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Putting Knowledge in its Place:
A Scheme for Programming Parallel
Processing Structures on the Fly

JAMES L. MCCLELLAND
Carnegie Mellon University

This paper introduces a mechanism called CID, the Connection Information
Distributor. CID extends connectionism by providing a way to program net-
works of simple processing elements on line, in response to processing
demands. Without CID, simultaneous processing of several patterns has only
been possible by prewiring multiple copies of the network needed to process -
one pattern at a time. With CID, programmable processing structures can be
loaded with connection information stored centrally, as needed. To illustrate
some of the characteristics of the scheme, a CID version of the interactive ac-
tivation model of word recognition is described. The model has a single per-
manent representation of the connection information required for word
perception, but it allows several words to be processed simultaneously in
separate programmable networks. Multiword processing is not perfect, how-
ever. The model produces the same kinds of intrusion errors that human sub-
jects make in processing brief presentations of word-pairs, such as SAND
LANE {SAND is often misreported as LAND or SANE). The resource require-
ments of the mechanism, in terms of nodes and connections, are found to be
quite moderate, primarily because networks that are programmed in.response
to task demands-can be much smaller than networks that have knowledge of
large numbers of patterns built in.

Connectionism (Feldman, 1981; Feldman & Ballard, 1982) is the idea that
the computations performed by a processing system are controlled by the
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114 McCLELLAND

connections among a large number of simple processing units. The process-
ing units themselves do very simple things—generally, they simply update
the strength of the signal they send based on a simple function of signals-
they receive from other processing elements. The intelligence of the system
—what it knows and what it can do with its knowledge—is determined by
the interconnections among the elements.

In designing connectionist mechanisms, one is often tempted to hard-
wire the knowledge about the objects to be processed directly into the con-
nections between the processing units that process the objects. However, as
I shall argue in this paper, there are limitations to this approach. To over-
come these limitations, I will propose a way of using connectionist hardware
to make programmable connectionist mechanisms, in which the connec-
tions needed to meet the current processing demands can be set up on line,
as the processing demands arise.

The article begins with an example of what a hard-wire connectionist
mechanism might look like, and uses the examiple to illustrate the limita-
tions of the approach. The subsequent sections develop the programmable
alternative.

A HARD-WIRED CONNECTIONIST PROCESSING
MECHANISM

An example of a model which might be hard wired into connectionist pro-
cessing structures is the interactive-activation model of word recognition
(McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982;
Figure 1). The model consists of a large number of basic elements or nodes.
These serve as detectors for visual features, letters and words. Each node
corresponds to the assertion that the item the node represents is present in
an input pattern being processed by the network, and the activation of the
node is monotonically related to the strength of this assertion. Nodes are.
grouped into several levels, with the feature level consisting of the feature
nodes, the letter level consisting of the letter nodes, and the word level con-
sisting of the word nodes. Since the inputs presented to the model contain
four letters, there are separate sets of feature and letter nodes for each of
the four letter positions. Since the model is intended to process only one
word at a time, there is only one set of word nodes, with one node assigned
to each four-letter word in English.

Processing in the interactive activation model takes place through ex-
citatory and inhibitory interactions between the nodes. Nodes on different
levels that are mutually consistent are excitatory. For example, the node for
the letter T in the first position excites (and is excited by) the nodes for
features of the letter T in the first position, and the nodes for words begin-
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Figure 1. A sketch of some of the nodes in the interactive activation model of word percep-
tion (McClelland & Rumelhart, 1981; Rumethart & McClelland, 1982), illustrating a smail frac-
tion of the excitatory and inhibitory influences between a few of the nodes. Nodes within
the same rectangle represent mutually exclusive alternatives, and they are all mutually in-
hibitory; nodes on different levels that are mutually consistent are mutually excitatory.
Some of the mutual excitatory interactions are represented by bidirectional arrows.

ning with T, such as TIME .or TAPE. In additioti, nodes that represent
mutually exclusive interpretations of the input in the same position and at
the same level are mutually inhibitory. For example, the node for the T in
the first position inhibits all of the other first-position letter nodes. At the
word level, the word nodes can be thought of as representing alternative in-
terpretations of the whole string, so they are all mutually inhibitory.

One way to view the.interactive activation model is as an abstract de-
scription of the time course of information accumulation regarding potential
hypotheses, without specification of the actual mechanism whereby these
interactions take place. On this view, each node represents a hypothesis,
and each excitatory or inhibitory connection represents a weighted contin-
gency between hypotheses. However, it is very easy to visualize a connection-
ist implementation of the model, in which the nodes are physical processing
units and the interactions between them are mediated by physical connec-
tions between the processing units. Indeed, Figure 1, taken literally, depicts
just such an implementation.

This sort of implementation seems very appealing for a number of
reasons. The neural hardware of the brain is, after all, apparently well
suited to connectionist mechanisms; and the idea that a processing system
might be embodied directly in the brain (perhaps with some redundancy of
units and connections) gives us the sense that we have begun to reduce cogni-
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116 McCLELLAND

tion to a level where we might begin to understand its physical basis. Fur-
ther, systems like Competitive Learning (Grossberg, 1976; Rumelhart &
Zipser, 1985; von der Malsberg, 1973) have been proposed which could ac-
tually provide mechanisms whereby an unspecialized pool of processing
units could learn to behave like the interactive activation model.

There is, however, one difficulty with adopting a hard-wired connec-
tionist implementation of the interactive activation model or any other
model involving interactions among large numbers of simultaneous,
mutually constraining hypotheses. The difficulty springs from the fact that
the knowledge which guides processing is hard-wired into the connections
between the processing units in which the processing takes place. This is
true, whether the connectionist model is of the /oca/ variety, in which each
hypothesis is represented by a single node, as in the interactive activation
model; or of the distributed variety, in which each hypothesis is represented
by a pattern of activation over a population of nodes, as in the models of
-Anderson (1983) or Hinton (1981b). In both cases, the knowledge that guides
processing is contained in the connections between the processing elements.

Why is this a problem? The reason is that parallel processing of multi-
ple items is purchased at the price of duplication of the knowledge—the
connection information—that guides processing. A hard-wired version of
the word perception model would be able to process all four letters in a
word at one time only because the connections specifying which features
make up each letter would be reduplicated in the connections between each
of the four banks of feature nodes and the corresponding bank of letter
nodes. Only one word could be processed at a time, since there would be
only one bank of word nodes. If we wished to process more than one word
at a time we could only do so if we were willing to reduplicate the entire
model, adding an additional four feature and letter banks and an additional
word bank for each additional word we wished to process at the same time.

Even if we were willing to suppose that all of this hardware ought to
be dedicated to reading English words, we would have a problem with learn-
ing. It would be nice if experience with a pattern when it occurred in one
part of the display could result in learning which could be transferred to
other parts of the display. But learning in connectionist models amounts to
changing the strengths of connections between the nodes, based on what
tends to go with what. We would, therefore, need some way of disseminat-
ing the changes mandated by events occurring in one bank of detectors to
the other banks. ’ .

One obvious solution to these problems is just to ‘‘go sequential.”’
Rather than reduplicate knowledge, we could put it just in one place—in a
single, central connectionist structure—and map inputs into it one at a time.
This would solve the learning problem, since patterns arising in different
locations would always be processed in the same central set of connections.
However, going sequential eliminates the whole point of interactive activa-
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PUTTING KNOWLEDGE IN ITS PLACE , 117

tion. A basic tenet of the interactive activation model was that processing
occurred in parallel, across all of the letters in a word. This fundamental
assumption allowed the model to exploit mutual constraints among the let-
ters. It is precisely the possibility of such mutual constraints between larger,
higher level units which makes the approach appear appealing in such do-
mains as speech perception (Elman & McClelland, 1984), sentence analysis
(Waltz & Pollack, 1985), and language production (Dell, 1985). It becomes
cumbersome, if not impossible, to exploit the mutual constraint between
items when they are processed sequentially. '

Neither duplication of connection information nor sequential process-
ing seem entirely satisfactory. Indeed, it has seemed to me that connection-
ism would be an unduly limiting computational framework if we were forced
to limit the possibility of exploiting mutual constraints in our models to
cases where we are willing to postulate duplication of connection informa-
tion. Putting the point another way, if we could find a way of permitting
parallel processing while still retaining the benefits of a single central repre-
sentation for learning, we would have achieved an important increase in the
computational power of connectionist mechanisms.

