Laplacian of the
probability. The Laplacian is the divergence of the gradient and, thus, it
tells us that probability is also flowing with a velocity component opposite

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

474 MOVELLAN AND MCCLELLAND

to the gradient of the probability. The result of this flow is to move proba-

bility from states with more probability towards states with less probability.
The relative importance of the first and second terms in the right side of
Equation 10 is governed by the o parameter. We will now show that as time
progresses, the probability distribution equilibrates at a point where each
state receives as much probability as it sends. At that point, the network is
said to be at stochastic equilibrium.

2.2 Stochastic Stability
We already know that for the deterministic kernel, the activations stabilize

in local maxima of the goodness function. In the stochastic case.it is clear.

that activations cannot stabilize because Gaussian noise is constantly in-
jected to the network. However, in the stochastic case we can investigate

whether the probability distribution of activation states stabilizes over time

and whether these stable distributions depend on the starting conditions
This is an important issue in our present work because we are interested in
learning stable distributions over a set of output variables.

To simplify the proof that these networks exhibit stochastic stability, we
discretize time and partition the activation space into an arbitrarily large

number of hypercubes. SDNs satisfy the conditions of an important.

theorem in Markov process theory known as the Markovian basic limit
theorem (Taylor & Karlim, 1984). SDNs are Markovian because the most
recent state provides all available information about future states. They are
also regular processes because given enough cycles, there is a nonzero prob-
ability of moving from any hypercube to any other hypercube in activation
space. Given these two conditions, the Markovian basic limit theorem guar-
antees the three following properties: (1) there exists a limiting distribution;
(2) the limiting distribution is unique and independent of the starting condi-
tions; and (3) this limiting probability distribution equals the long-run pro-
portion of time that the process will be in each of the hypercubes.

The fact that there is a limiting distribution that is unique will, in princi-
ple, solve the problem of multistability that we find in deterministic net-
works. The third property is sometimes referred to as ergodicity. When a

network is ergodic, the equilibrium probability distribution can be inter-

preted in two very different ways: We may use several trials restarting the
network from random points and letting it settle for a sufficient criterion
time, fc = f. The equilibrium probability of a state hypercube can then be
estimated by collecting the proportion of trials that the network is in that
region at time £.. We may also use a single trial and record the long-run pro-
portion of time spent in that region in this single trial. If the network is
ergodic, this second estimate also converges to the equilibrium probability
distribution. We will use this property to design efficient methods of oo__oo?
ing equilibrium distribution statistics.

CONTINUOUS PROBABILITY DISTRIBUTIONS 475

Knowing that there is one and only one equilibrium distribution makes
the derivation of the equilibrium probability density a much easier task. The
equilibrium distribution, P(a), is defined as

P(a) = lim_ P(a; t]ao; to). (3)
Since, at equilibrium, the probabilities do not change, it must be true that
the left side of Equation 10 vanishes:

dP(a)
o

= 0. . 14)

Since we know from the basic limit theorem that the limit distribution is
unique, we just need to find a solution to Equation 14, Such a solution can
be found by making:

ERED o P Pw
da; ﬁ da; m.?m_ .sm.gu_l. = 1,...n (15)
which ¢can be written as
I K:leC) _ o 3" Pa) o .
da; _“ ms 23“_) ms.|. 0;i=1,...n (16)

It is easy to see that the Boltzmann distribution

P(a) = .W e26@yo? an
where Z = [4€26@/e" da represents the multiple integral over the whole
activation space, satisfies Equation 16, and therefore, is the unique limiting
distribution.

It is a well-known fact, derivable using calculus of variations, that the
continuous Boltzmann distribution optimizes the continuous version of
Helmbholtz’s function. This distribution assigns a real value to each possible
multivariate probability distribution. This real value reflects a trade-off
between two terms: (1) a term that gets larger as the expected goodness

“value increases; and (2) a term that gets larger as the entropy of the net-

work increases. In the SDN, Helmholtz’s function assumes the following
form:
v a 1
,23uAQV-+uMA_=MVn (18)
where the F(p) notation is used to emphasize that the function depends on a
entire probability distribution p. The term . < G >, denotes the expected
value of goodness, and < In (1 / p) >, represents the expected value of the

logarithm of one over the probabilities, also known as entropy. The two

common
Pencil

common
Pencil

common
Pencil

476 - MOVELLAN AND MCCLELLAND

principles reflected in Helmholtz’s function are in contradiction. On one
hand, maximum entropy is achieved by providing an equal share of proba-
bility to all the activation states, no matter how good they are. On the other
hand, maximum expected value is achieved by giving maximum probability
to the best state. Among all possible continuous multivariate distributions,
the Boltzmann distribution is the one that achieves the optimal balance
between these two principles, maximizing Helmholtz’s function. We can
now see the dynamics of the activation from yet another perspective. Using
simple local computations, SDNs perform a remarkable optimization pro-
cess; they search in the space of all possible continuous multivariate
distributions for the one that optimizes Helmholtz’s function: the con-
tinuous Boltzmann distribution. .

Figure 3 exhibits how a simple one-unit network approaches the equilib-
rium distribution as settling time progresses. The figure was obtained by ini-
tializing the unit’s activation to zero and letting it settle for a certain period
of time, ¢. This settling process was repeated 40,000 times with histograms
being computed at different time frames. Figure 3 shows how these histo-
grams approach the Boltzmann distribution as time advances. The obtained
histogram after 2,000 cycles was in agreement with the theoretical
Boltzmann distribution to the third decimal place.

3. LEARNING CONTINUOUS PROBABILITY DISTRIBUTIONS _

The problem is defined in the following way: We fix the activations of a set
of input units to a particular vector, x € X and our objective is to get
vectors of output units, y € Y to exhibit a desired joint probability density
function. This desired probability is represented by Pxa(y). The set of units
considered as inputs or outputs may vary from pattern to pattern.

