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We often attribute the human ability to general-ize from past experience to the use of atored
representations (schemas, prototypes, etc. ) in which
generalizations are explici t ly represented. This view
is very ap~ealing, but it raises two problems. First,
there needs to be some mechanism for arriving at gen-
eralizations that are not stored explicitly, since it
is unlikely that memory contains explicit representa-
tiona that anticipate all of the possible generaliza-
tions we might ever wish to make. Second, we must
explain how generalizations which are stored expli-
citly were obtained in the first place.

mechanism that could Induce generalizations
from stored representations of specific objects or
events could solve both these problems at once. It
would explain how we could generalize when no explicit
generalization is stored, and it would also suggest
how we might have induced those generalizations which
are stored.

Such a mechanism would also force us to conaider
whether we really store generalizations explicitly atall. If we can generate generalizations from stored
representations of specific objects when we need to,
explicit representation of these generalizations might
turn out to be unnecessary.

Medin and Shaffer (1978) have suggested a first
step toward the kind of mechanism I have in mind.
Their model explains how we can assign a category
label to a new object

, '

based only on atored knowledge

of the properties of previously encountered objects
and the category labels that have been asaigned to
them. Their ideas can be extended to suggest how we
may be able to do such things aa answer questions
about the general characteristics of classes of
objects we have experienced before, and to fill in
plausible default values for unspecified attributes of
new exemplars.

The baaic idea is that representations of
previously-experienced exemplars stored in memory are
activated via a spreading' activation mechanism.
Activated exemplars themselves activate representa-
tions of their properties. Mutually exclusive pro-
perty values compete so that properties which are sup-
ported by a large subset of the active instances of
the category are reinforced and become strongly active
while those which are not are suppressed. Such a
mechanism has recently been proposed by Glushko (1979)
to account for our ability to construct apparently
rule-guided pronunciations of nonwords (e.g. , HAVE)
without actually having any rules, and has been used

by Rumelhart and me (McClelland and Rumelhart, in
press; Rumelhart and McClelland, in presa) to account
for facilitation of perception of lettera in words and
nonwords. In both of these applications, the
activation/competition mechanism is used to generate
apparently rule-governed performance from stored
knowledge of specific words.

I will illustrate the mechanism I am proposing by
showing how it can be used to generalize from stored
representations of specific objects. The representa-
tions of the objects are highly simplified, and are
not sufficient to capture the varieties of structure
of real objects. It is not my intention to advocate
the representation. Rather , I use it to explicate the
generalization mechanism, which is the main focus of
interest here. We shall see that , even with a simpli-
fied representational system, thl' activation and com-
petition mechanism can construct the general proper-
ties of classes of ohjects from , stored knowledge of
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exemplars. It can also generalize along an indefinite
number of different lines retrieve the specific
characteristics of particular exemplars , and fill b
plauaible default values for misaing properties.

Table
The Jets and The Sharka

Name Gang Age Edu Har Occupa tion

Art Jeta 40' sing. puaher
Jets 30' mar. burglar

Sam Jeta 20' COL. sing. bookie
Clyde Jets 40' Bing. bookie
Mike Jets 30' sing. bookie
Jim Jeta 20' div. burglar
Greg Jets 20' mar. pusher
John Jets 20' mar. burgla r
Doug Jets 30' Bing. bookie
Lance Jeta 20' mar. burglar
George Jets 20' div. burglar
Pete Jets 20' aing. bookie
Fred Jets 20' sing. puaher
Gene Jets 20' COL. Bing. pusher
Ralph Jets 30' sing. pusher

Phil Sharks 30' COL. mar. pusher
Ike Sharks 30' sing. bookie
Nick Sharks 30' Bing. pusher
Don Sharks 30' COL. mar. burglar
Ned Sharks 30' COL. mar. bookie
Karl Sharks 40' mar. bookie
Ken Sharks 20' sing. burglar
Earl Sharks 40' mar. burglar
Rick Sha rks 30' div. burglar

Sharks 30' COL. mar. pusher
Neal Sharks 30' sing. bookie
Dave Sharks 30' div. pusher

I will illu"trate the features of the model by
considering how it can be used to retrieve information
about the members of two gangs called the Jets and the
Sharks. Characteristics of hypothetical members of
these two gangs are listed 1n the Table 

The model' s knowledge of these individuals is
captured in a node network. Each node is a simple
processing device which accumulates excitatory and
inhibitory inputs from other nodea continuously and
adjusts its (real-valued) output to other nodes con-
tinuously in response, much as a neuron adjusts its
rate of firing in response to a varying pattern of
excitatory and inhibitory input3.