The rest of this paper describes a solution to this problem. There are
four principle sections. The first describes the basic idea behind the ap-

. proach, and builds up to an xmplementauon of the interactive activation
model of word perception which allows multiple words to be processed at
the same time, even though it has a single central representation of the con-
nection information specifying which letters go together to make each
word. The second section describes a computer simulation of this model,
and shows how the approach can account for some interesting data reported
recently by Mozer (1983) on the kinds of errors human subjects make in
processing two words at the same time. The third section considers the com-
putational resource requirements of the connection information distribu-
tion scheme. In it I indicate that the scheme requires much less hardware
than it would seem to require at first glance. The discussion section ex-
amines the essential properties of CID, and considers how it might be ex-
tended beyond the applications implemented here.

The next two sections focus almost exclusively on the identification of
words, based on letter information provided by assumed lower levels of
processing. Obviously, the word level is but one layer in a very rich language
processing system. I chose to focus on this level because it is concrete, acces-
sible, and familiar (at least to me), and because there is interesting evidence
that bears on the model at this particular level. The principles embodied in
the mechanisms I describe are obviously applicable at other levels, and to
‘other processing tasks besides language processing. Of course, some new
problems do arise at other levels. I will say a bit about extending the connec-
tion information distribution scheme to handle some of these problems in
the discussion section below.
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118 McCLELLAND

CID—A CONNECTION INFORMATION DISTRIBUTOR

In the system I propose, information processing takes place in a set of pro-
grammable node networks. Each network is a processing system consisting
of processing units very similar to those that might be encountered in a
direct connectionist implementation of the interactive activation model. Ac-
tivations in these units stand for hypotheses about what is present where in
the input, and information processing unfolds through their excitatory and
inhibitory interactions. However, the units are not dedicated permanently
to stand for particular hypotheses, and the knowledge that determines the
pattern of excitatory and inhibitory interactions is not hard-wired into the
connections between them. Rather, the connections in the node network are
programmable by inputs from a central network in which the knowledge
that guides processing is stored.

The first part of this section describes an individual programmable
network. Later parts describe the structures needed to program such net-
works in response to ongoing processing demands.

A Programmable Network

Figure 2 presents a very simple hard-wired network. The task of this section
is to sée how we could replace this hard-wired network with one that could
be programmed to do the same work. The network shown in the figure is a
very simple interactive activation system, consisting only of a letter and a
word level. The figure is different from Figure 1 in organization, in order to
highlight the excitatory connections between the units and lay them out in a
way which will be convenient as we proceed.

N
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Figure 2. An extremely simple connection mechanism, capable of processing one two-letter
string made up of the letters I, N, O, and S. The model knows only the five words that can
be made of two of these letters, namely IN, IS, NO, ON, and SO. No top-down connections
are included in this simple model. Nodes bracketed together are mutually inhibitory.
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PUTTING KNOWLEDGE IN TS PLACE 119

In this simple network, there are detectors only for the letters I, N,
O and S in each of two letter positions. At the word level, there is a detector
for each of the English words that can be made out of two of these letters.
For simplicity, this model contains only letter-to-word connections; another
matrix would be needed to capture word to letter feedback. Units which are
in mutual competition are included in the same square brackets. This is just
a shorthand for the bidirectional inhibitory connections, which could also
be represented in another connection matrix.

In this diagram, letter units are shown having output lines which as-
cend from them. Word units are shown having input lines which run from
left to right. Where the output line of each letter node crosses the input line
of each word node, there is the possibility of a connection between them.

The knowledge built into the system which lets it act as a processor for
the words IN, IS, NO, ON, and SO is contained in the excitatory connec-
tions between the letter and word nodes. These are represented by the filled
triangles in the figure.

Now, we are ready to see how we . could bulld a programmable net-
work, one which we could instruct to behave like the hard-wired network
shown in Figure 2. Suppose that instead of fixed connections from specific
letter nodes to particular word nodes, there is a potential connection at the
junction between the output line from each letter-level node and the input
line to each word-level node. Then, all we would need to do to “‘program”
the network to process the words IN, IS, NO, ON, and SO correctly would
be to send in signals from outside turning on the connections which are
hard-wired in Figure 2. This proposal is illustrated in Figure 3.
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Figure 3. A programmable version of the simpliified activation model shown in Figure 2.
Each triangle represents @ programmable connection that can be turned on by a signal com-
ing from the central knowledge store, shown here as lying outside the figure to.the upper
right. If the triangular connections pass the product of the two signals arriving at their base
along to the receiving node, the lines coming into the matrix from above can be thought of
as programming the network.
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120 McCLELLAND

Mudtiplicative Interactions Yield Programmable Connections. At first
glance, the notion of sending instructions to connections may seem to be
adding a new kind of complexity to the basic processing elements out of
which connectionist mechanisms are built. Actually, though, all we really
need to do is to let each connection be a special kind of unit that can multi-
ply two signals before passing along the result.

This point may be appreciated by considering the following equation.
For the standard connections used in most connectionist models, the time-
varying signal from some node / to some node j is multiplied by the fixed
weight or connection stength w;; to determine the value of the input from i
to j:

input,, (t) =signal; (t)*w,,.

All we are assuming now is that the signal from node / is multiplied by a sec-
ond time-varying signal, for example the signal arising from some other
node k, instead of the fixed connection strength w;;:

input;; (t) _=signal.- (t)*signal. (t).

‘We can think of the signal from node k as setting the strength of the
connection between i/ and j. When the value of the second signal at the con-
nection from i to j is greater than 0, we will say that the connection from i to
J is active.

History, Implementation, and Function of Programmable Connections. The
idea of using a second signal to modulate connections has been used in other
connectionist models. Hinton (1981a) used such a scheme to map inputs
from local (retinocentric) feature detectors onto central (object-centered)
feature detectors in a viewpoint-dependent way. My use of multiplicative
connections here was inspired by Hinton’s. Feldman and Ballard (1982)
have also suggested the idea of making connections contingent on the ac-
tivation of particular nodes. The general notion of using one set of signals
to structure the way a network processes another set of signals has previously
been proposed by Sejnowski (1981) and Hinton (1981b).

At a neurophysiological level, multiplicative or quasi-multiplicative
interactions between signals can be implemented in various ways. Neurons
can implement multiplication-like interactions by allowing one signal to bring
the unit’s activation near threshold, thereby strongly increasing the extent
to which another signal can make the unit fire (Sejnowski, 1981). There are
other possibilities as well. A number of authors (e.g., Poggio & Torre, 1978)
have suggested ways in which multiplication-like interactions could take
place in subneuronal structures. Such interactions could also take place at
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PUTTING KNOWLEDGE IN TS PLACE 121

individual synapses, though there is little evidence of this kind of interaction
in cortex. For a fuller discussion of these issues, see Shepherd (1979) or
Crick and Asanuma (in press).

For our purposes, the implementation is less important than the func-
tion. In essence, what connections do is specify contingencies between hy-
potheses. A positive weight on the connection from unit / to unit / is like the
instruction. ““if / is active, excite j.”* Fixed connections establish such con-
tingencies in a fixed, permanent way. Programmable connections allow us
to specify what contingencies should be in force, in a way which-is itself
contingent on other signals.

