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THE ORGANIZATION OF MEMORY

A PARALLEL DISTRIBUTED PROCESSING PERSPECTIVE

James L. McCLELLAND 1:'

SuMMARy

Parallel distributed processing (PDP) provides a contemporary framework for thinking about the nature and organization of perception,
memory, language, and thought. In this talk I describe the overall framework briefly and discuss its implications of procedural, semantic, and
episodic memory. According to the PDP approach, the processing of information takes place through the interaction of a large number of simple
processing units organized into modules. Storage occurs through the modification of connection weights based on the system response to its
input, that provides an opponunity for incremental storage. I will describe how connection modification may give rise through the course of
experience to procedural learning and to the formation of semantic memories, structured by their semantic content I will argue that the

discovery of semantic structure requires gradual learning, with repeated exposure to representative samples of the structure to be learned 
will then describe two neuropsychological implications of the PDP approach. First, I will consider the possible modular organization of
semantic information in the brain. Then, I will examine the role of the hippocampus in learning and memory. In the first case, we will see
how the PDP approach leads us to see how brain damage might produce apparent dissociations between categories, when infact the underlying
organization is not by category but by modality. In the second case, we will see that the PDP approach gives us a new way to understand why
it is important that unique, arbitrary associations not be stored all at once in the same memorys systems used for semantic information. This
leads to a specific theory of complementary roles of cortex and hippocampus, and to an explanation for the phenomenon of temporally graded
retrogade amnesill.

L 'orgllnistltion de III memoire. Interet du f( PllNllel Distributed Processing 
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RtsUMt

La methode dite . parallel distributed processing" (PDP) ofl're un nouveau cadre a la retlexion sur la nature et I'organisation de 
perception de la memoire, du langage et de la pensee. L' auteur decrit d' abord brievement I'ensemble de ce cadre et discute ses applications
ala memoire procedurale. semantique et episodique. Selon la methode DPD, Ie traitement de I'information passe par I'interaction d'
grand nombre d'unites de traitement simple organisees en modules. Le stockage a lieu par modification des poids de connexions, fondee
sur la reponse du systeme a ses atrerences, ce qui permet un stockage de plus en plus important. L'auteur decrit ensuite comment la
modification des coMexions peut aboutir, au tOurs de I'experience, a I'apprentissage procedural et a la formation de memoires semantiques
structurees par leur contenu semantique. II demontre que la decouverte d'une structure semantique exige un apprentissage graduel
comportant ime exposition repetee a des echantillons representatifs de la structure a apprendre. L'auteur dCcrit alors deux applications du
PDP a la neuropsychologie. II considere d'abord I'organisation modulaire possible (i'une information semantique dans I'encephale, puis
examine Ie role joue par I'hippocampe dans I'apprentissage et la memoire. Dans Ie premier cas, on voit comment la methode PDP amene
a envisager comment une lesion cerebrale peut provoquer des dissociations entre categories, alors que I'organisation sous-jacente n est pas
fondee sur la categoric mais sur la modalite. Dans Ie second cas, I'on voit que la methode PDP procure une nouvelle fa~on de comprendre

pourquoi il est important que des associations uniques et arbitraires ne soient pas toutes stockees en meme temps dans les memes systemes
mnesiques que ceux utilises pour I' information semantique. Tout tela aboutit a une theorie spCcifique des roles complementaires que jouent
Ie cortex et I'hippocampe ainsi qu a une explication du phenomene d' amnesie retrograde temporellement graduee.

How is . memory organized? This question actually sub-
sumes many more specific questions. To list only two, how
many different kinds of memory are there? What is the
substructure of each type ? These kinds of questions have
motivated a great deal of research, both psychological and
neuropsychological. Behind them lies another set of ques.

tions : Why is memory organized as it is ? What leads to its
organization? Are there fundamental computational issues

that dictate the form of the human memory system, or is it
simply a conglomeration of evolutionary artifacts ?

I will address some of these questions in this talk,
drawing on insights ftom the behavior of connectionist,
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parallel-distributed processing models of human memory.
FlI'St, I will briefly review the properties of such models.
Then, I will describe how structured procedural and seman-
tic knowledge may arise ftom learning in such systems. I
will argue that both kinds of learning depend on gradual
connection weight adjustment through repeated and inter-
leaved presentation to representative samples of the struc-
ture of the domains to which they apply.