In this case the derivation follows similar steps as in the discrete Boltzmann
machine (Ackley et al., 1985). The only differences in the continuous case
are: (1) we substitute sums by integrals; and (1) we can also calculate the
gradient descent rule for the gain parameters. To begin we define an error
function that captures the difference between obtained and desired continu-
ous probability distributions:

Pxa(y)
Px(y)

where Px(y) represents the obtained equilibrium probability density func-
tion, and |y dy represents the multiple integral in the space of output units.
- The notation TIGyand P is used to emphasize that the functions are specific
to particular values of the input vector. This error function is a continuous
version of the total information gain function used in the SBM (Ackley et
al., 1985). It is always positive and it vanishes when the obtained and

) dy _ (19

TIGx = |y Pra(y) In (

CONTINUOUS PROBABILITY DISTRIBUTIONS 477

desired probability distribution—not just the average values of individual
units—are exactly equal. Following analogous steps as in the SBM, it can be
shown that the gradient descent learning rule for weights is given by the
following equation (see Appendix): :

Awj = €2 {FilBufaa)] - Ex@a)} | e

where Awj; is the increment for the weight w;;. The term Eyy(aia;) represents
the expected value of the product of the activations of the ith and jth units
when the input units are fixed to pattern x, the output units are fixed to pat-
tern y and the hidden units are free to evolve according to Equation 10; E4()
is the expected value using the desired probability distribution of the output
vectors; Ex(aia;) represents the expected value of this product when the input
units are fixed to pattern x but the output and hidden units are free, and e is
a small constant usually known as the step-size or the learning rate.

The contrastive learning rule for the gain parameters is as follows (see
Appendix):

Agic 1 _ m.m {Ex(sk) — EdlExy(sx)]} @b

where Ex(sy) is the expected stress of the kth unit when the inputs are fixed
to pattern x, and Ey,(s) is the expected stress when the outputs are also fixed
to pattern y. In the case where more than one ‘‘input — probability distribu-
tion"* pair have to be learned, the appropriate rule is obtained by averaging
the gradients for the different input patterns.

3.1 Sampling Methods
The learning rules call for expected values of several quantities. Unfor-
tunately, we cannot derive analytically these statistics and thus we need to
estimate them by running simulations and approximating the desired statistics
based on a finite number of samples. The CHL rule requires running the net-
work in two different phases: a free phase where the input units are fixed with
hidden and output units running free, and a fixed phase where the outputs
are also fixed to a vector sampled from the desired probability distribution.
An important issue is developing methods to obtain estimates of the
terms in the learning rules in a fast and accurate fashion. One approach is to
use annealing schedules, like in the SBM, by starting the settling process
with a large noise component and gradually diminishing it. Another approach
is to use sharpening schedules (Akiyama et al., 1989) where initially small
gain values are slowly replaced through setting by larger ones. Combina-
tions of sharpening and annealing are also possible. Due to the exponential
nature of the Boltzmann distribution, the desired statistics are maximally
influenced by the activation states with maximum goodness. Annealing and

common
Pencil

common
Pencil

common
Pencil

478 MOVELLAN AND McCLELLAND

sharpening methods try to focus the sampling time to the largest attractors
(maxima in the Goodness function) avoiding smaller attractors. However,
these procedures run into problems when the network has to learn probability
distributions where there is more than one equally desirable pattern of acti-
vation for the same input. In this case each of the desired patterns will have
a corresponding maximum with the same goodness value. Because annealing

schedules are designed to visit only one of the maxima at a time, the obtained

statistics will be unstable and will lead to instabilities in the learning process.

In such cases, we have found it beneficial to let the network visit several
large attractors before changing the weights. We could achieve this by doing
either one of two things: We could let the network settle once per learning
trial, giving enough time at equilibrium to jump out of attractors and visit
several different ones. We could also restart the network several times from
different random points, but with less time at equilibrium each time. In this
case the probability of visiting different attractors is obtained by averaging
over the several restarts. Since the network is ergodic, equilibrium statistics
using one or many restarts converge, but in practice we have found that the
stochastic equilibrium statistics are approximated faster by using the multi-
ple restarts method. A similar effect may be achieved by changing the
weights based on a temporal moving average of the gradients obtained in
previous learning epochs. In our simulations we used the multiple restarts
technique in combination with an exponential moving average technique.
We did not use annealing or sharpening schedules.

4. SIMULATIONS

Here we will focus on the CHL rule and the problem of learning discrete
and continuous distributions of various types. We present simulations of the
four following problems:

1. Completion exclusive-or (XOR): A variation on a standard benchmark
for connectionist networks. _

2. Word translation problem: Learning bidirectional stochastic mappings
of discrete multidimensional representations.

3. Multidimensional continuous probability distributions: . Learning
various types of multidimensional continuous distributions with and
without interdependencies in the output units.

4. XOR governed probability distributions: A problem that requires
learning high-order output-unit statistics, and the use of hidden unis.

Results on some of these problems with a previous model instantiating the
principles of continuous, stochastic, interactive processing are also
presented in Movellan and McClelland (in press).

CONTINUOUS PROBABILITY DISTRIBUTIONS 479

4.1 General Specifications
The continuous Langevin equation was approximated using a discrete time
difference equation of the following form:

Aai(t) = Atlneti(t) — heti(t)] + oVAIZi(t);i = 1,...n 22
where nét; is the logit transform of the scaled activations
u 1 1 a; — min
nét; = — fla) = — log —— "2
i P Aa) P 0og max — a; (23)

Zi(?) is a standard Gaussian variable with zero mean and unit variance; The
parameters max and min control the bounds of the activation values. They
were set to 1.0 and — 1.0 respectively. To avoid overflow problems with the
logarithms, we did not let the activations get larger than max— (max — min)/
100 or smaller than min + (max — min)/100. :

We used time increments At in the order of .1. In our simulations we
trained the network to reproduce probability distributions rather than single
output vectors. In such cases, we found it beneficial to use the multiple re-
starts technique. The number of restarts ranged from 1 to 80 depending on
the problem. In each restart trial we randomly chose a particular target out-
put véctor from the desired distribution and collected covariance statistics
for the free and fixed phases. The phases in each “‘restart’’ trial consisted of
about 50 iterations where activation convariance statistics were not col-
lected, followed by about 50 iterations where statistics where collected.