The model has a node for each of the individuals
it knows and a node for each of the properties or
,attributes these individuals may have. The former are
called instance nodes and the latter are called pro-
perty nodes. There is a property node for each
individual' s name , one for each gang, one for each age
range, one for each educational level, and so on.
Property nodes are arranged into groups or cohorts of
mutually exclusive values. The instance nodes are
also treated as a cohort of mutually exclusive nodes.
In the following Figure, the instance nodes have been
placed in the center with the property nodes all
around. Nodes within a cohort (bounded region) are
mutually inhibitory.

The system s knowledge of an individual consists
simply of an instance node and a set of bi-directional
excitatory links between it and the nodes for the pro-
perties that individual is known to have. For exam-ple, the system representation of Lance is 
instance node with mutual excitatory connections to
the name node "Lance , the gang membership node "Jet
the age node " 20' s , the education node " Junior High"
the marital 3tatus node "married" , and the occupation
node "burglar



Figure I. The representa tion of several of the indivi-

duals listed in Table I.
Filling in Properties in Response
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The system is queried by presenting it wi th a
probe. For example, to find out about the properties
of the Jeta we can probe the system by activating the
property node "Member of Jets . A probe might be a
name or any other aingle property, or it may consist
of a list of properties.

Before a probe is preaented, each node is assumed
to be at rest, with an activation value below O.
Probe presentation causes an excitatory input to be
applied to each node specified in the probe. This
excitatory input is allowed to stay on, and as time
passes it drives the activations of the specified pro-
perty nodes above 0, into what is called the active
range. Active nodes send excitatory signals to the
instance nodes they are linked to and send inhibitory
signals to the other nodes in the same cohort. These
signals are graded, and their strength is proportional
to the source node s activation. As processing con-
tinues, some of the instance nodes become active.
They then begin to excite the property nodes they are
connected to, and to inhibit all the other instance
nodes. Eventually, property nodes not present in the
probe may become activated.

The excitation and inhibi tion processes are
allowed to go to equilibrium. At this point, the sys-
tem has generally activated property nodes for proper-
ties not specified in the probe. These activations
are the system ' s response to the probe. If all of the
active instance nodes "agree" on a property, the node
for that property will tend to be strongly activated.
On the other hand, if they all specify different
values within the same cohort, many values will become
partially activated and they will all tend to cancel
each other out. In any case, what is filled in can
then be used as a basis for overt response to the
probe. For example, a statement of the typical age of
the members of the Jets could be based on the result-
ing pattern of activation over the age nodes. I will
go through some examples of what the system fills in
in response to various probes after giving a few more
details of the working of the model.

Quantitative Details

The net input to node i at time t is given by:

input (t) - P (t) + E Ee (t) - I Ei (t).

i (t) stands for the probe input to node i. It is set
to +. 2 if the probe drives node i and to 0 otherwise.
The e (t) are the activations of the active excitors
of noat. i and the (t) are the activations of the
active inhibitors of i1bde i. The constants E and I
are simply weighta which modulate the excitatory and
inhibitory effects of the Input. Their values (.
and . 03) are the same for all nodes except as noted
below.

The eUet..t~~.Aet input to node i is modu-
lated by the current activation (a (t)). If the net
input ia excitatory (i.e. , greater ~an or equal to 0),
then the effect is

effect (t) . (M- (t))input (t)
1f the net input is inhibitory (i.e., less than 0)
then the effect is

effect i (t) . (a i (t)-m)input i (t)
Here M stands for the maximum possible activation of
the node and m stands for the minimum. This formula-
tion ensures that the activation of each node stays
between the maximum and minimum values, which are set
to 1. 0 and - 2 respectively.

There is a tendency for the activation of each
node to decay at some rate D back to its resting value
R. This tendency is subtracted from the effect of the
net input to the node to determine the rate of its
activation:

d(a (t))/dt . effect (t) - D(a (t)-R)

The values of D and Rare . 05 and .

Simulation

The behavior of the system described above is
imulated on a digital computer by using discrete

rather than continuous time. One every tick of the
discrete clock, the activations of each node are
adjusted to reflect the effects of the activations of
other nodes at the end of the previous tick. The time
slices are kept thin by using small values for E, I,
and D, so that the approximation to a continuous sys-
tem is qui te close.