I will then build upon these descriptions to address two
specific questions ftom the range of issues raised earlier.
Each question is at once neuropsychological and psycholo-

gical. The questions are :
How is semantic memory organized in the brain? Is it

by category or by modality?
Why is there is a special system - namely the hippocam-

pus - dedicated to the rapid acquisition of episodic

memories?
The investigation of these questions relates closely to the

legacy of Charcot, since they depend on the results of the
study of neurological patients, and they draw on a conside-
ration of the effects of brain damage on memory. They
bring this kind of study together with explicit computatio-
nal modeling based on the principles of parallel distributed
processing (POP). In both cases, I will argue that the
properties of POP models allow us to supplement the
careful analysis of patient behavior with theoretical observa.
tions that can dramatically advance our understanding of

the implications of the behavioral evidence for fundamental
questions like the ones posed above.

Let us begin with the parallel distributed processing

ftamework (Mc Clelland & Rumelhart, 1986; Rumelhart
&: Mc Clelland, 1986). It is a ftamework for building
explicit computational models of human cognitive function.
In this ftamework, we begin by assuming that cognition
takes place via the interactions of a large number of simple
but highly interconnected computational elements organi-
zed into groups or modules (fig. I). Each element is
something like a neuron, in that et aggregates inputs that
it receives ftom each other element via excitatory (positive)
and inhibitory (negative) connections. The sum of all 
these influences in turn determines the activation of the
unit, according to a simple non-linear function like the one
shown.

In systems of this type, what we might call the active
representation of information takes the form of the pattern
of activation over the units in the network. So, for example,
in the network illustrated in the figure, the presentation of

. a word would give rise to a pattern of activation over several
pools of units, one representing perhaps the alphabetic

content of the word, another its semantic content, and a
third its phonological content.

We think of the processing of information as the propa-
gation of activation among the units. In the brain, we
assume that this is an iterative process, and we simulate this
by dividing time into many small steps, and updating the
activation of each unit once in each timestep, based on the
activations of other units at the previous step. In the case

!nouts Out out

Processing Unit

-5 -A -3 -2 -I 0 I ::I 

Total Input

Fla. 1.- The parallel-distributed processing fuunewon.

Le cadre du tI parallel-distributed processing JI.

Middle and bottom sections after Sejnowski & Rosenberg. 1987.

of networks with symmetrical connectivity, this causes them
to settle, after a pattern is presented, into a stable or
anraClor, in which the relevant patterns are active in all
parts of the network. In general the ftamework allows for
the possibility that cognitive states are represented as
trajectories or patterns of activation that change through
time. For the present our interest focuses on the simpler,
but still interesting case of attractor networks.

Now, given these conceptions of representation and
processing, let us consider knowledge and learning. Where
is the knowledge in a parallel distributed processing sys-
tem ? The answer is, it is stored in the strengths of the
excitatory and inhibitory connections among the proces-
sing units. So, for example, the knowledge that allows us
to translate an alphabetic pattern into a phonological

pattern is stored in the strengths of the connections in the
pathway leading ftom the orthographic to the phonological
modules. These weights, as we shall see, are capable of
storing the complex pattern of regular and exceptional
relations between the spellings of English words and their
sounds. Other sets of weights can capture the more arbi-
trary relations between spelling ~d meaning or between
meaning and sound.
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Let us briefly consider explicit memories - for example
the knowledge that' Charcot died 100 years ago ' or . An
oak is a tree '. According to the connectionist approach,
even such memories as these are stored in connection
weights. Of course, when we think explicitly about one of
these propositions, we hold it in mind as a pattern of
activation. But the knowledge that allows us to reinstate this

" proposition ftom memory when appropriately cued is to be
found. we believe, in connection weights. We will examine
a model that encOdes propositional knowledge in this way
in a moment Also, when we think about specific episodic
memories, we reinstate a pattern of activation representing
visual aspects of the event and its context and of the feelings
and emotions of ourselves and others. Again such memo-
ries are patterns of activation when we recall them but the
knowledge that allows this recall is, we claim, stored in
connection weights.

If, as we have suggested, procedural, semantic, and
episodic knowledge are all stored in connection weights,
then clearly, all three types of learning occur through
connection strength adjustment. This fact links the psy-
chological study oflearning and memory with the physiolo-
gical investigation of synaptic modification. For our purpo-
ses, we will not consider in great detail exactly what these
physiological mechanisms are. Rather, we will rely on the
use of a procedure called back propagation that allows us
to adjust the strengths of the connections among simple
processing units according to a very simple principle called
error correction. Basically, this principle says:

Adjust the strength of each connection in proportion to the
extent that its adjustment will reduce the discrepancy between
the response of the network and external teaching signals.

For example, we can imagine a child learning to translate
ftom spelling to sound, seing a word and then hearing its
correct pronunciation. We would use the pattern produced
by the visual input to produce a pattern of activation over
the alphabetic units: then we would use the existing
connection weights to produce a pattern corresponding to
the networks representation of the sound. We would com-
pare this to the sound supplied by the teacher, and then
adjust each connection weight so as to reduce the difference
between the pattern produced by the network and the
pattern specified by the teacher.