When training networks to approximate discrete outputs, we have found
it beneficial to use non-extreme teacher values. For instance, for the SDN
version of XOR and translation problems the teachers were set to either:
—.9or .9instead of —1.0 or 1.0. The weights were symmetric, and the gain
parameters were maintained constant and equal for all units. Adaptive
gains may prove important in hardware implementations with limited preci-
sion weights but are not particularly relevent for our simulations. As
discussed in Movellan (1990), gradient descent calls for the self-connections
to be changed at half the rate of the other weights. Our simulations followed
this rule. The activation covariance statistics necessary for the learning rule
were estimated using the multiple restarts method in combination with an
exponential moving average of previous gradients. Networks were allowed
to settle several times per pattern with different random starting values, and
the activation covariances were accumulated for all the patterns before
changing the weights. The moving average of the m_.w&oa was calculated
according to the following equation;

Qﬂ.\QuAmhenE = (1 — a)y TIGx(epoch) + ayTIGx(epoch — 1) (24)

where {7 TIGx(epoch) is the exponentially averaged gradient and 7 T/Gx(epoch)
is the obtained gradient on the current epoch. The weights were modified
proportionally to the exponentially averaged gradient:

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

480 MOVELLAN AND McCLELLAND

Aw(epoch) = €[7 TIGx(epoch)]. (25)

We dropped the 2 / o* constant in the gradient calculations. Therefore, the
learning rates, (€), are reported with respect to the gradient times o* / 2. No
annealing or sharpening schedules were used. The training process was
stopped when the total information gain (T1IG) was lower than a certain
criterion. In practice, we approximated the integral in Equation 19 by defin-
ing a region surrounding each of the desired distributed states, the tolerance
region, and assessing the proportion of time that the activations fell within
that region when statistics are collected. The state was treated as falling in
the tolerance region when all the obtained activations where in the interval
defined by the desired activations + tolerance.

4.2 Completion Exclusive-Or (XOR)

The purpose of this simulation was to test whether mUZm could do comple-
tions requiring the use of hidden units (Rumelhart, Hinton, & Williams,
1986). In this version of XOR, there were no input units, nine hidden units,
and three output units. The four pattern combinations of the XOR problem,
(-1 -1-1; -111;1 —11;11 —1), were repeatedly presented to the out-
put units. The task was to learn to reproduce with equal probability (p = .25)
each of the four XOR patterns in the absence of any input. After training,
we tested the network by clamping 0, 1, or 2 inputs and seeing whether it
generated a proper completion.

Specifications: The network consisted of 12 fully connected units (3 output
units, 9 hidden units). Initial weights were sampled from a (— 1, 1) uniform dis-
tribution. Learning was done with 80 settling restarts per pattern, Each settling
started with random activation values in the (—.9, .9) range, followed by
50 initial cycles of synchronous activation update where statistics were not
collected, and 50 additional cycles where activation covariance statistics were
collected. Gains were fixed at 10,0, At at .1, and o at .1. The step-size constant
for weight adjustment was set at .025. Learning was stopped wheén the TIG
was smaller than .1 (tolerance was .8). The training process was repeated 20
times with different random starting weights.

The average number of epochs to criterion was 198.4 (min 20, max 558).
After training we clamped none, one, or two of the output units to each of
the four possible binary combinations and let the other units run free for
1,000 cycles. We tested each network based on the pattern of activation ob-
tained on cycle 1,001. All the 3-bit completions, with no units clamped,
were correct (they were one of the four XOR patterns). We then tested the
20 networks with the 120 possible 2-bit completion problems. The average
percentage of correct 2-bit completions was .975. Finally, we tested the 20
networks with the 240 possible 1-bit completion problems. The average
number of correct 1-bit completions was .967.

CONTINUOUS PROBABILITY DISTRIBUTIONS ~ 481

Word Translation Problem

~ "English" Module

"Hidden" Module

"Spanish” Module

Figure 4. The architecture used for the translation problem. “Spanish” and “English” words
were encoded as eight-dimensional discrete random patterns.

4.3 Word Translation Problem

In this simulation we trained SDNs to approximate discrete probabilistic
mappings with arbitrary output unit interdependencies. We also in-
vestigated whether CHL can be used to train bidirectional mappings where
each visible unit may act as input or output depending on the situation.

The inspiration for this simulation was the translation problem presented
in the introduction. The goal was to translate ‘‘words’’ from one *‘lan-
guage”’ to another. The requirements were to encode the words in a distrib-
uted manner, to allow more than one acceptable translation per word, and
to produce bidirectional translations with the same network (e.g., English-
Spanish, Spanish-English). This is a problem that cannot be computed with
deterministic networks such as BP or DBMs,

In this simulation, words were encoded as random binary patterns dis-
tributed among eight English and eight Spanish units (see Figure 4 and
Table 1). There were four additional hidden units and all 4+ 8 + 8 units were
fully interconnected. Half the time Spanish units were clamped to get a

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

482 MOVELLAN AND MCCLELLAND

TABLE 1
Translation Problem:
Encoding of the Different Spanish and English Words'

“Word” 8 bit code
aceftuna |-1 -1 1 1 1 -1 1 1
casa [-1 1 1 1 -1 -1 -1 1
estar {-1~-1 1 -1 1 -1 -1 1.
hacer | 1 1 -1.-1 1 1 -1 1
oliva|-1 1 1 1 -1 -1 1 -1
ger| 1 1 -1 -1 1 1 -1 -1
bel1 1 -1 1 1 1 1 -1
do|[1°1 1 1 -1 -1 1 -1
home|{-1 1 1 -1 -1 1 1 -1
house |[-1 1 -1 1 -1 1 -1 1
make |1 1 1 -1 -1 1 1 1
olive] 1 -1 1 -1 -1 -1 1 1

translation in the English module; otherwise, the English units were
clamped to get a translation in the Spanish module.