Let’s see what we have achieved so far. By using multiplicative inter-
actions between signals, in place of fixed connections, we now have a way
of setting from outside a network the functional connections or contingen-
cies between the units inside the network. This means that we can dynami-
cally program processing modules in response to expectations, task demands,
etc. The little module shown in Figure 3 could be used for a variety of dif-
ferent processing tasks, if different connection patterns were sent into it at
different times. For example, if we sent in different signals from outside, we
could reprogram the module so that the word level nodes would now re-
spond to the two-letter words in some other language. In conjunction with
reprogramming the connections from feature level nodes to the letter nodes,
we could even assign the network to processing words in a language with a
different alphabet, or to processing completely different kinds of patterns.

Programmable networks like the one shown in Figure 3 will be called
programmable modules. The input nodes will be called programmable letter
nodes, and the output nodes will be called programmable word nodes. Though
the nodes could be used for other things besides letters and words, these are
the roles they will play in the present model..

Overview of the CID Mechanism

We are now ready to move up to a model containing a number of program-
mable modules along with the structures required to program them. The
system is called a Connection Information Distributor, or CID for short.
The basic parts of the model are shown and labeled in Figure 4; they are
shown again, with some of the interconnections, in Figure 5.

Basically, CID consists of a central knowledge store, a set of program-
mable modules, and connections between them. The structure is set up in
such a way that all of the connection information that is specific to recogni-
tion of words is stored in the central knowledge store. Incoming lines from
the programmable modules allow information in each module to access the
central knowledge, and output lines fromi the central knowledge store to the
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122 McCLELLAND

programmable modules allows connection activation information to be dis-
tributed back to the programmable modules.

The two programmable modules are just copies of the module shown
in Figure 3. It is assumed that lower-level mechanisms, outside of the model
itself, are responsible for aligning inputs with the two modules, so that
when two words are presented, the left word activates appropriate program-
mable letter nodes in the left module, and the right one activates ap-
propriate programmable letter nodes in the right module.

The Central Kno wledge Store. The knowledge store in CID is shown at the
top of Figure 4. This is the part of the model that contains the word-level

Central Module Connection Activation System
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Figure 4. A simplified example of a Connection Information Distributor (CID), sufficient for
simultaneous bottom-up processing of two two-letter words. The programmable modules
consist of the programmable letter (PL) and programmable word (PW) nodes, and program-
mable connections between them (open triangles). The central module consists of a set of
central letter (CL) nodes, a set of central word (CW) nodes, and hard-wired connections be-
tween them (filled triangles). The connection activation system includes the central word
nodes, a set of connection activator (CA)} nodes, and hard-wired connections between
them. Connections between the central knowledge system (central module plus connection
activation system) and the programmable modules are shown in Figure 5.
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knowledge needed to program the programmable modules. It consists of
two parts. One part is called the central module, and the other part is called
the connection activation system.

The central module consists of central letter nodes, central word
nodes, and connections between the central letter and the central word
nodes. The letter nodes in the local modules project to the letter nodes in the
central module, so that whenever a particular letter node is active in either
programmable module, the corresponding central letter node is also (Figure
5). Note that the correspondence of local and central letter nodes is quite in-
dependent of what letters these nodes stand for.

The central letter nodes are connected to the central word nodes via
connections of the standard connectionist variety. These connections allow
patterns of letter-level activation to produce corresponding word level acti-
vations, just as in the original interactive activation model. However, it
should be noted that the central word node activations are based on a super-
position of the inputs to each of the two programmable modules. Thus, the
activations in the central letter nodes do not specify which module the letters
come from, though relative position within each module is encoded. Thus,
activations in the central module do not distinguish between the input IN
SO and the input SO IN or even SN I0. In short, it cannot correctly deter-
mine which aspects of its inputs belong together.

The second part of the central knowledge system, the connection acti-
vation system, also consists of two sets of nodes and their interconnections.
One of these sets of nodes is the central word nodes—they belong both to
the central module and to the connection activation system. The other set is
the connection activator (CA) nodes. The purpose of the connection activa-
tion system is to translate activations of central word nodes into activations
of connections appropriate for processing the corresponding words in the
local modules. The CA nodes serve as a central map of the connections in
each of the programmable modules, and provide a way to distribute connec-
tion information to all of the programmable modules at the same time. (The
CA nodes are not strictly necessary computationally, but they serve to
maintain the conceptual distinction between that part of the model that con-
tains the knowledge about words, and the parts that simply distribute that
knowledge to the local modules). There is one CA node corresponding to
the connection between a particular programmable letter node and a partic-
ular programmable word node. [ have arranged the CA nodes in Figure 4 to
bring out this correspondence. Each CA node projects to the corresponding
connection in both programmable modules. I have illustra_ted the projec-
tions of two of the CA nodes in Figure 5. For example, the top-left CA node
corresponds to the connection between the left-most programmable letter
node and the top programmable word node. This CA node projects to its
corresponding connection in each of the programmable modules, and pro-
vides one of that connection’s two inputs. So, when a particular CA node is
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Figure 5. Each CA node projects to the corresponding connection in both programmable
modules, and each central letter node receives projections from the corresponding pro-
grammable letter node in both programmable modules. The inputs to two central letter
nodes, and the outputs from two CA nodes are shown.

active, it activates the corresponding connection in a/l of the programmable
modules. In this way it acts as a sort of master switch.

At a functional level, we can see each CA node as standing for a con-
tingency between two activations. Thus, if we index the programmable let-
ter nodes by subscript /, and the programmable word nodes by j, the /j’th
CA node stands for the contingency, ‘‘if letter node / is active, excite word
node j.”” Thus, we can think of the CA nodes as Contingency Activation, as
much as Connection Activation nodes. When we activate a CA node (to a
certain degree) we are implementing the contingency it represents (with a
corresponding strength) in both of the programmable modules at once.

The central word nodes, of course, are responsible for activating the
CA nodes. There are excitatory connections from each word node to each
of the CA nodes for the connections needed to process the word. For exam-
ple, the central word node for IN activates two CA nodes. Omne is the CA
node for the connection between the left-most programmable letter node
and the top-most programmable word node. The other is the CA node for
the connection from the sixth programmable letter node from the left to the
same programmable word node. These connections effectively assign the
top programmable word node to be the detector for IN (assuming, of course,
that lower levels of processing have been arranged so that I in the first posi-
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tion and N in the second position activate the appropriate programmable
letter nodes). »

In summary, CID consists of a) the two programmable modules; b)
the central knowledge store, including the central module and the connec-
tion activation system; c) converging inputs to the central knowledge store
from the programmable modules; and d) diverging outputs from the central
knowledge store back to the programmable modules.

We can now see how this mechanism allows the programmable
modules to be programmed dynamically in response to current inputs. When
an input causes activations in some of the programmable letter hodes in one
of the programmable modules (say the programmable letter node for I in
the first position and N in the second position of the left programmable
module), these activations are passed to the corresponding central letter
nodes. From these they activate the central word node for IN. Central word
nodes for patterns which overlap partially with the input (such as IS and
ON) also receive excitation, but only in proportion to their overlap with the
input. The central word nodes pass activation to the CA nodes, and these in
turn pass activation back to the.connections in both programmable
modules. Connections are only turned on to the extent that they are consis-
tent with the input. When different patterns are presented to each program-
mable module, connections appropriate for both patterns are turned on,
thereby programming both prOgrammable modules to process either pat-
tern. Central word nodes—and therefore connections—are also turned on
for any words that appear in the superimposed input from the two program-
mable modules. However, the results of processing in each programmable
module still depend on the activations of the programmable letter nodes.
Thus, the appropriate programmable word node will tend to be the most ac-
tive in each local module. Although the words are not kept straight at the
central level, they are kept straight—though with some tendencies to error
—down below. We will examine this matter more closely below.