We now have a ftamework for thinking about representa.
tion and processing; and about knowledge and knowledge
acquisition. I will now briefly describe the results of two
simulations demonstrating the power of this approach for
the acquisition of both procedural and semantic knowledge.

FIrst we consider procedural knowledge. The network
shown in fig. 2 was developed by Plaut, McClelland, and
Seidenberg (1992; Plaut & McClelland, 1993) to learn
to translate alphabetic patterns representing the spellings of
words into phonological patterns representing their sounds.
The network consists of input, hidden, and output units ;
as well as connections as illustrated in the figure. The
training corpus consisted of a set of 3000 monosyllabic

100 hidden units

108 grapheme units

FIG. 2.- The network used by Plaut and Me CleUand (1993).

JUseau utilise par Piaut tI Me Cleiland (1993).

words. Training proceeded very gradually, capturing the
gradual nature of the acquistion ofreading skill ; in fact the
network was exposed to the entire corpus of training
examples 3200 times, with presentations of more ftequent

. words given greater weight than presentations of less fte.
quent words. After training, the network could read
99.7 p. 100 of the words in the corpus correctly, missing
only 10 words that were low in ftequency and very excep-

tional either in their spelling or in their pronunciation given
the spelling - two examples are the French words ' sioux '
and . bas " which are very rare and completely inconsistent
with English pronunciation. For the vast majority of words,
including most exceptions like those shown on (fig. 3), the
network was correct. The network was also tested with
many pronounceable nonwords, and scored as well as
normals in providing plausible pronunciations - as high as
98 p. 100 correct on some sets of items. Based on compa-
risons of the networks performance with typical adult
English speakers, we can say that the network has gradually
learned both the regular mapping between spelling and
sound as well as the commonly occurring exceptions to it
in a way that corresponds to human capabilities in this
regard. It has mastered, in short, the procedural skill of
translating ftom spelling to sound through gradual,
incremental learning.

Let us now consider a model that learns semantic infor-
mation. This model was constructed by Rumelhart (1990)
to demonstrate how structured semantic representations
can arise in PDP systems ftom experience with proposi-
tions about objects and their properties. The network was
trained to capture the information standardly stored in the

Example exception words mastered by the network

of Plaut and McClelland (1993):

...

HAVE ONE

PINT AISLE

FIG. 3.- Some examples of exception words learned by the network of
Plaut & Me Clelland (1993).

Quelques exemples de mots d'eJa:eption appris par Ie reseau de Plaut et 
Clelland (/993).
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fiG. 4.- A semantic network of the type used in symbolic models of
cognition. From Rumelhart and Todd. 1993.

Riseau semanlique du rype uliiise dons ies modeles symboliques de cogni.
tion. D'apres RumelJuur el Todd (/993).

old-fashioned semantic networks of the kind illustrated in
the fig. 4. The goal is to allow the network to store
information about concepts in such a way as to permit to
generalize ftom what it has learned about some concepts to
other related concepts. In the old approach, this was done
by storing information true of a class or subclass of
concepts at the highest possible level of the tree. In the new
approach, this is done by gradually learning to assign each
concept a distributed representation, capturing its similarity
relations to other concepts.

Rumelhart s network is shown in fig. 5. It consists of a
set of input units, one for each concept and one for each
of several relations: 4( IS A~ 4( HAS~ 4( IS~, and
4( CAN~. At the output it consists of a set of units for
various completions of simple propositions, such as 4( RO-
BIN IS A BIRD ~ , 4( ROBIN CAN FLY It, etc. In between
there are two layers of hidden units, one to represent the
semantic relations of the concepts and another to combine
them with the relations to activate the correct outputs.

Rumelhart trained this network with a set ofpropositions
involving the concepts shown in the previous figure. The
training was one input pattern for concept-relation pair,
and the task was to turn on all the output units representing
correct completions of the proposition. For example, when
the input is ' ROBIN IS A ' the correct output is BIRD,
ANIMAL, LMNG THING. The entire set of patterns was
presented to the network many times, making small ad-
justments to the strengths of the connections after the
presentation of each pattern.

After the network has mastered the training set, it is
possible to examine the representations that the network
has learned to assign to the words in the concepts. We can
look either at the patterns themselves, as well as their

similarity relations. I have repeated the simulation myself,

Animal
Plant
Bird
Fish
Tree
Flower
Canary
Robin

is a
has
can
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Animal
Plant
Bird
Fish
Tree
Flower
Canary
Robin

&kin
leaves
wings

grow
fly
swim

big
small
yellow

FIG. The connectionist netWork used by Rumelhart to learn the facts
stored in the previous figure.