Specifications: Initial weights were sampled from a (— 1, 1) uniform distribu-
tion. Learning was done in batch mode with 20 settling restarts per pattern.
Each settling started with activations set at 0.0, followed by 50 initial cycles of
activation update where statistics were not collected, and 50 additional cycles
where statistics were collected. Gain was fixed at 1.0, At at .1, 0at .1, e at 4.
The stepsize constant for weight adjustment was .0025. Training was stopped
when TIG was below .1 (tolerance .8). This was followed by an additional
fine-tuning training period with 200 settling restarts per pattern (40 additional
epochs). The additional fine-tuning training was stopped when TIG was below
.1. The entire procedure took 927 initial training epochs followed by 40 addi-
tional fine-tuning epochs. .

The network was then tested 1,000 times per pattern. Each testing trial
started with activations set at zero, followed by 50 cycles where probabilities
were not collected and 50 additional cycles where probabilities were collected.
The results after 967 training epochs are shown in Table 2. It can be seen
that a good approximation to the desired probabilities is obtained. Most
importantly, for the ambiguous words, where more than one translation is
possible, the network was nearly always in one of the correct alternatives
and did not generate unacceptable blends.

In this stimulation we used a relatively large number of restarts per pat-
tern to allow the network to get a fair sample of the probability distribution
over the alternative outputs for each input. The network can learn very fast
and with far fewer restarts to restrict itself to produce one of many acceptable

CONTINUOUS PROBABILITY DISTRIBUTIONS 483
TABLE 2
Translation Problem
Input . Translation
house casa 1.000 [1.000
home casa 1.000 [1.000

do hacer 1.000 [1.000
make hacer 1.000 [1.000

oltve aceituna 0.700 {0.657] | oliva '~ 0.300 {0.289
_ be ser - 0500 [0.495] | estar 0.500 [0.486
casa house 0.700 [0.674) | home 0.300 [0.303
hacer | do 0.500 [0.464) | make 0.500 [0.531
aceituna | olive 1.000 [1.000
oliva olive - 1.000 ([1.000
ser be 1.000 {1.000
estar be 1.000 (1.000

Column 1 shows the input pattern and columns 2 and 3 the possible transla-
tions. The two numbers for each translation represent the desired probability
"and, in brackets, the obtained probability of the translations after training. A
pattern was considered correct if each output unit activation was within a .8
range of the desired volue (—.9 or +.9). Even with this tolerance level, a target
region is still less than 0.07% of the eight-dimensional output space.

TABLE 3
Desired Probability Distributions
for Each of the Five Output Units

Output unit | Distribution | Expected Value
1 Binomial 0
2 Univalued 0
3 Uniform 0
4 Univalued -0.5
b Binomial -0.5

alternatives, but a larger number of restarts is reccommended when conver-
gence to the exact probability distributions of the alternatives is needed.

4.4 Learning Continuous Probability Distributions

of Multiple Qutput Units

The two previous simulations showed that CHL can be used to train discrete
probability distributions. The purpose of this simulation is to show that we
can also approximate continuous probability distributions. The network
consisted of 5 output units connected to 10 fully interconnected hidden
units. Each output unit was trained to reproduce a continuous probability

distribution. The desired probability distributions were independent and

different for each output unit (see Table.3).

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

484 MOVELLAN AND McCLELLAND

0 w- : : Lol BN g Output unit 1
0] : Desired is binomial
.o“m- Loadsl el toal 1|l withmean=0
o o 0O 0 O
REEBEEREEES
o.m- Output unit 2
0TV | v | ven | vips | [Ay | ne | WA | \wad Dessired s univalued
= .o“m._.T . with mean = 0
..m T passen ey]
5 REBEBBHREEEE
[~4
@ 1 '
b} 0.5 wA{ Output unit3
2 4D ?/Z w /s Y \ Desired ls uniform
m .o“._.mu L1 O U] O Y O O 5 with mean = 0
2 o 2 9 9 Q o
: Rg88838888
2 0 w- Output unit -,
..m 0 . Desired is univalued
\2>/ .o.m-ts}}esi\.}{.i? with mean = -0.5
o 0 0 O © o
RE88ESEEEE
os v Output unit 5
0 Desired s binomial
.o.m- . _l with mean = -0.5
(=] K=] . [=]
5552888888

m_nc..o 8. Output unit activations of a trained nefwork. Each row represents the activation
of one output unit throughout 10,000 settling cycles.

Specifications: Initial weights were sampled from a (— 1, 1) uniform distribu-
tion. Learning was done in batch mode. Each epoch the network was
presented with the same 64 patterns chosen to represent the desired distribu-
tion. Each settling started with activations randomly set in the (— .9, .9) range,
followed by 50 initial cycles where statistics were not collected, and 50 addi-
tional cycles where statistics were collected. Gains were set at 1.0, At at.l,cat
.2, a at .1. The step-size constant for io_mE adjustment was set at Souu
Training was done at 6,000 epochs.

Figure 5 shows 2,000 activation cycles of the five output units of a trained
network. The figure was obtained by settling the network 10 different times
in sequence. Each settling period started with activations randomly chosen
in the (~.9, .9) range and was followed by 200 settling cycles. This made a
total of 10 x 200 settling cycles. The figure shows the activations every 10
cycles. It can be seen that the output distributions successfully approximate
the desired distributions given the constraints imposed by noise. Thus, the
first output unit settles with about equal frequency in either one of the two
desired state regions. The second output unit has a Gaussian distribution

CONTINUOUS PROBABILITY DISTRIBUTIONS 48)
0.8 0.8
.6
) 0 - 0.6 ~
M 0.4 M 0.4 .m
o 0.2 D o 0.2 >
0 0
RO =INNO AN = O~
99ggogoococo PP PPGFSOS SO
0.8 Activation , 0.8 Activation
Z 0.6 o z 0.6 wn
= =
m 04 = M 0.4 =
£ o2 = & 0.2 =
0 [}
annOr-ouko anua==an~a
f9999cSccso f¢99gccca
0.8 Activation " Activation
.WPQ
.3.. Average Standard Deviation
Bos = Unit1 0.0200 0.9014
&o2 = Unit2 0.0124 0.1099
Unit3 - 0.0163 0.5676
o Unit4 - 0.4949 0.0970
3583553353 Unit5 - 0.4956 0.7533
Activation

Figure 6. Histograms of the equilibrium probability distributions of the five output units.

centered at 0.0, the desired value. The third output unit activations are ap-
proximately uniform in the (— 1, 1) interval, and the last two output units
have the same expected value (—.5) and approximate a constant deter-
ministic teacher (output unit 4) and a binomial teacher (output unit 5). As
desired, all 10 pairwise correlations of the output unit activations after
training were zero to the monona decimal place. Histograms and statistics of
the obtained distributions are in Figure 6.