A COMPUTER SIMULATION OF CID

To examine the behavior of the CID scheme in more detail and to compare
it to the original interactive activation model, I created a computer simula-
tion. The structure I simulated was scaled up from the version in Figures 4
and 5 so that it would be able to process two strings of four letters each.
Only three or four different letter alternatives were allowed in each position
within each string. These were B, L, P and S in the first position, A, E, I
and O in the second position, N, R, and V in the third position, and D, E,
and T in the fourth position. The.lexicon used in the simulation consisted of
the 32 words shown in Table I.
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TABLE |
The 32 Words Used in the Simulations
BAND BARE BEND BIND
BIRD BOND BONE BORE
LAND LANE LARD LEND
LINE LINT : LIVE LONE
LORD , LOVE PANE PANT
PART PINE PINT POND
PORE PORT SAND SANE
SAVE SEND SORE SORT

Like the smaller-scale version shown in the figures, the model con-
sisted of two programmable modules, one for each of the two letter strings,
and a central knowledge store consisting of the central module and the con-
nection activation system. Each programmable module had 16 program-
mable letter nodes and 32 programmable word nodes. The programmable
letter nodes were grouped into four groups of four, with each group to be
used for letters in one display location. The members of each group had
mutual, hard-wired, inhibitory connections. Similarly, all of the program-
mable word nodes in each module were mutually inhibitory. Each program-
mable module contained 16*32 =512 programmable connections, and there
were 512 CA nodes, one for each programmable connection. The central
module contained 16 letter and 32 word nodes, like the programmable
modules. There were no inhibitory connections either between the central
word nodes or between the central letter nodes. The connections between
the central letter nodes and the central word nodes, and connections from
the central word nodes to the appropriate CA nodes, were hard-wired with
the connection information needed to make the central letter nodes activate
the right central word nodes and to make the central word nodes activate
" the right CA nodes.

Inputs to the simulation model were simply specifications of bottom-
up activations to the programmable letter nodes in either or both program-
mable modules. Inputs were presented when all the nodes in the model were
at their resting activation values, and turned off after some fixed number of
time cycles.

Details of Interaction Dynamics

The programmable letter and word nodes have the same dynamic properties
as the letter and word nodes in the original word perception model (McClel-
land & Rumelhart, 1981). Time is divided into a sequence of discrete pro-
cessing steps. On each processing step, each programmable node adds up all
of its excitatory and inhibitory inputs from all other nodes and from the ex-
ternal input. Then the activation value of each node is updated. If the net
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input is excitatory, it will tend to increase the activation of the node; if the
net input is inhibitory, it will tend to reduce the activation of the node. The
effect is graded and gradual, and activation values are always kept between
a maximum and minimum value. There is also a tendency for activations to
decay back toward resting level, which is set at an activation of —.05 for all
nodes. Only positive activation values are transmitted to other nodes, so
that nodes with activations below 0 are effectively out of the computation.
The model has a global letter-to-word excitation constant, called alpha, and
a global word-to-word inhibition constant, called gamma, as well as a
global decay called beta. The values of alpha and gamma determine the
strength of bottom-up excitation relative to within level inhibition. The
values used for these three parameters were taken from the original model.

The only difference between the CID version of the model and the
original is in the strengths of excitatory connections between nodes. In CID,
these strengths vary as a function of the current input, while in the original
model they were fixed. Highly simplified activation rules are used to capture
the essence of the connection activation process via the central letter, central
word, and CA nodes. The activation of a particular central letter node is
simply the number of input nodes projecting to it which have activations
greater than 0. Thus, the activation of a particular central letter node just
gives a count of the corresponding programmable letter nodes that are ac-
tive. The activation of a central word node is just the sum of the active cen-
tral letter nodes which have hard-wired connections to the central letter
node. The activation of a CA node is just the activation of the central word
node that projects to it, and this value is transmitted unaltered to the corre-
sponding programmable connection in each programmable module.

The net effect of these assumptions is to make the activation of the
connections coming into a particular programmable word node propor-
tional to the number of active nodes for the letters of the word, summed
over both modules. Active letter nodes count only if they stand for letters in
appropriate positions, though, within the programmable module of origin.

Output

So far, we have said nothing about how the activations which arise in the
programmable modules might give rise to overt responses. Following the
original interactive activation model, I assume there is a readout mechanism
of unspecified implementation which translates activations at either the let-
ter or the word level into overt responses. The readout mechanism can be
directed to the word or the letter level of either module; and at the latter it
can be directed to a particular letter-position within a module. In cases
where more than one stimulus is to be identified on the same trial, the read-
out of each of the items is independent.
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The relation between activation and response probability is based on
the choice model of Luce (1963). The probability of choosing a particular
response depends on the strength of the node corresponding to that re-
sponse, divided by the sum of the strengths of all the relevant alternatives
(e.g., nodes for words in the same position). The exact relation of strength
and activation is described in McClelland and Rumelhart (1981).

The import of these assumptions is that the probability of a particular
response is solely a function of the activations of nodes relevant to the
response. All interactions between display items are thus attributed to the
node and connection activation mechanisms, and not to the readout mecha-
nisms themselves.

RESULTS OF THE SIMULATIONS

Two principle findings emerged from working with the simulation model.
First, when processing a single word, the CID scheme causes the model to
behave as though it were sharply tuned to its inputs, thereby eliminating the
need for bottom-up inhibition. Second, when processing two words at a
time, the connection activation scheme causes the model to make errors
similar to those made my human subjects viewing two-word displays. These
errors arise as a result of the essential characteristics of the CID scheme.

One Word at a Time: The Poor get Poorer

In the original model, bottom-up inhibition from the letter level to the word
level was used to sharpen the net bottom-up input to word nodes. For exam-
ple, consider a display containing the word SAND. Due to bottom-up inhib-
ition, nodes for words matching only three of the four letters shown (e.g.,
LAND) would receive less than 3/4 as much net bottom-up excitation as the
node for the word SAND itself.

The CID version of the model closely emulates this feature of the orig-
inal, even though it lacks these bottom-up inhibitory connections. In CID,
the activation of the connections coming into a word node varies with the
number of letters of the word that are present in the input. At the same
time, the number of inputs to these same connections from the program-
mable letter nodes also varies with the number of letters in the input that
match the word. The result is that in the CID version of the model, the
amount of bottom-up activation a programmable word node receives varies
as the square of the number of letters in common with the input. Poorer
matches get penalized twice.

In working with the original model, Rumelhart and I picked values for
the bottom-up excitation and inhibition parameters by trial and error, as we
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settled on an overall set of parameters that fit the results of a large number
of experiments. The values we hit upon put the strength of bottom-up inhib-
ition at 4/7 the strength of bottom-up excitation. For words that share two,
three or all four letters in common with the input, this ratio produces
almost exactly the same relative amounts of net bottom-up activation as is
produced by the CID mechanism (Table II). Words with less than two letters
in common received net bottom-up inhibition in the old version, whereas in
the CID version they simply receive little or no excitation. In both cases,
their activation stays below zero due to competition, and thus they have no
effect in either case on the behavior of the model.

TABLE 1
One Word at a Time:
Bottom-Up Activations of Several Word Nodes in the Original and CID Versions
of the Interactive Activdtion Model

Input: SAND
' Original - CID Version

Letters

Shared Relative Relative
Node w/input Activation Ratio Activation Ratio
SAND 4 4 — 4%4- —
LAND 3 3-4/7 .61 3*3 .56
LANE 2 2-8/7 -] 2*2 .25

Note: Ratio is the net bottom-up activation of the node, divided by the net bottom-up activa-
tion of the node for SAND.

This analysis shows that the CID version of the model can mimic the
original, and even provides an unexpected explanation for the particular
value of bottom-up inhibition that turned out to work best in our earlier-
simulations. As long as the bottom-up input to the letter level was unam-
biguous, the correspondence of the CID version and a no-feedback version
of the original model is extremely close.