Le reseau #I connexioniste. ulilise par Rumel/um pour apprrndrr ies faits
stockes dans ID figurr precUente.

and the results that I obtained are presented in fig. 6. The

figure demonstrates that the network has assigned siIriiIar
patterns to similar concepts - so for example, the pattern
for oak is similar to the pattern for pine, the pattern for
daisy is similar to the pattern for rose, etc.

Now we may consider how we may achieve generaliza-
tion in this network. We may do so if we can assign to a
new pattern a representation that is similar to the represen-
tation of other similar concepts. To illustrate this, Rumel-
hart trained the network to produce the correct class
inclusion output for the concept sparrow. He simply
presented' Sparrow is a ' as input, trained the network to
produce the corrrect response - . Bird, Animal, Living
Thing ' . This caused the network to assign a pattern to
sparrow very close to the patterns for robin and canary. As
a result the network was able to answer reasonably when
probed with other propositions involving sparrows. It said
the sparrow can grow and can fly, it has wings, features and
skin, and it is small. It was unsure about whether the
sparrow could sing and about its color. Thus the network
learned to inherit knowledge ftom what it had learned
about other birds without direct instruction.

The point here is that PDP models, trained slowly via
interleaved presentation on a representative sample of an
entire domain of knowledge, can gradually acquire kno-
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fiG. 6.- Resuhs ofa cluster analysis on the representations of each of the
specific concepts learned by Rumelhart's network (replication from
Me Clelland, Me Naughton, and O'Reilly, 1993).

RisultDls dune analyse en grappe portlJnt sur les representations de chacun
des concepts spiciflques appris por Ie reseau de Rumelhart (d'apres Mc
Clelland. Mc Naughton et O'Reilly, /993).

wledge of structured procedures such as spelling-sound
correspondence and structured semantic domains such as
the domain of living things.

In summary, we have seen how POP models provide a
way not only of representing procedural and semantic
knowledge but of indicating how this knowledge may be

. acquired through gradual experience. In the next section of
the talk, I will show how parallel distributed processing
models can help us understand two very stilking neuropsy-

. chological phenomena that have implications fof questions
about the nature of the organization of human memory.

FJrStwe consider a question that arises within semantic
memory: How is semantic memory organized in the
brain ? Is it organized by category, for example with repre-
sentations of living things stored in one part of the brain
and knowledge of man-made artifacts in another? Or is it
organized perhaps by modality, with representations of
visual properties stored in one part of the brain and
knowledge about other types of properties, such as function
and use in other parts ?

This question has arisen within the domain of neurology
due to some fascinating observations reported in a series of
studies by Warrington and her colleagues (Warrington &
Mc Carthy, 1983, 1987; Warrington and Shallice, 1984).
Warrington and Shallice (1984) reported two patients who
showed a dramatic impairment in semantic knowledge of
living things coupled with only slight deficits in knowledge
of man-made objects such as a briefcase or an umbrella. In
one test, patients were asked to define concepts when given
the word for the concept Fig. 7 shows the data, along with
some example responses.

Clearly, the patients retain more information about
man-made objects than they retain about living things, The
same results are obtained when the input is a picture so the

2.0

Perfomltlllce of TII'O PIIIie"ts WitJI Im",;,ed K"owledge of Livi'"
Tltiqs 0" J'1II'io1lS Se_tk Memory T.b

Case Living thing Nonliving thing

Picture identification
JBR 90%
SBY 7S%

Spoken word definition
JBR 79%
SBY

JBR Parrot : dont ' know Tent: temporary outhouse, living
home

DaJrodil : plant Briefcase: small case used by stu-
dents to carry papers

Snail : an insect animal Compasse: tools for tellling direc-
tion you are going

Eel : not well Torch: hand-held light
Ostrich: unusual Dustbin: bin for putting rubbish in

SBY Duck: an animal Wheelbarrow: object used be people
to take material about

Wasp: bird that fiies Towel: material used to dry people
Crocus: rubbish material Pram: used to carry people, with

wheels and a thing to sit on
Holly: what you drink Submarine: ship that goes under-

neath the sea

Spider a person looking Umbrella: object used to protect you
for things, he was a spider trom WIther that comes
for his nation or country

fiG. 7.- Penormance of two patients with impaired knowledge of living
things in various semantic memory taw. From Farah &: Me Clelland
(1991) based on data in Warrington &. Shallice (1984).

Performance de deux malades ayant une ma/lllaise connaissance des etres
vivants dans dijJerentes uiches de memoire semantique. D'apres Farah

Mc Clelland (/991),fonde sur les donnees de Warrington Shallice
(/984).

problem appears to be semantic, not simply one of acces-
sing meaning from sound. Other patients, tested by War-
rington and Mc Carthy (1983), show a reverse pattern,
although it is not as dramatic.