We then performed another simulation with the same parameter specifi-
cations to test whether interdependencies between the output units could be
learned. In particular, we introduced the following dependency between
output units 1 and 3: When the teacher for output unit 1 was —1.0, the
teacher for output unit 3 could be anywhere in the (- 1.0, 0.0) range, and
when the teacher for output unit 1 was 1.0, the teacher for output unit 3
could be anywhere in the (0.0, 1.0) range. The other three output units
received the same teacher distributions as in the previous simulation. To
make the problem more difficult we did not allow direct connections between

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

486 MOVELLAN AND McCLELLAND

1 ,
0.5 .) ™ W Output unit 1
Desired is
N 0 binomial with
.m ~=0.5- mean =0
M ..d T b\.s: adief o .),..&. v
g | .0 500 1000 1500 2000
-3 _
3 o.mu—ts { ._,<__ M
8 | 4> o- Output unit 3
e
g | 05 mem| (] |y
S
2 -
2 0 500 1000 - 1500 - 2000

Output units 2, 4,5

Figure 7. Output unit activations of a trained network. Each row represents the activations
of each output unit throughout 10,000 settling cycles.

the output units so that interdependencies could only be captured via hidden
unit connections. The network’s architecture and the learning parameters
were identical to the previous simulations. Figure 7, which was constructed
in the same manner as Figure 6, shows 2,000 cycles of the activation of out-
put units 1 and 3 of a trained network. _

It can be seen that the obtained activations approximate well the desired
interdependency. When output unit 1 is in state — 1.0, output unit 3 varies
in the (— 1, 0) range and when output unit 1 is in state 1, output unit 3 is in
the (0, 1) range. The expected Pearson correlation coefficient between these
two units was .77, the obtained correlation was .83. As expected, all other
correlations were zero to the third decimal place. Figure 8 shows the joint
probability distribution of output units 1 and 3 in a trained network. The
obtained distribution appears to be a mixture of multivariate Gaussian
distributions that approximate the desired joint distribution. This may be
due to the fact that if the noise is sufficiently small, the distribution of acti-
vations on the neighborhood of each attractor is approximately Gaussian.
As a first approximation we can see the obtained distributions as mixtures
of multivariate Gaussian ‘‘experts’’ where the salience of each expert is
modulated by the input vector.

4.5 Learning XOR Governed Probability Distributions
This is a problem that cannot be learned with Boltzmann machines or BP
networks and that necessitates hidden units. There were 2 input units, 1 out-

CONTINUOUS PROBABILITY DISTRIBUTIONS . 487

Probability

Figure 8, Joint distribution of output units 1 and u._z a trained network.

TABLE 4
Desired Output Probability Distributions
as a Function of the Input Patterns

Input Units | Distribution | Expected Value
-1 <1 | Univalued 0
-1 1 Binomial 0.

1 -1 Binomtial 0

1 1| Univalued 0

put unit, and 10 hidden units. The probability distribution to be learned by
the output unit depended on the input conditions as indicated in Table 4.

The requirement was that the expected value of the probability distribu-
tion of the output unit should be the same for the four input patterns but
the shape of the distribution should be different and governed by an XOR
similarity metric in the inputs. Thus, input patterns (-1, —1) and (1, 1)
generate a Gaussian distribution centered at 0, and the patterns (-1, 1) and
(1, —1) generate a binomial distribution with expected value 0.0,

Specifications: The network consisted of 13 fully connected units (2 input
units, 10 hidden units, 1 output unit). Initial weights were sampled from a

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

488 MOVELLAN AND McCLELLAND

0.7
0.9 |

%3

annge = 0n
R © oo
Activation .
Response to Input pattern 3 Response {0 input patiem 4

. Activation

I Desired Distribution

Obtained Distribution

figure 9. Desired and obtained probability distributions in the output unit as o response to
the four different input patterns.

(-1, 1) uniform distribution. Learning was done in batch mode with 80 sett}-
ing restarts per pattern. Each settling started with random initial activations in
the (—.9, .9) range, followed by 50 activation updates where statistics were not
collected, and 50 more cycles where statistics were collected. Gains were set at
1.0, At at .1, ¢ at .2, at .2. The step-size constant for weight adjustment was
set at .0025. Learning was stopped with TIG, using a .2 tolerance range, was
below .7 (712 epochs). Additional fine-tuning training was then performed
with 200 restarts per pattern until a TIG below .5 was achieved (596 additional
epochs). :

Figure 9 shows the results after training; four graphs show the anm_m:& and
botained distributions of the unique output unit under one of the four dif-
ferent patterns. It can be seen that the obtained probability distributions

approximate well the desired distributions if we take into consideration the -

constraints imposed by the injected noise.

CONTINUOUS PROBABILITY DISTRIBUTIONS 489

5. DISCUSSION

The work presented above builds on earlier work on discrete stochastic net-
works (Ackley et al., 1985; Geman & Geman, 1984; Smolensky, 1986) and
extends this previous work to the continuous diffusion case (SDN). First,
we showed that the equilibrium probability distribution of SDNs is continu-
ous Boltzmann. This significant result is easily derivable from Markovian
diffusion theory, but to our knowledge, had not been previously presented.
Most importantly, this result holds for other bounded dynamical systems
whose time derivatives are the gradient of an objective function (the drift)
and additive Gaussian noise (the diffusion). This may have important impli-
cations for general optimization of continuous functions with known deriv-
atives. For example; the error function used in back propagation learning
(TSS) could play the same role as the goodness function in SDNs. If we add
Gaussian noise to the gradient of TSS with respect to weights, we would
also obtain a Markovian diffusion system. The evolution of the probability
distribution of the weights would then be determined by a Fokker-Planck
equation analogous to 10, but substituting activations by weights and good-
ness, G(a), by — TSS(w). If the weights are bounded, the noisy version of
the back propagation rule would exhibit a Boltzmann equilibrium distribu-
tion in weight space. Using a sufficiently slow annealing schedule we could
then guarantee achievement of global minima in weight space. .

