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Abstract

The study of human intelligence was once dominated by symbolic approaches, but over the last

30 years an alternative approach has arisen. Symbols and processes that operate on them are often

seen today as approximate characterizations of the emergent consequences of sub- or nonsymbolic

processes, and a wide range of constructs in cognitive science can be understood as emergents. These

include representational constructs (units, structures, rules), architectural constructs (central execu-

tive, declarative memory), and developmental processes and outcomes (stages, sensitive periods,

neurocognitive modules, developmental disorders). The greatest achievements of human cognition

may be largely emergent phenomena. It remains a challenge for the future to learn more about how

these greatest achievements arise and to emulate them in artificial systems.
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1. Introduction

This article arose from an invitation to consider ‘‘statistical models’’ in cognitive science

on the occasion of the 30th anniversary of the Cognitive Science Society, and it paralleled

an invitation to John Anderson to consider ‘‘symbolic models.’’ In considering the invita-

tion, it seemed to me that ‘‘statistical models’’ did not exactly capture what I take to be the

alternative to symbolic approaches that has arisen in our field since the first Cognitive

Science Society meeting—an approach represented in the work of connectionist modelers

as well as other researchers who come from a wide range of different starting places.

A better framing concept for this alternative seemed to me to be the concept of emergence.

The symbolic approach takes as its starting point the idea that human and artificial minds

should be viewed as symbol processing machines. This approach was well represented at
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the first Cognitive Science Society meeting by Alan Newell, in his lecture on Physical
Symbol Systems (Newell, 1980). The idea of emergence in cognitive science is the contrast-

ing idea that there are more basic or elementary processes that are really the fundamental

ones, and that physical symbol systems of the kind Newell described are sometimes useful

approximate characterizations which, however, have difficulties in capturing in full the con-

text-sensitive, flexible, graded, and adaptive nature of human cognitive abilities. While it

might not have seemed so until recently, it has become clear that statistical and symbolic

approaches can easily coexist with each other, as they do in the structured probabilistic mod-

els of Kemp and Tenenbaum (2009) and Goodman, Mansighka, Roy, Bonawitz, and Tenen-

baum (2008). While these approaches advance the state of symbolic approaches, they are

quite different from the emergentist approaches this article is considering (McClelland

et al., 2010).

The concept of emergence may be relatively new to cognitive science, but it is not new to

science as a whole or to philosophers of science. Lewes (1875 ⁄ 2005), an early protagonist

of the concept, contrasted emergence with resultance: ‘‘In resultance, every result is either a

sum or a difference of the cooperant forces. It is otherwise with emergence where there is a

cooperation of things. The emergent is unlike his components insofar as these are incom-

mensurable, and it cannot be reduced to their sum or their difference.’’

Emergent properties are often defined as properties that are not found in any component

of a system but are still features of the system as a whole. Interestingly, the Wikipedia

article on emergence (Wikipedia, 2010) uses intelligence as one of its examples: According

to an emergentist perspective, it states, intelligence emerges from interactions among neu-

rons. For Wikipedia, the mind may be the most interesting emergent system that we know

about. From the perspective of emergence, the article states, it is not necessary to propose a

soul or a central executive to account for the fact that brains can be intelligent, even though

the individual neurons of which they are made are not. In a similar vein, adaptive computer

programs can have emergent properties; some such programs have acquired skills in board

games that exceed those of their designers—and they exhibit emergent patterns that can be

described as units or processes, such as gambits or strategies (Holland, 1998).

Philosophers of science who have studied emergent phenomena (Bunge, 2003; Morowitz,

2002) have noted that they may be more or less complex than the elements of the substrate

that give rise to them. The ideal gas laws seem very simple. The interactions among the

molecules in those gases are complex, and yet there is a very simple regularity that emerges.

When it comes to the mind, we also often observe simple and robust regularities, like the

power law of practice. These things are the emergent consequences of a very complex sys-

tem indeed, even though the law itself is simple. It is certainly interesting to understand how

people’s behavior can exhibit simple emergent regularities such as the power law of practice

while still having a rich and complex internal structure in each particular case, and this is

one legitimate form of research on emergent phenomena in cognitive science, as it is in

physics and chemistry.