Taken together the results suggest that localized lesions
to the brain can selectively interfere with knowledge of
living things on the one hand and with knowledge of
man-made objects on the other. It is tempting to conclude
from this in fact knowledge of living things is stored in a

- different part of the cognitive system than knowledge of
man-made objects. In fact, though, Warrington and her
colleagues (Warrington & Mc Carthy, 1983; Warrington
and Shallice, 1984) proposed at first a very different inter-
pretation. On this view, these selective deficits reflect
organiza~on by type of information rather than by the type
of object. These authors noted that living things seem to be
distinguished predominantly by their sensory properties,
while man~made objects such as umbrellas are distinguis-
hed primarily by their function. They suggested that per-
haps to access a concept is to access its distinguishing
features. If the living things have more visual distinguishing
features. then access to concepts about living things would
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be impaired if the portion of the brain containing visual
feature information was damaged. This view makes a great
deal of sense for a number of reasons. We know that the
brain is organized in part by modality; furthermore, in later
research it appeared that the dissociation could best be
described, not in terms of living things vs. man-made
artifacts, but in terms of concepts that are distinguished by
their appearance (including jewelry, for example, which is
man-made) vs. concepts that are distinguished by the filet
that they refer to objects that are easy to manipulate. Yet
Warrington later abandoned the idea, because of what
seemed to many people to be a devastating critique. The
critique rests on the observation that Warrington and
Shallice s patients were impaired, not only for questions
about the visual properties of living things, but also for
questions abOut the functional properties of living things. If
visual and functional properties are stored separately (per-
haps in modality specific stQres related to perception and
action), it is difficult to see why a lesion that affects visual
knowledge more than functional knowledge would affect
functional knowledge about living things more than func-
tional knowledge about man-made artifacts. Therefore the
theory that semantic memory is organized by type of
information rather than by category of concepts was aban-
doned. Martha Farah and I have used a connectionist
model to reinvestigate this issue. In particular, we examined
whether a PDP model that adheres to Warrington and
Shallice s assumptions could simulate the basic findings
ftom the patient data. In our simulation, the representation
of an object is a distributed pattern of activation over
$everal modules (fig. 8). We have a visual input module for
representing the appearance of the object and another
module for representing the name. We imagine there are
also semantic modules, perhaps several for different types
of information. In our simulation we include two semantic
modules, one for visual aspects of the representation of a
concept and one for functional information about the
purpose and use of the object. The model contains recipro-
cal connections between both input modules to both se-
mantic modules, allowing bi-directional associations bet-

..,.

The Semantic Memory network of Farah and Me Clelland 11991)

FIG. 8.- The network model used by Farah and Me Clelland (1991).

Modele de reseau ulilise par Farah el Me Clelland (1991).

ween both types of input and both aspects of meaning.
There are also recurrent connections within the visual and
phonological input representations, allowing each pattern
to function as an attractor. Fmally, we also see the concepts
as consisting of semantic attractors. These involve connec-
tions both within and between the different semantic
modules.

Before designing representations of living things and
man.made objects, we first tested Warrington and Shallice
claim that living things are distinguished primarily by their
visual properties and artifacts are distinguished primarily by
their functions. To do this, we presented students with
dictionary definitions of the living things and artifacts used
in their experiments. One group of students underlined
words referring to visual properties, and another underlined
words referring to function. The results of this were a little
different than Warringhton and Shallice had claimed, but
very similar: There were many more visual than functional
aspects of living things, but about 7 : 1. For artifacts, there
were about equal numbers of visual and functional aspects.
We designed our representations accrodingly. Each
concept was represented with a random feature pattern, but
for living things, 7 : 8 of the features were visual, only 1/8
were functional; for artifacts, 50 p. 100 of the features were
visual and 50 p. 100 were functional. In this way we created
10 . living thing' concepts and 10 random ' artifact '
concepts. For each concept, the visual and phonological
input representations were simply random patterns. For
each concept, the model was trained to use either the name
or the picture representation as input, and ftom this to
complete the rest of the pattern - this includes both visual
and functional semantics, as well as the other input repre-
sentation. Note that there are no direct connections bet-
ween input representations, so in order to perform the
association between visual and phonological patterns the
network had to make use of the connections via the
semantic units.