With respect to learning, we have focused on the CHL rule and its ability
to learn entire distributions. We have shown that when applied to SDN, it
performs gradient descent on the total information gain error function
(TIG). This function captures differences between desired and obtained
continuous multivariate probability distributions beyond expected values
and vanishes only when obtained and desired probability distributions are
equal. Simulations were used to show that, indeed, CHL can be used to ap-
proximate discrete probability distributions, continuous probability
distributions, and deterministic input-output mappings.

Considerable work remains to be done. We need to try CHL with larger
problems. In its present form CHL learns very quickly in terms of number
of epochs but the processes of estimating the gradients may take thousands
of cycles. Developing fast methods to estimate the desired gradients will be
a major prerequisite for the development of practical applications. In our
simulations we have used temporal averaging of the gradients to speed up
learning. We suspect that the spatial averaging that goes on in natural ner-
vous systems may also have positive effects, We believe that the multiple
restarts technique; which we used in our simulations, may serve a similar
purpose to this spatial averaging. The learning algorithm and the activation
dynamics can also be optimized with massively parallel architectures or with
VLSI implementations. In this respect the chip developed. at Bellcore

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

490 MOVELLAN AND MCcCLELLAND

(Alspector, Jayakumar, & Luna, 1992) is a promising possibility. In its pre-
sent form it can implement a 32-unit SDN-style network trained with the
CHL algorithm at a speed of 100,000 input-output patterns per second.
We believe that SDNs may excel in applications that take full advantage
of the principles of continuous, stochastic, and interactive processing. Ran-
domness and graded activations allow learning continuous probability

distributions where the same input may have more than one acceptable out-

put; noise is essential here, rather than simply being a hindrance. Stochastic

diffusion networks may also prove useful in other kinds of learning para-

digms as well. CHL is based on minimization of the TIG, a very general error
function. This makes CHL very general and capable of learning entire prob-
ability distributions. In practice though, rules based on minimization of less
general error functions—such as TSS or the probability of being wrong—
may have advantages in particular learning situations. We have derived such
learning rules and we are presently comparing their performance with the
CHL rule. :

Theoretically, we need to address important issues regarding the learn-
ing, representational, and dynamical behavior of these networks: How
many probability distributions can be learned? What kind of problems are
learnable with the different algorithms? Are these networks subject to
catastrophic interference? Are they universal contingency approximators?
Do they exhibit well-known phenomena from the human cognition litera-
ture? Can we extend the learning algorithm to the more general case of
learning probabilistic sequences? :

The capacity of SDNs to tackle very general forms of contingency extends
the possibilities of adaptive networks to model learning and development.
The capacity of infants to detect contingencies has played an important role
in many theories of development. Aspects such as the development of cross-
modal representations and symbolic reference (Piaget, 1936), the develop-
ment of reaching and object permanence (Piaget, 1937), and early social
development (Watson, 1985) have been linked to the infant’s capacity to
detect contingencies. Yet, very few theories pay attention to the types of
contingencies underlying these problems and the mechanisms necessary to
learn them. For example, only recent articles (Jordan, 1989; Jordan &
Rumelhart, 1992) have addressed the averaging problem that exists when
learning how to reach. The capacity of SDNs to detect a very wide variety of
contingencies that go beyond expected values may help us explore aspects of
development that were not easily approached with other adaptive networks.

Most importantly, symmetric diffusion networks may help expand our
notions of how natural nervous systems may represent information. In
deterministic networks, the activation states can be seen as internal
representations of the inputs, and the maxima in the goodness function as
interpretations the network settles into. This approach illustrates how

CONTINUOUS PROBABILITY DISTRIBUTIONS a9

cognitive schemas could emerge from the interaction of interconnected units
(Rumelhart, Smolensky, & McClelland, 1986). Stochastic networks (i.e.,
the SBM, the harmonium, and SDN5s) take us a step further. Their behavior
can only be stated in terms of probabilities, and their stable states are no
longer activation vectors but probability distributions. In spite of the fact
that the activation states are constantly changing, there is an underlying in-
variant: the particular way in which probability density spreads through the
different states. In SDNs this evolution is governed by the forward diffu-
sion equation, and culminates in stochastic equilibrium. This underlying
structure may not be detected directly in a single observation, but it is _
reflected when sampling the network’s response over many trials. As Ackley
et al., (1985) noted, the late von Neumann (1958) thought of stochasticity as
an essential principle that differentiated the digital computer from the
brain. He suggested that noise may not be a hindrance in natural nervous
systems, but an essential information-processing principle: _

. . .the message-system used in the nervous system. . .is of an essentially statisti-
- cal character. . . . Thus the nervous system appears to be using a radically dif-
ferent system of notation from the ones we are familiar with in ordinary arith-
metic and mathematics: instead of the precise system of markers where the
position—and presence or absence—of every marker counts decisively in
determining the meaning of the message, we have here a system of notations in

which the meaning is conveyed by the statistical properties of the message.
(von Neumann, 1958, p. 79)

It is hoped that SDNs will help in developing models of cognition to understand

better the computational properties of stochastic distributed representations.

In the past, since most emphasis was given to learning speed, and since -

simulating randomness greatly slowed down learning, stochastic networks
and the problem of learning probability distributions were somehow for-
gotten. We hope our work helps to emphasize the possibilities of stochastic
networks and the importance of learning contingencies that involve complete
real-valued probability distributions.