But, in fact, these simple regularities are not the essence of intelligence or the supreme

achievements of nature. When it comes to intelligence, the real stuff consists of human suc-

cess in everyday acts of perception, comprehension, inductive inference, and real-time
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behavior—areas where machines still fall short after nearly 60 years of effort in artificial

intelligence—as well as the brilliant creative intellectual products of scientists and artists

such as Newton, Darwin, Einstein, Shakespeare, Michaelangelo, and Beethoven. According

to an emergentist perspective, all of these products of the mind are essentially emergents. I

do not think anyone who emphasizes the importance of emergent processes would deny that

planful, explicitly goal-directed thought plays a role in the greatest human intellectual

achievements. However, such modes of thought themselves might be viewed as emergent

consequences of a lifetime of thought-structuring practice supported by culture and educa-

tion (Cole & Scribner, 1974). Furthermore, proponents of the essence of human thought as

an emergent phenomenon might join with Hofstadter (1979) and others in suggesting that

key flashes of insight and intuition may not have arisen from planful, explicit goal-directed

thought alone, but instead might reflect a massive subsymbolic constraint-satisfaction

process taking place outside of awareness. In the case of Darwin, for instance, biographers

(e.g., Quammen, 2006) have written about the origins of his work on his theory of evolution.

It appears that Darwin set his mind to this investigation knowing intuitively that there was

something interesting to discover, while not knowing exactly what it was. This intuition,

arguably the key factor in his discovery, might have arisen as an emergent consequence of a

subconscious constraint-satisfaction process, which then led him to engage in more inten-

tional (yet still perhaps intuition-guided) exploration. This sequence in discovery may be

the rule even in formal domains such as mathematics and physics, where the intuition may

come first, followed only later by formal specification and rigorous proof (Barwise &

Etchemendy, 1991).

2. The generality of emergence in nature

Before turning to applications of the concept of emergence in the field of cognitive sci-

ence in more detail, let us consider examples of emergent phenomena more broadly. Several

examples are listed in Table 1. Many of these are taken from the popular book Emergence
by Johnson (2001) and many are discussed in The Emergence of Everything
(Morowitz, 2002). Emergent phenomena are pervasive in physics. Transitions between

solid, liquid, and gaseous states are considered to be emergent phenomena. The properties

Table 1

Examples of emergent phenomena in nature

Transitions between solid, liquid, and gaseous states

Properties of molecules, proteins, organelles, cells, organs, organisms

Bubbles, honeycombs

Mountains, oceans, rivers, continents, planets, solar systems, galaxies, universes

Life forms of all types; evolution and development of organisms

Ant colonies

Properties of individuals in collections

Markets, economies

Cities
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of atoms and molecules are seen as emergents. The properties of water are not contained

either in oxygen or hydrogen or in any sort of resultant from their additive or subtractive

effects on each other, but rather from the consequences of the particular configuration that

they enter into when combined into molecules and from the ways in which these molecules

interact with each other and with many other kinds of molecules. So it is with proteins,

organelles, cells, organs, organisms, and many other things found in nature. Liz Bates, an

eloquent proponent of emergentist approaches in language and development, liked to talk

about the regular hexagonal structure of the honeycomb to illustrate her point that there are

many structures in nature that are not produced by design, but that emerge as a result of

simple forces operating on the individual (spherical) honey-bubbles produced by bees

(Bates, 1976). Bubbles themselves are emergents—as are mountains, oceans, rivers,

continents, planets, solar systems, and so on.

In biology, the most important single development in all of biological science may have

been the articulation of the proposal that organisms—and all of their highly complex struc-

tures and functions—were not designed but evolved through the effects of random mutation

and recombination, together with a greater likelihood of survival for some of the resulting

variants. The revolution Darwin produced by introducing this idea is certainly one of the

most profound revolutions in scientific thinking that has ever occurred. It replaces an idea

about our origins and our nature in which some external agent placed us here with a process

that arose completely without design or plan, from things far simpler than those that resulted

from it.