When the bottom-up input to the letter level was ambiguous, how-
ever, there was a slight difference in the performance of the two versions of
the model. This actually revealed a drawback of bottom-up inhibition that
is avoided in CID. Consider the input to a word node from the letter nodes
in a particular letter position. In the original model, if three or more letter
candidates were active, two of them would always produce enough bottom-
up inhibition to more than outweigh the excitatory effect any one of them
might have on the word. For example, if E, F, and C are equally active in
the second letter position, F and C together would inhibit the detectors for
words with E in second position more than E will excite them. Thus, if three
letters are active in all four letter positions, no word would ever receive a net
excitatory input. This problem does not arise in CID, because there is no
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bottom-up inhibition. Thus, I found that the CID version could pull a word
out of a highly degraded display in which several letters were equally com-
patible with the feature information presented, while the original model
could not. It thus appears that CID gives us the benefits of bottom-up in-
hibition, without the costs.

Two Words at a Time: Interference and Crosstalk

So far we have seen how CID retains and even improves on some of the im-
portant aspects of the behavior of the original interactive activation model.
Now, I will show how CID captures important aspects of the data obtained
in experiments in which subjects are shown two words at a time. Here CID’s
structure becomes essential, since simultaneous processing of two patterns
introduces considerations which do not arise in the processing of single
items.

When letters are presented to both modules, a// of the letters are com-
bined to turn on connections which are distributed to both of the program-
mable modules. The result is that the connections appropriate for the word
presented in one module are turned on in the other module as well. This
biases the resulting activations in each module. The programmable word
node for the word presented to a particular module will generally receive the
most activation. However, the activation of programmable word nodes for
words containing letters presented to the other module is enhanced. This in-
creases the probability that incorrect responses to one of ‘the words will con-
tain letters presented in the other.

At first this aspect of the model disturbed me, for I had hoped to build
a parallel processor that was less subject to crosstalk between simultaneously -
presented items. However, it turns out that human subjects make the same
kinds of errors that CID makes. Thus, though CID may not be immune to
crosstalk, its limitations in this regard seem to be shared by human subjects.
I’ll first consider some data on human performance, and then examine in
detail why CID behaves the same way.

The data come from a recent experiment by Mozer (1983) In his para-
digm, a pair of words (e.g., SAND LANE) is displayzd, one to the left and
one to the right of fixation. The display is followed by a patterned mask
which occupies the same locations as the letters in the words that were pre-
sented. In addition, the mask display contains a row of underbars to indi-
cate which of the two words the subject is to report. Subjects were told to
say the word they thought they saw in the cued location or to say ‘‘blank’’
in case they had no idea.

In his first experiment, Mozer presented pairs of words that shared
two letters in common. The pairs of words had the further property that
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either letter which differed between the two words could be transposed to
the corresponding location in the other and the result would still be a word.
In our example SAND-LANE, SAND and LANE have two letters in com-
mon, and either the L or the E from LANE can be moved into the corre-
sponding position in SAND, and the result would still be a word (LAND
and SANE). Of course, it was also always true with these stimuli that the
result would be a word if both letters ‘‘migrated.’’ The duration of the two-
word display was adjusted after each counterbalanced block of trials in an
attempt to home in on a duration at which the subject would get approxi-
mately 70% of the whole-word responses correct. Thus, the overall error
rate was fixed by design, though the pattern of errors was not.

The principal results of Mozer’s experiment are shown in Table II1. Of
the trials when subjects made errors, nearly half involved what Mozer called
““migration errors’’—errors in which a letter in the context word showed up
in the report of the target. To demonstrate that these errors were truly due
to the presentation of these letters in the context, Mozer showed that these
same error responses occurred. much less frequently when the context stimu-
lus did not contain these letters. Such ‘“control’’ errors are referred to in the
table as pseudo-migration errors.

TABLE i

Method and Results of Mozer (1983), Experiment 1
Method
Example Display SAND LANE
Target Cue rret
Results
Response Type % of total
Correct response (SAND) 69.0
Single migration (SANE or LAND) 13.3
Double migration (LANE) 0.5
Other 17.2
Total 100.0
Pseudo-migration rate* 5.3

*Psuedo-migration rate is the percentage of reports of the given single migration responses
(SANE, LAND) when a context word which does not contain these letters is presented. In
this example, the context string might have been BANK.

As I already suggested, migration errors of the type Mozer reported are
a natural consequence of the CID Mechanism. Since the letters from both
words are superimposed as they project onto the central module, the con-
nections for words whose letters are present (in the correct letter position) in
either of the two input strings are strongly activated in both programmable
modules. The result is that programmable nodes for words containing let-
ters from the context are more easily activated than they would be in the
absence of the input presented to the other module.
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TABLE IV
Two Words at a Time: Crosstalk
Relative Bottom-Up Activations Produced by SAND
Presented either Alone or with LANE as Context

Alone with LANE

Programmable

Word Node Activation Ratio Activation Ratio
SAND 4*4 — 4*6 —
LAND . 3*3 .56 3*6 .75
BAND 33 .56 3*5 .62
SEND 3*3 .56 3*4 .50
LANE 2*2 .16 - 2% . .50-

Note: Retio refers to the bottem-up activation of the node, divided by bottom-up activation
of SAND.

Table IV compares relative programmable word node activations for
various words, for two different cases: In one case, the word SAND is pre-
sented alone; in the other, it is presented in the context of the word LANE.
When SAND is presented alone, all words which share three letters with it
receive (3/4)* or 9/16’s as much bottom up activation as the node for SAND
itself —we already explored this property of the CID model in the previous
section. When SAND is presented with LANE, however, words fitting the
pattern (L or S)-(A)-(N)-(D or E) all have their connections activated to an
equal degree, because of the pooling of the input to the connection activa-
tion apparatus from both modules. These words are, of course, SAND and
LANE themselves, and the single migration error words LAND and SANE.
Indeed, over both letter strings, there are 6 occurrences of the letters of each
of these words (the A and the N each occur twice). The result is that the ex-
citatory input to the programmable word nodes in the left module for
LAND and SANE is 3/4 of that for SAND, as opposed to 9/16. Other
words having three letters in common with the target have their connections
less activated. Their bottom-up activation is either 5/8 or 1/2 that of SAND,
depending on whether two of the letters they have in common with the
target are shared with the context (as in BAND) or not (as in SEND). Thus,
we expect LAND and SANE to be reported more often than other words
sharing three letters in common with SAND.

The reader might imagine that the effect would be rather weak. The
difference between 3/4 and 5/8 or 1/2 does not seem strikingly large. How-
ever, a raw comparison of the relative bottom-up activation does not take
into account the effects of within-level inhibition. Within-level inhibition
greatly amplifies small differences in bottom-up activation. This is especially
trie when two or more nodes are working together at the same level of activa-
tion. In this case, the nodes for LAND and SANE act together. Neither can
beat out the other, and both ‘‘gang up’’ on those receiving slightly less bot-
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tom-up activation, thereby pushing these other aiternatives out. This ‘‘gang
effect’” was observed in the original version of the model—see McClelland
and Rumelhart (1981), for details. This behavior of the model is illustrated
in Figure 6. Through the mutual inhibition mechanism, SAND and LANE
come to dominate over other words that share three letters in common with
the target. Some of these, in turn, dominate words that share but two letters,
in common with the target, including, for example, LANE, even though the
connections for LANE are strongly activated. This result of the simulation
accords with the experimental result that double or ‘‘whole-word’’ migra-
tions are quite rare in Mozer’s experiment, as shown in Table III.

SAND with LANE

0.8

sand

land
sane

_Activation

band

ogb— L 1o b b 1 F

.0 L) 10 15 20 25 30 35
Time

Figure 6. Activation curves for various programmable word nodes in the module to which
SAND is shown, when the input to the other module is LANE. The x axis represents time
cycles from the onset of the two-word display.