REFERENCES

>oEn<. D., Hinton, G., & Sejnowski, T. (1985). A learning algorithm for Boltzmann machines.

Cogntive Science, 9, 147-169.

Alspector, J., Jayakumar, A., & Luna, S. (1992). Experimental evaluation of learning in a

neuronal mycrosystem. In J. Moody, S. Hanson, & R. Lippmann. Advances in neural
infarmation processing systems. (Vol. 4).

Akiyama, Y., Yamashita, A., Kajiura, M., & Aiso, H. (1989). Combinatorial optimization

with Gaussian Machines. Proceedings of the International Joint Conference on Neural
Networks 1, 533-540.

Baldi, P., & Pineda, F. (1991). Contrastive learning and neural oscillations. Neural Computation,

‘3(4), 524-545.

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

492 MOVELLAN AND McCLELLAND

Brysou, A., & Ho, Y. (1969). Applied optimal control. New York: Blaisdell.
Galland, C., & Hinton, G. (1989). Deterministic Boltzmann Learning in networks with asym-
metric connectivity. Department of Computer Science, University of Toronto. (Tech.
Rep. No. CRG-TR-89-6). .
Gardiner, C.W. (1985). Handbook of Stochastic Methods for Physics, Chemistry and the
Natural Sciences. Berlin: Springer-Verlag. o)
Geman, S., & Geman, D. (1984). ‘Stochastic relaxation: Gibbs distributions and the Bayesian
restoration of images. IEEE Transactions on Patterns Analysis and Machine Intelli-
gence, 6, 721-741.
Gillespie, D. (1992). Markov processes: An introduction for Physical Scientists. San Diego:
Academic. .
Hinton, G.E. (1989). Deterministic Boltzmann learning performs steepest descent in weight-
space. Neural Computation, 1, 143-150. . ;
Hopfield, J., Feinstein, D., & Palmer, R. (1983). Unlearning has a stabilizing effect in collec-
- tive memories. Nature, 304, 158-159.
Hopfield, J. (1984). Neurons with graded response have collective computational properties
like those of two-state neurons. Proceedings of the National Academy of Sciences USA,
-81, 3088-3092. .
Jordan, J. (1989). Motor learning and the degrees of freedom problem. In M. Jeannerod (Ed.),
Attention and performance. Hillsdale: Erlbaum. :
Jordan, M., & Rumelhart, D. (1992). Forward models: Supervised learning with a distal
teacher. Cognitive Science, 16, 307-354.
Le Cun, Y. (1985). Uné Procedure d’apprentissaage pour reseau a seuil assymetrique. In
Cognitiva 85: A la frontiere de lintelligence artificielle des sciences de al connaissance
des neurosciences. Paris, 599-604.
McCleltand, J., & Rumelhart, D. (1981). An interactive activation model of context effects in
letter perception: Part 1. An account of basic findings. Psychological Review, 88, 5.
McClelland, J. (1993). Toward a theory of information processing in graded random inter-
active networks. In Attention and Performance (Vol. 14, pp. 655-689). Cambridge, MA.
Metropolis, N., Rosenbluth, A, Rosenbluth, M., Teller, A., & Teller, E. (1953). Equations of
state calculations for fast computing machines. Journal of Chemical Physics, 6, 1087.
Movellan, J. (1990). Contrastive Hebbian learning in the continuous Hopfield model. In
, D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton: Connectionist models: Proceed-
ings of the 1990 Summer School. San Mateo: Morgan Kauffmann.
Movellan, J., & McClelland, J. (in press). Contrastive learning with graded random networks.
In T. Petsche (Ed.) Computational learning theory and natural learning systems (Vol.
2), Cambridge, MA: MIT Press. T ,
Papoulis, A. (1990). Probability and statistics. Englewood Cliffs, NJ: Prentice-Hall.
Parker, D. (1985). Learning logic. Technical report TR-47, Center for computational research
in economics and management science. MIT Press. :
Peterson, C., & Anderson, J. (1987). A mean field theory learning algorithm for neural net-
works. Complex Systems, 1, 995-1019. . : : .
‘Peterson, C,, & Hartman, E. (1989). Explorations of the Mean Field Theory Learning Algo-
" rithm. Neural Networks, 2, 415-494. ' :)

Piaget, J. (1936). Origins of intelligence in children. New York: International caﬁa:.w. Press. -

Piaget, J. (1937). The construction of reality in the child. London: Routledge and Kegan Paul.
Pomerleau, D. (1991). Efficient training of artificial neural networks for autonomous naviga-
. tion. Neural Computation, 3, 88-98. . : . .
Ratcliff, R. (1978). A theory of memory retrieval, Psychological Review, 85, 59-107.
Rumethart, D., Hinton, G., & Williams, R. (1986). Learning internal representation by error
propagation. In D. Rumelhart & J.L. McClelland (Eds.), Parallel distributed process-
ing: Explorations in the microstructure of cognition. Volume 1: Foundations. Cam-
bridge, MA: MIT Press.

CONTINUOUS PROBABILITY DISTRIBUTIONS 493

Rumelhart, D., Smolensky, P., McClelland, J., & Hinton, G. (1986). Schemata and sequential
thought processes in PDP models. In J. McClelland & D. Rumelhart (Eds.), Parallel
distributed processing: Explorations in the microstructure of cognition. Volume 2:
Psychological and biological models. Cambridge, MA: MIT Press.

Smolensky, P. (1986). Information Processing in dynamical systems: Foundations of harmony
theory. In D. Rumelhart, & J.L. McClelland (Eds.), Parallel distributed processing:
Explorations in’ the microstructure of cognition. Volume 1: Foundations. Cambridge,
MA: MIT Press. .

Taylor, I., & Karlin, S. (1984). An introduction to stochastic modeling. Orlando: Academic.

von Neumann, J. (1958). The computer and the brain. New Haven: Yale University Press.

Watson, J. (1985). Contingency perception in early social development. In T.M. Field &
N.A. Fox (Eds.), Social perception in infants, Norwood, NJ: Ablex.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral
sciences. Unpublished doctoral dissertation, Harvard University, Boston.