After training, the network is able to complete all of the
concepts accurately, both producing the correct semantic
representation and reproducing the correct phonological
pattern when the picture is presented and vice-versa. Our
question, though, is whether the organization em~dded in
this network is compatible with the neuropsychological
evidence of selective deficits of living things after some
lesions, but on artifacts after others. There are no modules
corresponding to these categories in the model, yet in fact
it does allow us to capture the selective deficits seen in
patient behavior, by assuming that their lesions selectively
affect visual or functional semantics. To demonstrate this,
we carried out a series oflesion experiments on the model.
We simulated brain damage of different degrees by des-
troying different random &actions of the semantic units 
either visual semantic units or functional semantic units 
and then testing the network to see how well it can perform
an. analog of picture naming. Specifically, we determined
whether the network can activate the correct name pattern
when given the picture pattern as input. The results for the
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effects of lesions 10 "yisual semantics are shown in the fig.
9. Here, in the first panel, we see a gradual degradation of
function that is much greater for living things that for
artifacts. There is very . little effect on artifacts unless the
lesion is quite severe. The magnitude of the effect is quite
consistent with the patient data. Now consider the effects
of lesions to functional semantics 

(fig. 9 second pane!).
Here we see that there is very little at all on living things,
but a moderate effect on ' artifacts. The model largely repro-
duces, then, the double dissociations found in the patients.
It does so, essentially, by implementing the Warrington and
Shallice account of the data. To activate the correct name,
one must activate the distinctive semantics of each concept.
But for living things, the bulk of the semantic information
is visual, and so by destroying the visual semantic units we
prevent the activation of enough of the semantics to
produce the correct response. For artifacts, the semantic
information is distributed about evenly over the two
modules so a lesion to either module produces about the
same size effect.

We may now consider the objection that caused Warring-
ton to abandon her model. The argument, was that a lesion
that affected visual semantics should leave knowledge of the
non-visual aspects of concepts unaffected, yet patients who
showed a deficit for living things showed a deficit for
functional properties of living things, not just their visual
properties. But in our model, we see in fact just this very
kind of d~ficit. As the third panel of the figure shows, we
see an increasing deficit in the activation of functional

. semantic representations as we increase damage to visual
semantics, and the deficit is more dramatic for living things
than for artifacts. The reason is this. Although the semantic
features are segregated as two types the knowledge that
allows for their activation is distributed throughout the
network, and includes knowledge in connections between
visual and functional semantics. Thus when the visual
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semantic units are destroyed, the network is less able to
activate the correct functional semantics. The effect is
present for both types of concepts, but much greater for
living things than for artifacts. Of course, the deficit is not
as great as the deficit in visual knowledge of living things.
This is in fact exactly the pattern seen in patients. We show
the data ftom one patient tested by Farah et al. (1989). The
patient showed relatively subtle deficits compared to the
original patients. But the largest deficit was in visual
knowledge ofliving things, consistent with a lesion in visual
semantics. The patient also showed smaller deficits in visual
knowledge of artifacts and in functional knowledge of living
things. There was no significant deficit in functional kno-
wledge of living things. This is just the sort of pattern that
the model will show after partial damage to visual seman-
tics.

In summary, Farah and I have been able to show with
this model that some of the key data relevant to the
organization of seinantic memory in the brain is entirely
consistent with the idea that the brain is organized by the
type of features rather than by the type of concept. On this
view concepts are in fact highly distributed, and crucially,
the activation ora part of the concept depends on the ability
to activate other parts. In this way we are able to see how
apparent category specificity of knowledge may emerge
ftom a network that is organized by modality or feature
type.

I turn now to a very different kind of neuropsychological
dissociation, namely the pattern of deficits and spared
capacities seen in hippocampal amnesia. My work on this
problem with Mc Naughton and O' Reilly is currently in
progress (Mc Clelland, Mc Naughton & O' Reilly, 1993).
I am sure everyone is aware of the dramatic pattern of
deficits seen in patient HM - a pattern that is now apparent
in the data of a large number of other patients with selective
but extensive lesions to the hippocampus and related
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fiG. 9. Simulation of dissociations in semantic memory from Farah & Me Clelland (1991). (a) Effects ofJesions to visual semantics on naming living
things and artifacts (b) Effects oflesions to functional semantics on the same. (c) Effects oflesions to visual semantics on activation of functional semantics.

Simulation de dissociation en memoire semantique, dapres Farah et Mc Clelland (1991). (a) EjJets de lesions sur la semantique visuelle concernant les noms
derres vivants et danefacts: (b) EjJets de lesions sur la semantique fonctionnelle concernant Ie mime sujet; (c) EjJets de lesions sur la semantique I'isllelle
concernant f'activation de .fa semantique fonctionnelle.
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1HE ORGANIZATION OF MEMORY

structures in the medial temporal lobes. These patients
show a dramatic deficit in the ability 10 acquire new explicit
memories of the contents. of specific episodes and events.
However, at the same time they are completely normal in
the use of their existing semantic and procedural kno-
wledge, and in fact their acquisition of new skills appears
10 be completely intact. They also show normal repetition
priming effects in a wide range of tasks. For example, they
show a normal amount of perceptual facilitation in the
identification of visually presented words due to a prior
presentation of the word. They also show a severe tempo.
rally graded retrograde amnesia for episodic information.
Figure 10 shows data on this ftom the laboratory of Squire
(Mac Kinnon and Squire, 1989; Squire et al. 1989). Here
we see a temporally graded retrograde amnesia that appears
to encompass 10 years or more. Memories of episodes
ftom childhood and adolescence appear to be independent
of the hippocampus, but more recent memories do appear
10 depend on the hippocampal formation.