Many, many other examples could be cited. Johnson’s Emergence discusses ant colonies,

properties of individuals in collections, markets, economies, and cities as things that arise

naturally from the interactions of large numbers of constituents unlike themselves, without

central coordination or design. Of course, institutions subsequently come into existence that

attempt to impose design and regulation on these emergent entities, much as explicit thought

processes subsequently come along and lead us to try to bring clarity to our intuitions.

Consider the entities that we find in nature. The galaxies, solar systems, stars, planets,

continents, mountain ranges, and river systems that we find are the consequences of pro-

cesses many of which are well understood in principle; in some cases it may even be well

understood why there should be structures of all of these types, and what the forces are that

cause such structures to emerge, and even what some of their statistical properties are con-

sidered in aggregate. But when we consider the individual cases, we find that every one is

different, and that the forces that shaped each one are highly nonlinear and context depen-

dent, to the extent that a full understanding of how it came out the way it did may not be

possible. The same is true in biology, but here it applies not only to individual organisms

but also to species. Morowitz (2002) notes how we may know something of the context that

led to the extinction of dinosaurs and the emergence of large mammals, or to the emergence

of bipedal hominids from tree-dwelling primates (an ancient change in climate promoting

open savanna over forest may have been involved), but the particular details of which homi-

nid line gained the ascendency may never be fully clear; nor should we think (he and many

biologists have argued) that all the features of homo sapiens are in any global sense optimal.

Rather, these are the features we inherited from ancestors that had a relative advantage over
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other competing species, in the particular context that existed at that time. On this view, we

may never understand how we came to be as we are, nor should we be deluded into thinking

that we are truly optimal in any of our properties.

3. Emergence of emergence in cognitive science

The notion that many of our mental abilities may be emergent phenomena was not promi-

nent at the first meeting of the Cognitive Science Society in 1979, but it began to emerge

around that time. Concepts related to emergence already existed in the field of development

(Waddington, 1942) and began to show up in writings by systems neuroscientists

(Braitenberg, 1984), artificial intelligence researchers (Minsky, 1980, 1986), and cognitive

scientists (Hofstadter, 1979) around this time. John Holland’s work in computer science,

introducing genetic algorithms that allow computational agents to evolve through a stochas-

tic, competitive, adaptive process is another early example of an emergentist approach to

intelligence (Holland, 1975).

A difficulty with Hofstadter’s and Minsky’s ideas was the vagueness that accompanied

their breadth. It seems fair to say that these ideas remain more sources of inspiration than

actual tools for working toward an explicit understanding of human mental abilities (but see

Hofstadter and the Fluid Analogies Research Group, 1995). As one example of such inspira-

tion, Smolensky’s (1986) Harmony Theory, which he applied to intuitive reasoning about

electrical circuits, and later language, drew inspiration from Hofstadter’s ideas.

Dynamical systems approaches to cognition, motor control, and development provide an

important source of emergentist ideas in our field. A series of papers in the late 1980s (e.g.,

Schöner & Kelso, 1988) introduced ideas originating in physics on self-organization in

complex systems by Haken (1977) into the investigation of motor control (see Turvey,

2004 and other papers in Jirsa & Kelso, 2004 for more recent consideration of these ideas).

This seminal work from the 1980s serves as the foundation for the dynamical systems

approach in psychology and development, to be considered further below.

3.1. Proto-emergence: Conspiracies of mental agents

Although not featured at the first cognitive science meeting, what one might call a proto-

emergentist perspective lies at the heart of the interactive activation model and related mod-

els developed around that time (McClelland, 1981; McClelland & Rumelhart, 1981). In

experimental psychology, there was also a related body of work on exemplar models (e.g.,

Medin & Shaffer, 1978), in which categories and rule-like behavior are emergent conse-

quences of the combined activity of many elements (the ‘‘mental agents’’ of the title of this

section) corresponding to individual items or experiences.

In these models, there is a conspiracy of memory representations of items, to produce

emergent category representations. Indeed, the representation of a given item is a result of a

similar conspiracy, depending in a graded way on an ensemble of stored representations of

items previously experienced (including representations of previously encountered instances
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of the item itself if it is a familiar item). Experimental work by Glushko (1979) applied this

idea to the construction of pronunciations of both familiar and unfamiliar letter strings; he

suggested that a conspiracy, rather than a race between a lexical lookup process and a sys-

tem of rules, might be the basis of constructing a pronunciation of all kinds of letter strings.