6. APPENDIX

To begin, we partition the activation vector, a € A, into an input vector,
X € X, a vector of hidden unit activations, h € H, and an output vector,
y € Y. Thus, a” = [x7, h7, y7]. The input, hidden, and output sets may be
different for different patterns. The central problem is to obtain a network
that minimizes a performance error function in the set of output units when
the set of input units is fixed to particular vector x. This is achieved by per-
forming gradient descent with respect to weights and with respect to the
gains parameters. As most of. the results are common to both gains and
weights, we will proceed with the derivations in terms of a generic parameter
0, which could be a weight parameter wy;, or a gain parameter gi. Our objec-
tive is to calculate the partial derivative of a performance error function
with respect to the generic parameter, 6. Before we get there, let us define a
random variable, 7, which we will name the goodness signal

_ an__w. Qv
™Y =39

- (26)

The notation Gxny (0) represents the fact that the goodness value of the acti-
vation vector xhy depends on the generic parameter 0. the goodness signal,
Txhy assigns a real value to each activation vector: xhy € A — 7xny € R,
where R is the real line. Because the activation vector is a random vector—
it has a probability distribution—the goodness signal, , is also a random
variable. Now we are ready to obtain a closed form for runy. From-the
definition of goodness

G(a) = H(®) ~ S(a) 2D

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

494 MOVELLAN AND McCLELLAND

where

H(a) = |w| a’W a (28)
and

n — .

S = X 25 .. 9)
with

st = 1% fo a0
it follows that the goodness signals are given by

Tuby = R..mmg. = @y Q)

when training weights, and
3Guny (2i)
e)
when training the gain parameters. In the preceding equations, (sk)xny is the

m:ommomﬁo#rén»c_oEﬁrou__w.»o%wmo:vu:ognAn_.s.r_.tmﬂroEo&..ﬁ
of the ith and jth elements in the xhy vector. :

Txhy =

6.1 The Contrastive Hebbian Learning (CHL) Rule)
This is a general purpose rule capable of learning contingencies mio_ium.
whole probability distributions. The derivations of the CHL rule are similar
to the Boltzmann machine learning derivations in Ackley et al. (1985), but
replace sums by integrals. However, in SDNs, we can also derive rules for
the gain parameters. :

In this case we need an error function that vanishes only when the obtained
and the desired probability distributions are exactly equal. This function is
the continuous version of the total information gain function (Ackley et al.,
1985),

TIGy®) = § y Pea(y) In _”ﬁu_ dy . 33)

where the TIGx(6) notation is used to emphasize that the function depends
on a generic parameter 8; P(y) represents the obtained equilibrium prob-
ability of output vector y, when the input activations are fixed to the vector
x. The term Pys(y) represents the desired probability density of the-output
vector y when the environment is in input state x.

= (Skany G2

CONTINUOUS PROBABILITY DISTRIBUTIONS 495
Since |
Pxa(y)
Pud(y) In |22 | oy o
T 2a(y) In _..ZL dy
v Pucty) In (Paty)) dy = § 3 Pasts) in [Pyt)1 dy &)
and since the first term in Equation 34 is constant, it follows that
dTIG(6) 9
3 = = |y Put) 35 lin Puy)] dy 69

ui_n:.‘ we need to calculate d / 36 {in Px(y)}. The term Px(y) can be found by
Integrating the network states whose output unit activations coincide with
the vector y. Therefore,

Py = § yPiyam. (36)
And since the equilibrium distribution is Boltzmann,

1

. Px(y) = Zs

2 .
§ 11 Cxny® % am 37

2
where N._. = [y 1 €°xhy®5 dhdy is known as the partition constant for the
SDN with fixed inputs.

Notice that

2
. P(xy) Z [y eOxhy®s gh
Pylx) = ——— = — = P,
_ PO Z [y [y eOm®% gn gy 0 9

152.« .weao is the probability that a network with all its units running free,
including the input units, oxEEa an output vector y and an input vector x.
The .85_ P(x) is the probability of the input vector x in the totally free
running network, P(y|x) mmmro conditional probability of y with respect to x,
and Z = [y {, |, e?*WO dxdhdy is the partition constant for the totally
free running network. It follows that

ad
20 Un Px()] = o : (39)
2| eoxmyosiany - Lanf | eCxnyod may).
a0 H a8 HYH :
The first term of the right side in Equation 39 can be expanded as
a 2 1 2 IGxny(0)

2
—(n\)_ eOxhy®@sgh) = — 8) g3 ———
a0 _.m ;)= @ iy m@._isw dh .mt eCxhyl 20 dh

40)

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

496 MOVELLAN AND McCLELLAND

2
¢

1 2.
P § ,, Oxy @ rany (6) @)

.ﬂuul _ o Po(b)rahy dh = IWI.I Exy(7) 42

where Z,y is the partition constant of an SDN with the inputs and outputs
fixed to the vectors x and y respectively; pxy(h) represents the equilibrium
probability of a particular vector of hidden unit activations when the input
units are fixed to the input vector x and the output units to the vector y, and
Exy(7) represents the expected value of the goodness signal 7xy When inputs
and outputs are fixed.

Using steps analogous to 40 through 42, it is easy to show that

3 2 2

2 | 5y EOxuy®) = = Extr) @3
where Ei(7) represents the expected value of the goodness signalu..« when
the input units are fixed and the other units run free. Combining Equations

35 and 43 we get the derivative of the logarithm of the probability of output
vector y .

2 tn P = 2 [Bot) - B, | @9

Combining Equation 44 with 38 and 39 we obtain the derivative of the total
information gain error function:

GO -~ 2 ([, Puts) (Elr) ~ Ex)] d} @5
and since the integral in Equation 45 is an expected value operator

TI 2 _

MO = - 2 (B 1B - Eut))

where E4() is the expected value using the desired probability distribution of
output vectors. When more than one *“input v+ probability distribution pair
is involved, the appropriate gradient is obtained by averaging over patterns.
The gradient descent learning rules for gains and weights easily follow.

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

common
Pencil