Mozer (1983) reported several additional findings that are consistent
with the CID model. First, he showed that letter migrations are more likely
to be ‘“‘copies’’ than ‘‘exchanges.’’ That is, when subjects (in a second expe-
riment) were asked to report both words in the display, the probability of a
copy or duplication error, in which both reported items contained an L or
an S (as in LAND-LANE or SAND-SANE), was much greater than the prob-
ability of an exchange, in which the S and L exchanged places (to make
LAND-SANE). The data are not consistent with models which attribute mi-
gration errors to a mechanism which conserves the number of occurrences
of each letter, such as the feature integration model of Treisman and Gelade
(1980). However, if as I assume for the CID model the subject selects the
best response independently for each of the two inputs, then we expect the
probability of an exchange to be equal to the probability of two independent
errors occurring at the same time. That is, the probability of an exchange
should be equal to the probability of the left letter turning up on the right
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times the probability of the right letter turning up on the left. The expected
probability of an exchange based on these considerations is .006 for this ex-
periment, within experimental error of the value of .008 actually obtained.

Second, Mozer showed that migrations are more common when target
and context share letters in common than when they do not. Thus, the prob-
ability of saying LAND was much higher when SAND was flanked by LANE
than when SAND was flanked by LOVE. The relevant data are displayed in
Table V.

TABLE V .

Percent Correct Migration and Other
Responses from Mozer (1983), Experiment 3

Context Type

Common Letters No Common Letters
(SAND-LANE) (SAND-LOVE)
(%) (%)
Correct response (SAND) 64 74
Single migration (SANE or LAND) 11 6
Other 25 19

Note: Pseudo migration rate (probability of reporting LAND or SANE when context contained
no letters which could form a word with the target) was 3%. In this example (Target word
LAND), the context string might have been COMB.

At first sight it might appear that the CID model would not expect this
difference. When SAND is presented with LANE, connections for all the
(S/LYAXN)D/E) words receive 6 units of activation because of the repeti-
tion of the A and N in both letter-strings. When SAND is shown in the con-
text of LOVE, connections for these same words all receive 4 units. The
ratios of bottom-up activation for correct and single-migration words are
the same in both cases. However, once again, this ratio is not the whole
story. The absolute magnitude of bottom-up activation is greater in the case
where there are letters in common than in the case where there are not. The
higher the overall magnitude of bottom-up activation, the less difference the
ratio makes, due to the tendency of node activations to saturate at high ac-
tivation levels. When bottom-up activation is reduced overall, sharper dif-
ferences in the pattern of activation emerge. The result is that there is far
more activation of migration words when the two words shown have letters
in common than when they do not. When there is less overlap between tar-
get and context, the tendency of the correct answer to dominate the pattern
of activation is sharply increased. This is illustrated in Figure 7, which
shows much less activation for migration error words than Figure 6.

In summary, the CID version of the interactive activation model ap-
pears to provide fairly accurate accounts of the intriguing perceptual inter-
actions reported by Mozer. Mozer’s basic finding, that letters in one display
position tend to show up in reports of the contents of the other position, is a
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SAND with LOVE
0.9

Activation
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Figure 7. Activation curves for various programmable word nodes in the module to which
SAND is shown, when input to the other module is LOVE.

necessary consequence of the CID mechanism. Considerably more empiri-
cal and theoretical work is required before we will be in a position to say
that the CID version of the interactive activation model provides an ade-
quate account of all aspects of these perceptual interactions. But it appears
that the model is on the right track.

THE INFORMATION PROCESSING CAPACITY OF CID

There is one apparent problem with the CID scheme. It appears that it re-
quires a prohibitive number of nodes and connections. To point to the most
serious aspect of the problem, the CID model of word perception as I have
described it requires one CA node for each potential connection between a
letter node and a word node. This number grows as the product of the num-
ber of letter level node times the number of word-level nodes. A system suf-
ficient to process 50,000 different words of up to 7 letters in length would
require 7*26 = 182 letter level nodes, 50,000 word level nodes, and nearly 1
million CA nodes. This seems like an awful lot of nodes. It would appear
that the benefits of parallel processing are being purchased at a prohibitive
cost. _ '

However, the situation can be improved dramatically by switching
over to a distributed representation, in which each word (the argument ap-
plies to letters, too, or anything else, of course) is represented by a pattern
of activation over a set of nodes, rather than by the activation of a single
node. .
At first glance the switch to distributed representation may appear to
be a major change of stance. However, there is less to the choice between
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local and distributed representations than meets the eye. All the matter really
comes down to is whether we associate conceptual units like words with in-
dividual nodes, or with overlapping constellations of nodes. In the CID
model I have used local representation for clarity and comparability with
the original model, but now that the basic idea of CID is on the table, I will
argue that a switch to distributed representation would be of great benefit.
Distributed representation has many virtues, several or which are described
in Hinton (1984) and in McClelland and Rumelhart (in press). For our
present purpose, the great advantage of distributed representation is that it
allows us to get by with much smaller programmable modules and far fewer
CA nodes. First, I'll briefly explain how distributed representation saves us
nodes even with a hard-wired connectionist mechanism. Then I’ll show how
it pays off in spades in CID.

I’'ll begin by sketching a simple connectionist mechanism for associat-
ing patterns of activity at one level with paired patterns of activity at
another level. For word recognition, the levels might be letter or word, but
I’ll just call them levels A and B for generality. Our goal is to be able to ac-
tivate the correct B pattern whenever the corresponding A pattern is shown.
We assume that each association involves an A pattern and a B pattern each
containing some number M of active nodes on each of the two levels. To
allow A patterns to retrieve the appropriate corresponding B patterns, we
simply imagine that there is an excitatory connection from each node active
in the A pattern to each of the nodes active in the corresponding B pattern.
Note that a local representation model in which, say, each pattern at the A
level is represented by as single active node at the B level, is just a variant of
this model, in which the pattern at the B level consists of just a single node.

Essentially, distributed representation can save on nodes because we
can use partially overlapping codes for different items: we are no longer re-
quired to have at least one node for each alternative pattern. There are,
however, limitations on the number of associations that can be stored in an
A-B associator: The more patterns we store, the more likely it is that the B
pattern retrieved by any A pattern will be contaminated by spurious activa-
tions at the B level.

Willshaw (1981) has analyzed the extent of contamination, under a
particular set of simplifying assumptions. First, he assumed that the con-
nection between a particular A node and a particular B node has only two
states: it is on if the A and B nodes are associated in any of the patterns
stored, and off otherwise. This assumption means that when the nodes for
the A member of the pair are activated, each of the appropriate B nodes will
receive one unit of excitation from each active A unit. Other B nodes not
part of the appropriate B pattern may receive excitation from some or all of
the A units, via connections that are on because they belong to other stored
associations. Second, Willshaw assumed that B nodes remain inactive
unless they receive excitation from all of the active A units. (This is imple-
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mented by assuming that the unit has a threshold equal to the excitation
produced by a complete A pattern). With this assumption, when a known A
pattern is presented, the model is able to turn on all the correct B nodes. A
spurious B node will only be turned on if a// active members of the A pat-
tern happen to have excitatory connections to it. Third, Willshaw assumed
that the A and B patterns were random selections of some fixed number of
A nodes and some fixed number of B nodes.

Given Willshaw’s assumptions, it is possible to-calculate the average
number of B nodes that will bé spuriously activated for any combination of
Na and Nb, the number of units in each of the two pools, Ma and Mb, the
number units active in the A and B members of the pattern, and R, the num-
ber of associations known. We then need only adopt an error tolerance
criterion to determine how large Na and Nb must be to accommodate R
associations of pairs of patterns of size Ma by Mb. Adopting a criterion of
an average of one spurious B node activation per retrieval, Willshaw de-
rived the following relationship:

VNa*Nb =1.2vMa*Mb VR

These relations only hold if we use distributed representations. The relation
holds exactly if the number of units active in the A and B patterns is equal to
the log, of the number of units in the corresponding pool. For larger frac-
tions of active units, the equation actually underestimates the number of
patterns that can be stored for given values of Na and Nb.

The result just presented depends on the fact that, when the associa-
tions involve patterns with a reasonable number of active units in both
members of the pair, the chances that the connections will result in a spur-
ious B node receiving as much activation as an appropriate B node are
remote, as long as the overall proportion of connections that are turned on
is reasonable. The proportion we can get away with varies a bit with the ex-
act values of Ma and Mb, but if half or fewer of the connections are turned
on, we will generally be quite safe. Roughly speaking, then, the number of
patterns we can store is just the number which keeps us from turning on
more than half of the connections in the matrix.