This idea was then incorporated into the interactive activation model of the perception of

letters in words and in novel but pronounceable pseudowords (McClelland & Rumelhart,

1981): For pseudowords, activation of representations of many words partially matching an

input letter string resulted in the facilitation of the perception of all of the letters in the

string. This process gives rise to an emergent tendency to facilitate perception of items con-

sistent with the patterns of English orthography, without explicitly representing this knowl-

edge in a system of rules, as in other approaches (e.g., Spoehr & Smith, 1975). This not only

challenges the need to have explicit knowledge of the rules but also allows us to ask: Does

it make sense to think that a consistent set of rules actually exists? In fact English orthogra-

phy reflects factors such as the need to distinguish between letters, such as n and v, which

were not distinguished in the script used by scribes in an earlier day; the letter e was thereby

added to several words, creating irregular forms like live, give, and have (Venesky, 1970).

Perhaps any rules we might construct really should be viewed simply as approximate and

sometimes useful descriptive characterizations.

3.2. Emergence in distributed connectionist models

I describe these localist connectionist and instance-based models as proto-emergent

approaches because they still contain individual units corresponding to familiar items, and

in that sense are not completely subsymbolic. Many researchers cling to such models, taking

it as a crucial property of our cognitive system that it contains units that stand for individual

things (Bowers, 2009; Page, 2000). However, for others these models were stepping stones

to a more thorough-going emergentist approach of the kind embodied in distributed

connectionist models (Hinton, McClelland, & Rumelhart, 1986), though they remain useful

for many purposes. The approach builds on ideas traceable back to Hebb (1949) and Lashley

(1950). Around the time of the first cognitive science meeting, explicit computational

models embodying these ideas (Anderson, Silverstein, Ritz, & Jones, 1977; Hinton, 1981;

Hopfield, 1982) began to influence the field of cognitive science.

Hopfield (1982) considered a ‘‘memory’’ to be a pattern of 1’s and )1’s over the units in

such a network; such a memory was stored by adding a (positive or negative) increment to

the weight from one unit to another, and he considered memory retrieval to be the process

whereby a distorted version of a memory would be input to the units in the network, which

would then be allowed to adjust their activations one by one in random succession. Apply-

ing this process, Hopfield observed that his network would always settle to a state that was

in a sense better than the state in which it started—a state of lower ‘‘energy’’—and that, if

only a few memories were stored in a set of neurons, the state reached would usually corre-

spond to one of the memories.

The idea that the global state toward which a network settles, rather than a single unit

within the network, corresponds to a memory represents the needed conceptual advance to
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go beyond the proto-emergence of the localist models to a full-blown emergentist approach,

in which the representation for a familiar item cannot be found stored separately in any part

of the system, and in which its retrieval as a memory emerges from the interactions among

simpler units each doing something subcognitive, and very simple.

Rumelhart built on Hopfield’s idea in a paper he first described at Cognitive Science in

1983 (Rumelhart et al., 1986b). He used a slight variant of the Hopfield model to instantiate

his vision of the schema—a concept that, he argued, was not well instantiated in models

which specified that schemata were directly represented as such (Rumelhart & Ortony,

1977). By representing schemata as emergent states of neural networks, he suggested, they

could capture the flexability, blendability, and embedability of human knowledge. In the

particular model Rumelhart proposed, the connection weights represented the aggregate

co-occurrence statistics of properties of many different rooms (rooms Rumelhart and his

secretary were personally familiar with). By activating one or two properties of a room

(‘‘has an oven and a sink,’’ e.g., or ‘‘has a bed and a dresser’’), one could guide the network

to settle into one of several different attractor states (Fig. 1). Some atypical combinations

could be accommodated more easily than others—for example, sofa, most at home in

living-room-like states, could be better accommodated in bedroom-like states than in

kitchen- or bathroom-like states. Thus, the states captured graded goodness of particular

combinations of elements, even in cases where particular specific combinations had never

been encountered before. Instantiated schemata (specific activated patterns corresponding to

particular rooms) also could contain embedded schemata, such as a schema for the combina-

tion of properties has a window and has a curtain. Without a window, curtains were not

good, but with a window, curtains tended (again, in many but not all contexts) to be better

than no curtains. These emergent schemata provided the flexibility and context sensitivity

that Rumelhart was looking for, and they contributed tremendously to the enthusiasm he