Our view of the organization of mammalian memory that
is consistent with these facts is illustrated in 

fig. I 1. FlI'St, we
imagine that ultimately all kinds of knowledge can ultima-
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FIG. 10.- Temporally graded retrograde amnesia in humans. Reca11
perfo~ce is shown as a function of the date of the event remembered.
(a) Personal episodes (Mac Kinnan and Squire, 1989). (b) Public events
(Squire, Haist, and Sbimamura, 1989).

Amnesie retrograde temporellement grat/uk chez /'homme. Nombre 
memoires rappelees par des sujets normaux et amnesiques. (a) tpisodes
personnels (Mac Kinnon et Squire. 1989) (b) tvenements publics (Squire.
Haist et Shimamura. 1989).
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FIG. 11.- Sketch of the human neoconica1 and hippocampal systems
(from Me Clelland. Me Naughton. and O' Reilly, 1993).

Schema des systimes neoconical et hippocampique chez /'homme (d'apres
Mc Cieelland, Mc Naughton et O'Reilly, 1993).

tely be stored in the connections among neurons in the
cortex and other non-hippocampal structures such as the
basal ganglia (for brevity we will refer to this as the cortical
system). We imagine that this cortical system learns gra-
dually, with each experience producing very small changes
10 connection weights. These small changes, we assume,
are the basis of repetition priming effects, and they gra.
dually give rise to cognitive skills, such as the ability to
translate ftom spelling to sound, and semantic knowledge,
such as that exhibited by Rumelhart s net. However, in
addition to this cortical system, we assume that there is also
rapid storage of traces of specific episodes within the
hippocampus. On this view, when an event or experience
produces a pattern of activation in the neocortex, it produ-
ces . as the same time a pattern of activation at the input to
the hippocampus. So for example, if I am introduced to
someone, I form a pattern of activation including the
appearance of the person, the name, and other aspects of
the situation. Synaptic modifications within the hippocam-
pus itself then auto-associate the parts of the pattern. Later,
when a retrieval cue is presented (let us say the person
reappears and I wish to recall his name), this then produces
a partial reinstatement on the hippocampal input pattern.
This is then completed with the aid of the modified synap-
ses in the hippocampus, and then reinstated in the neocor-
tex via return projections. The assumption is that these
changes are large enough so that with one or a few trials
they may sustain accurate recall, while the changes that take
place in the cortex are initially too small for that. Gradually,
though, through repeated reinstatement of the same trace,
the cortex may receive enough trials with the same associa-
tion to learn it in the neocortical connections. This reinsta-
tement can occur, I propose, either through repetition of
the association over many different events; or through
repeated reinstatement ftom the hippocampus. Thus on this
view the hippocampus can serve both as the initial cite of
storage but also as teacher to the neocortex.
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The above description provides an account of the data,
and although not everyone accepts it, it is not really totally
new. Many investigators have suggested some or most 
these ideas with varying degrees of completeness. What I do
not know of, however, is any very clear story about why the
system might be organized in this way. Let me phrase the
questions as follows :

FU'St, why is it that we need a special system for rapid
storage of episodic memories, if knowledge of all types is
eventually stored in connectionist within the neocortex?

Second, why is consolidation of information into the
neocortex so slow? Why does it require many repeated
reinstatements apparently spanning years in some cases?

The final substantive point of my talk will be to suggest
an answer to these questions. The answer requires us to
return to the demonstration of the acquisition of procedural
and semantic representations that I presented earlier in the
lecture. There I argued that the effective discovery of the
shared structure that underlies an entire domain such as
spelling-to-sound correspondence or the semantic organi-
zation of knowledge of living things specifically requirCs
gradual learning, in which the learning of anyone associa-
tion is interleaved with learning about other associations.