Examples of the Model
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Behavior

Let us examine the system s response to the probe
Member of the Jets Presentation of the probe
causes the "Jet" node to become active, and this in
turn sends activation to the instance nodes of all of
the members of the Jets. As they become ac ti ve they
send excitation to the nodes for their properties.
These nodes in turn reinforce the activations of those
jets with active properties. After about 200 cycles
the pattern of activation over the property nodes has
stabilized at the following values:

Name:
Gang:
Age:
Ed:
Mar:
Occ:

Jets 869
20' s . 663H. . 663Sing. . 663
Pusher 334
Burglar. 334

Activations for instance nodes are omitted to aave
space. All property nodes not mentioned are below
zero activation. Baaed on these activations the model
could generate a list of its conception of the typical
properties of the Jets. In the case where only one
possibility ia active, the system would simply report
that value. Where multiple possibilities are active,
it ,could either liat the set of possibilities or make
a probabilistic choice from among the alternatives.

Bookie 334

In this case the active age, education, and mari-
tal status properties are the ones which are typical
of the Jets. Though no Jet has all three of these pro-
perties, 9 out of 15 of the Jets are in their 20' s, 9
have only Junior High educations, and 9 are single.
The occupations are divided evenly among the three
possibilities. Thus, the model tends to activate the
node on each dimension which is most typical of the
members of the gang, even though it has never encoun-
tered a single instance with all of these properties,
and has no explicit representation that the Jets tend
to have thesp properties.
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An interesting feature of the model is thAt it
can retrieve the typical properties of any subset of
individuals matching an arbitrary conjunction of
specifiable properties. For example, we can probe
with the properties "Age in' 20' " and "Junior High
Education Four individuals have these two proper-
ties. All of them are Jets and Burglars by trade.
Two of them are married and two divorced. The
responae of the system reflects these facts:

Name: Lance 127 John 127
Jim 094 George 094

Gang: Jets 732
Age: 20' 855
Ed: 862
Mar: Mar. 589 Div. 389
Occ: Burglar . 721

In this case the instance nodes for the four indi vidu-
ala matching the probe become strongly enough
activated to drive the activations of the correspond-
ing name nodes above threshold. Lance and John get
more ac ti ve than Jim and George because the instance
node for AI, a married individual who ia very similar

to Lance et a!., becomes slightly activated, thereby
boosting the activation of the "married" node and
causing Lance and John to gain a slight edge.

The model can also be used to retrieve the pro-
perties of a particular individual. In so doing, it
exhibits the tendency to fin in "default" values for
unknown properties of an instance. To illustrate
this, we can delete the link between the instance node
for Lance and the "burglar" node and then see what
happens . when we present the name "LAnce" as a probe.
The Lance name node becomes acti ve and excites the
corresponding instance node. This excites the nodes
for the known properties of Lance. These then excite
the nodes for other individuals who ahare these pro-
perties. Finally, they in turn exci te the nodes for
properties that they share. When the pattern of
activity finally stabilizes (in about 400 cyclea) the
model has filled in an occupation for Lance.

Name:
Gang:
Age:
Ed:
Har:
Occ:

Lance 799
Jets 710
20' s . 667J. H. . 704
Mar. . 552
Burglar . 641

Div. 347

The value filled in is shared by the other individuals
who are most similar to Lance (namely John, Jim and
George). At equilibrium the different marital situa-
tions of these individuals are also reflected in the
pattern of activation. The model has blended its
representation of Lance with its repreaentation of
other very similar instances.

This kind of blending can be a good or a bad
thing, of course. It is sometimes important to know
what we really know about something rather than what
we might plausibly asaume based on our knowledge of
similar things. Fortunately, a single parameter of
the model -- the strength of mutual competition among
instances -- determines whether the model will tend to
fill in values from partial activations of related
instances. If active instancea inhibit each other
strongly, then the most strongly activated instance
will tend to dominate the pattern of activation and
keep other instances from "contaminating" the informa-
tion retrieved. In the Lance example, if the strength
of instance-to-instance inhibition is increased from
03 to . 05, the instance node for Lance dominates the
instance nodes and the other.. are kept from getting
active so they cannot activate the missing occupation
or the competing marital ..tatus. Thus, the model can
either retrieve what is actually known about an
instance or it can fill in missing properties from the
common properties of similar instances.
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In summary, the model I have described is capable
of generalizing along a number of different lines
about the shared properties of specified subsets of
familiar objects. It can also retrieve whitt it knows
about specific instances , and , if desired , fill in
plausible default values for unknown properties of the
retrieved individuals. It can induce generalizations
as it needs them across novel partitions of the
knowledge base. Since these are many of the behaviors
which have led workers in var ious fielda of cognitive
science to auume we explicitlv storE' generalizations,
the model raises the possibili ty that this assumpt ion
however plausible , may not necessarily be true in all
cases.

There are many more steps to be taken , of course.
For one thing, the model needa a representational sys-
tem which can capture more highly structured
knowledge. How the model can be extended in this way
while preserving its interesting properties is
currently being explored.
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