We are now ready to examine the implications of distributed repre-
sentation for CID. Based on the previous equation, we can calculate the
number of programmable connections, (and therefore, the number of CA
nodes we would need) to program a module to perform like the hard-wired
module considered in Wilshaw’s analysis. The number of connections be-
tween Na A nodes and Nb B nodes is just Na*Nb. Since we need one pro-
grammable connection for each connection, we can simply square the
previous equation to get an expression for the number of programmable
connections (Npc):
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Npc=Na*Nb = 1.45*Ma*Mb*R.

While this represents a slight improvement over the nondistributed case, the
number of programmable connections and CA nodes still appears to grow
linearly with R, the number of patterns known, and with the size of the pat-
terns.

But this result ignores the fact that in CID, we do not turn on the con-
nections relevant to all the known patterns at one time. Let us just consider
what would happen if ‘we were able to avoid activating any unwanted con-
nections, and could turn on only the connections relevant to the particular
pattern or patterns we wished to process at one time. In this case, we could
get by with far fewer nodes in each of the pools, and therefore far fewer
programmable connections. The more patterns we wished to process at one
time, of course, the more connections we will have to turn on, and the more
risk we will run of spurious activation. Thus, the number of A and B nodes
required in each programmable module, and thus the number of program-
mable connections, is related to the number (S) of associations we wish to
be able to process simultaneously, rather than by the total number of
associations known. The number of nodes we need also depends on the
number of A and B nodes active in each member of a pair, as before. Again,
allowing an average of one spurious B node activation per retrieval, the
following approximate relation holds (the constant will be somewhat larger
for values of S less that 3):

' Npec =Na*Nb = 1.45*Ma*Mb*S.

This equation is the same as the one we had for the number of connections
needed in a hard-wired associator, except that we now have S, the number
of patterns to be processed simultaneously, instead of R, the number
known. Replacing R with S makes a-huge difference, since it can plausibly
be argued that we know something like 50,000 words. We could process up
to S of these at once (each in a different programmable module), the equa-
tion says, with five orders of magnitude fewer CA nodes and programmable
connections, and two and a half orders of magnitude fewer nodes in each
programmable module than we would need in a hard-wired module of the
same capacity. Of course, the size of the central module still depends on R,
but we pay that price only once, and we incur it with models which do not
allow parallel processing, as well as with CID. Relative to the resource re-
quirements of the central module, then, the extra cost of simultaneous pro-
cessing via connection information distribution is modest, if we are willing
to switch to distributed representation.

[ have actually overstated my case a little. For one thing, the number
of programmable connections required depends on the number of B level
patterns fully activated in the central module by the superposition of all of
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the A patterns presented for processing at one time. This may be more than
the number of patterns actually presented for processing (as when SAND-
LANE was presented, their superposition contained all the letters of these
two words and LAND and SANE besides), and will depend on the ratio of
Ma/Na—for adequate performance, then, Na may have to be bigger than
the equation given above suggests. Space prevents a full analysis of these
matters here. Suffice it to say for the present that these complications do
not eliminate the basic result that with distributed representations we can

- greatly reduce the resource requirements of CID. Though the degree of the
savings previously indicated may be slightly exaggerated, it remains true
that distributed representation still brings the resource requirements of CID
into reasonable bounds.

DISCUSSION

Thus far, we have explored a particular model embodying the idea of distri-
bution of connection information, and we have seen how this idea provides
a way of allowing a single, central representation of knowledge to be made
available to each of a number of programmable processing modules, there-
by turning the programmable modules into programmable connectionistic
information processing structures. We have seen how this scheme provides a
natural account of the errors human subjects make in processing two-word
displays. Abstracting from this specific application a little, we have explored
some aspects of the resource requirements of such a system, and we have
found that they are not as exorbitant as one might have feared.

In this section of the paper, I step back even further from particular
detailed models, and consider the idea of distributing connection informa-
tion more generally. First, I discuss the essential properties of the CID
mechanism. Then, I discuss possible extensions of the approach to other do-
mains such as sentence processing. Third, I suggest reasons why some se-
quentiality in programming parallel processing structures might occasionally
be a good thing. The paper concludes with a brief examination of the rela-
tion between interactive activation processes and connectionist implementa-
tions, in light of the CID mechanism. '

Essential Characteristics of CID

There is a sense in which CID is not as powerful a mechanism as [ had hoped
to discover. Although it permits parallel processing to some degree, the per-
formance of the model degrades when multiple items are processed simul-
taneously. One might well ask questions then: Might another mechanism
not do better? Do we need such a complex mechanism to accomplish what
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CID has done? Might we not get at least as good behavior with something
simpler?

Obviously, there are difficult questions to give definitive answers to.
However, I think it worth considering CID somewhat abstractly for a
moment, to see what its essential properties are. This will, I think, provide a
little insight into these questions.

One essential feature of CID is the superposition of the patterns of ac-
tivation in each programmable module. Superposition permits simultaneous
access to and retrieval from the central module, but what is retrieved is not
the response to either or even both individual patterns, but the response to
their superposition. This method of simultaneous information retrieval
automatically runs the risk of crosstalk because by its very nature it looses
track of which letters appeared in each of the programmable modules. Ac-
tually,. though, the amount of crosstalk depends on the complexity and
similarity structure of the patterns we wish to process. In fact, if a// the pat-
terns stored in the central module of a CID mechanism are maximally dis-
similar (that is, orthogonal), there will be no crosstalk. It is only when the
known patterns overlap with each other that crosstalk becomes a problem.

The point of this discussion is simply to suggest that the kind of limi-
tation we see in CID as a parallel processor is intrinsic to superposition of
inputs. This may be intrinsic to parallel retrieval itself—I have not been
able to conceive of an alternative (connectionist) scheme for simultaneous
retrieval of information about two patterns. But the exact extent of the
limitation depends on the details of the patterns and their similarity struc-
ture. Since the similarity structure of patterns assigned to inputs can be
affected by the way the inputs are coded, it is possible to manipulate the ex-
tent of the crosstalk problem quite easily.

But couldn’t we do just as well without CID? Isn’t there another, less
complex mechanism that could do the same job it does just as well? One dif-
ficulty answering this is the amorphous definition of complexity, and the
difficulty of specifying in detail what counts as a similar mechanism and
what as a different one. However, it is instructive to consider briefly one
simplier alternative to CID, in which we distribute activation information
from the central module instead of connection information. Figure 8 shows
such a mechanism. It is like CID except that the central word nodes project
directly back to the corresponding local word nodes. The idea is that pat-
terns of activation arising in the local letter nodes will be superimposed as
inputs to the central module, and the composite output generated by the
composite input will be distributed back to the local word nodes. In such a
mechanism, if two words are presented at once, the pattern of activation that
would appear on the output nodes of each local module would be the same
for both of the programmable modules. Indeed, it would be the same as the
pattern of activation over the central word nodes. This pattern contains
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Figure 8. A mechanism that distributes activation information, rather than connection infor-
mation. It is like CID in that it has local modules and a central module, but what it distrib-
utes is the pattern of activation over the central word nodes. Inputs to two central letter
nodes and outputs of one central word node are shown.

equal representation of both inputs, as well as any known patterns which
can be formed from the superposition of these inputs. With such a mecha-
nism, if SAND LANE were presented, we would have no way of knowing
from the activations of the word nodes in the first module whether the input
to the module consisted of SAND, LANE, LAND, or SANE. Such a mecha-
nism is slave to the composite output of the central module, and is not much
good for processing more than one pattern at a time.