Let me illustrate and amplify this point by comparing
what happens in Rumelhart s semantic network ifwe try to
teach it some new information in either of two different
ways. The first way, which I call focussed learning, involves
teaching the network the new information all at once,
without interleaving it with ongoing exposure to the struc-
ture of the entire domain. The second way, which I call
interleaved learning, involves simply introducing the new
information into the mix of experiences that characterize
the entire domain. As our example, I consider the case of
the Penguin. Now as we all know, the penguin is a bird, but
it can swim, and it cannot fly. I took Rumelhart s semantic
network and taught it these two things in the two different
ways just described: The focussed case involved simply

presenting the two items repeatedly and watching the
network learn. The interleaved case involved adding the
two new items to the same training set used previously and
continuing training as before. The results of these experi-
ments, for the case of . penguin can grow-swim-fly " are
shown on the fig. 12. Here if we look at the number of
presentations required for acquisition, in the left panel of
the figure, we see that focused learning is better, since
acquisition is considerably faster with focussed learning
than it is with interleaved learning. But it turns out that this
slight advantage has been purchased at a considerable cost
For it turns out that with focussed learning, the training on
the case of the penguin has strongly corrupted the models
understanding. of other concepts. Indeed if we consider the
networkS knowledge of the concept robin, in the lower
panel, we see that focussed learning has produced a drama-
tic interference. In fact, the model now thinks that all
animals can swim, and even some plants. But in the case
of interleaved learning, we see very little interference with
what is already known. To be sure there is a slight effect,
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FIG. 12. Effects of focussed and interleaved learning- (a) Learning that
a penguin can swim but not fly. (b) Interference of/earning about the
penguin with knowledge about the robin (Me Clelland, Me Naughton
& O'Reilly, 1993).

EjJets de l'apprentissage centre et inter-patine. (a) Connaissance du fait
que Ie pingouin peut nager mais non voler. (b) Interfirence de la
connaissance concernant ie pingouin et de celie concernant ie rouge-
gorge (Mc Clelland. Mc Naughton et O'Reilly, 1993). 

but as interleaved learning proceeds this is even reduced
gradually over trials. Thus with focussed learning new
knowledge corrupts the structured database in the net-
work; with interleaved learning new knowledge is gradually
added with no disruption.

This demonstration recapitulates a phenomenon that has
previously been reported by researchers who have tried to
use networks of the type used in Rumelhart s semantic

network to model episodic memory (Mc Closkey and
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Cohen, 1989). They termed the phenomenon catastrophic
interference, and rejected networks of the type that gra-
dually discover structure through incremental learning as
models of episodic memory, since storage in episodic
memory clearly involves what I have called focussed lear-
ning. I agree that back propagation networks are poor
models for this kind of learning. However, the kind 
learning that they are good at is just the kind of learning we
think the corte~ is specialized for - gradual discovery of

skills ftom the overall structure of experience.
For the discovery of overall structure, gradual, interlea-

ved learning is necessary, so that the connection weights in
the network come to reflect influences of all of the exam-
ples in the domain. In fact, it can be shown mathematically
that in order to converge on a set of connection weights

that best captures the structure of a particular domain, it is
necessary in the limit to reduce the learning rate asymptoti-
cally to 0; the closer it gets to zero, the better we will
approximate correct connection weights. This point leads
to the observation that if the brain is to be able to extract
the structure, it is going to have to learn slowly.

With these ideas in mind, we can now return to the two
questions asked above.

FU'St, why is it that we need a special system for rapid
learning of the contents of specific episodes and events, if
knowledge of all types is eventually stored in connectionist
within the neocortex?

The answer begins with the idea that the cortical system
is specialized for the extraction of shared structure of events
and experiences. In order to do this, and to avoid catastro-
phic interference with that structure, it is necessary for the
cortical system to use a very small learning rate. In this
context, the role of the hippocampus is to provide a system
in which the contents of specific episodes and events can
be stored rapidly, without at the same time interfering with
the structure that has been extracted by the cortical system.

Second, why is consolidation of information into the
neocortex so slow? Why does it require many repeated
reinstatements apparently spanning years in some cases?

My answer is that consolidation is slow precisely because
it would be disruptive if information stored in the hippo-
campus were incorporated in the neocortex all at once. It
is only when new information is gradually interleaved in
this way that we are able to incorporate new knowledge into
the neo~rtical system without interfering with what we
already know.

Let me conclude by summarizing briefly. FlI'St I reviewed
the parallel distributed processing ftamework, and showed
how it provided a mechanism for th~ gradual acquisition of
cognitive skills and for the gradual discovery of semantic
structure. Then I considered two issues that have arisen
within the field of cognitive neuropsychology: FU'St, is
semantic memory organized by conceptual category, or by
modality of information about each concept stored in
memory? Second, why do we have a hippocampus, when
ultimately everything that we know is stored in the neocor-
tex ? I argued that parallel distributed processing models

provide new ways of studying these questions, and indeed
I suggested answers to these questions that make sense of
the existing neuropsychological facts in terms of mecha-
nisms that are consistent with the principles of parallel
distributed processing. In closing I would like simply to say
that the particular ideas I have presented are not the main
point of this talk. Rather, the main point is to indicate that
computational models. based on principles of parallel
distributed pr;ocessing, can help us gain further insight into
the neural mechanisms underlying cognition, as these are
revealed through the striking dissociations we" see in the
behavior of neurological patients.
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