Just like this simpler mechanism, the information CID distributes is
based on the composite of the inputs to the two programmable modules.
But since CID distributes connection information, instead of activation in-
formation, the pattern at the letter level in each module still influences what
the output pattern will be at the word level. As I stressed early on, connec-
tion information is contingency information. It says, if node x is active, let
it activate node y. Distributing connection information allows the central
module to tell the programmable modules what to do with their inputs, and
this allows their output to reflect these inputs, as well as what they are told.

In summary, the essential features of CID are superposition of inputs
to the connection activation process and distribution of conditional infor-
mation. Some crosstalk is an inevitable byproduct of superposition, but the
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amount of it will depend on the amount of hardware used and the number,
complexity and similarity structure of the patterns to be processed.

Extension of CID to Other Problems and Other Levels

I claimed in the introduction that CID would be generally useful in extend-
ing the computational power of connectionist mechanisms. [ have illustrated
how it can be applied to the word level in a word perception model, and I
generalized the idea in the discussion of the abstract pattern associator in-
troduced in considering the resource requirements of CID. Now it is time to
consider the relevance of the approach to computationally more challenging
levels, such as syntactic and semantic analysis of sentences.

Sentences, as objects for processing, have one essential characteristic
which individual words (at least in English) do not have. In sentences, the
same structures can occur at many different levels of the representation of
the same sentence. To many, this recursive characteristic of sentences seems
to require a recursive processing mechanism, of the sort typically imple-
mented in Al language processing programs.

But recursive structure does not necessarily require recursive—that is
sequential—processing. The beauty of recursive processing is that the same
knowledge—say, of the constituent structure of a noun phrase—can be
made available at multiple levels, because the same subroutine can be called
at any level, even inside itself. Connection information distribution pro-
vides a way of doing the same thing, in parallel.

CID has already given us a mechanism which makes the same knowl-
edge (connection information) available simultaneously for processing dif-
ferent patterns on the same level without resorting to sequential processing.
If access to the same knowledge was possible, not only from different slots
on the same level, but from different levels, then recursively structured ob-
jects could be processed, in parallel, on several levels at the same-time. Of
course, crosstalk would still be a problem—it would tend to confound the
bindings of things at different levels—but the programmable modules on
the same level in our word-perception model are able to keep straight what
goes with what in each of the two patterns they are processing at the same
level, given sufficient resources and patterns that are sufficiently distinct.
The same would be true for programmable modules accessing the same cen-
tral knowledge system from different levels.

The idea of allowing the simultaneous programming of parallel pro-
cessing structures at different levels thus preserves the essential positive
aspect of recursive processing—access to the same information at different
structural levels—without requiring us to resort to seriality. ’

But there is still a problem, for [ seem to be assuming that we have
available some sort of stack of levels, all of which can access the same cen-
tral knowledge. The difficulty is that the number of levels of depth we will
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need cannot be specified in advance. Although we would probably be able
to get by in almost all practical cases with some adequate fixed number of
levels, this assumption does violence to the essential open-endedness of sen-
tences. Any attempt to extend the idea to even more global structures, such
as text structures or plans, would be doomed.

But CID provides us, at least in general terms, with a way to get by
without any fixed number of processing levels. For levels are defined in
terms of connections, and if we can program connections, we can in princi-
ple set up the entire hierarchical structure of the processing system on the
fly, as well as any specific interactions between units imbedded in that struc-
ture. '

Of course, we are several steps away from a concrete realization of
this idea, and there are many complications that have to be addressed. But,
I believe that programming connections will play an important part in the
development of interactive activation mechanisms of sentence processing
and other higher-level cognitive tasks, and I hope that CID represents a step
in this challenging and important direction.

A Little Sequential Programming May Not be a Bad Thing

I have taken the position that parallel processing is important, because it
permits the exploitation of mutual constraint. But, this argument does not
really apply to the simultaneous programming of parallel processing struc-
tures. In some cases, it is sufficient to program the processing structures se-
quentially, so that processing can then occur in parallel. Serial programming
could be arranged by projecting from one programmable module at a time
to the central module and projecting the output of the connection activation
nodes back to the same place. Hinton (1981b) illustrated how this kind of
thing can be done, using programmable connections. If connection activa-
tions were ‘‘sticky,”’ a number of programmable modules could be pro-
grammed sequentially, but the resulting activations could continue to interact
within (and, through higher-level structures, between) the modules for some
time.

There are two advantages to programming parallel processing struc-
tures sequentially. One is that we would cut down on crosstalk in the pro-
gramming process. The less we project onto the central representational
structures at one time, the fewer spurious connections will be activated, and
the fewer nodes and programmable connections we will need for accurate
processing.

- The second reason is that crosstalk is especially devastating for learn-
ing, since learning takes place in the central knowledge structures. Learning
in connectionist models generally involves increasing connection strengths
based on simultaneous activation (Ackley, Hinton, & Sejnowski, 1985; Rum-
elhart & Zipser, 1985). If several patterns are superimposed in the input to
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the central module, the learning mechanism would be unable to separate the -
simultaneous activations which actually came from the same pattern from
those which came from different patterns. Thus, serial programming may be
particularly important during acquisition of an information processing
skill. Indeed, we would probably not expect the central representations to
be robust enough to tolerate much crosstalk -before they have been well
learned in any case. As we learn, we may be forced to proceed sequentially
for adequate performance, but this may help us learn better, so that we can
eventually process in paraliel.

Sequential programming of parallel processing structures allows us
most of the benefits of parallel processing without the costs associated with
superposition of inputs to the central knowledge system. I would not, how-
ever, adopt the view that programming is always sequential. Or rather, |
would not suggest that it occurs a single unit at a time at every level. Just
how much input can be handled at a time probably changes with practice—
but this is a matter to be examined in further research.

Connectionism and Interactive Activation

I began this paper by suggesting that the interactive activation model of
word perception had some important limitations as a literal description of a
connectionist processing mechanism. If we thought of the model as a descrip-
tion of the mechanism, we would take the present paper as suggesting the
replacement of the original model with another kind of model, in which
nodes are dynamically assigned to roles and dynamically connected to other
nodes, instead of being hard-wired as they were in the original model.

However, as | have already suggested, there is an alternative way of
thinking about the interactive activation model and its relation to connec-
tionism. In this alternative approach, we would not view the interactive acti-
vation model as a description of a mechanism at all. Rather, we would see it
as a functional description of the behavior of a processing system whose ac-
tual implementation—connectionistic or otherwise—is not specified.

I believe that it is important to be able to shift between these two per-
spectives. As important as it is to be clear about implementation, there are
two reasons why it is occasionally useful to adopt a more abstract or func-
tional point of view. The first is that.it allows us to study interactive activa-
tion models of a wide range of phenomena at a psychological or functional
level without necessarily worrying about the plausibility of assuming that
they provide an adequate description of the actual implementation. On this
view, for example, Rumelhart and I would not necessarily be seen as assuin-
ing that there ‘‘really are’’ multiple hard-wired copies of each letter node,
one for each position within a word, in the original interactive activation
model. The existence of CID allows us to be reasonably confident in the
belief that a mechanism with the information processing characteristics of a
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model which postulated multiple copies of letter nodes could be implemented
in connectionist hardware. This would free us to consider the adequacy of
the particular dynamic assumptions of the interactive activation model, or
more interestingly, its claim that some aspects of apparently rule guided
behavior can emerge from the interactions of units standing only for partic-
ular exemplars of the rules. Similarly, I think we should be prepared to treat
CID in the same way, and examine the adequacy and utility of the func-
tional information processing characteristics it provides. The question of
implementation remains an important one, and we would certainly not want
a model for which no plausible implementation could be conceived, but it is
not the only question which we must consider in trying to understand cogni-
tive processes.

The second reason for taking an abstract view of activation models is
to keep in view the fact that we have only begun to scratch the surface of
distributed, parallel information processing mechanisms. The original inter-
active activation model was a step that captured some of the flavor that
such a mechanism should have, and I see CID as another. But, we still have
a long way to go before we can claim to have done justice to the exquisite in-
formation processing mechanism so faintly reflected in the models we have
constructed so far.
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