Fig. 1. Emergent room schemata and their associated goodness values. Goodness values shown for kitchen, bed-

room, and office are attractor states in a Hopfield-like connectionist network. Goodness values are also shown

for intermediate states on the plane through these three attractor states. From Figure 7, p. 28 of Rumelhart,

Smolensky, McClelland, & Hinton, 1986b. Copyright 1986 by MIT Press.
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brought to the effort to characterize human cognition as an emergent consequence of the

interactions among simple neuron-like processing units.

4. Cognitive science constructs as emergents

Since this early work, the investigation of emergence in cognitive science has continued.

In Table 2, I list a number of constructs in use within our field, all of which may be viewed

as emergents of one form or another, as I will now discuss. I have chosen to list constructs

of several different types, and because of space constraints I have been selective—similar

issues arise with many other constructs.

4.1. Putative representational constructs

The first type of construct I consider includes cases related to the schema example. One

such case—the treatment of linguistic rules as emergents—arose in parallel with the devel-

opment of the emergent approach to schemata, in the PDP model of past-tense formation

(Rumelhart & McClelland, 1986). This and related work touched off a firestorm of critical

reaction in the late 1980s (Fodor & Pylyshyn, 1988; Lachter & Bever, 1988; Pinker &

Prince, 1988), as well as an exciting body of further work that extended these ideas in

several important directions. Shortly afterward, related approaches to single-word reading

(Sejnowski & Rosenberg, 1987), sentence processing (Elman, 1990), and to the organization

Table 2

Some objects of investigation in cognitive science: Are they all emergents?

Putative representational entities

Categories, prototypes, schemata

Rules of language and thought

Lexical entries

Grammatical and semantic representations

Architectural constructs from cognitive psychology and cognitive neuroscience

Working memory

Attention

Central executive

Declarative memory

Cognitive processes and their outcomes

Choices

Decisions

Inferences

Beliefs

Developmental processes and outcomes

Developmental stages

Sensitive periods

Cognitive modules

Patterns of deficit seen in developmental disorders

The structure of natural language
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of conceptual knowledge arose (Rumelhart & Todd, 1993), spurred on by the development

of powerful learning algorithms for training multilayer networks of simple processing units

(Rumelhart, Hinton, & Williams, 1986a).

This work has raised a host of still unresolved questions. Can we understand people’s

knowledge of words, including their knowledge of whether an item is in fact a word in their

language, and their knowledge of all things about the word, such as what the word means,

how it is spelled, how its past tense is formed, and how it is used in context, without postu-

lating that people have explicit ‘‘lexical entries’’ in their heads corresponding to the entries

one finds in the dictionary? Is knowledge of the structure of sentences, and the rules needed

to create them, represented as such, and perhaps innately predetermined, or could this

knowledge too arise from interactions of simple processing units, whose connection weights

are affected by experience, when exposed to spoken language?

The emergentist perspective articulated in distributed connectionist models answers

‘‘yes’’ to these and many related questions. There are still many protagonists of alternative

approaches in which separate units (or small collections of dedicated neurons) are allocated

to familiar items (Bowers, 2009) and ⁄ or in which there is a separate and specialized mecha-

nism good for use in implementing the ‘‘algebraic rules’’ that some still suppose are best

suited to capturing knowledge of linguistic regularities and certain types of inference

(Marcus, 2001). Elsewhere, my colleagues and I have vigorously defended the emergentist

approach (McClelland & Bybee, 2007; McClelland & Patterson, 2002a). One cornerstone of

our reply is that the shortcomings critics found in the earliest models lay not in their essen-

tial features but in specific ancillary implementation details; improved versions have

addressed most of the criticisms (MacWhinney & Leinbach, 1991; Plaut, McClelland,

Seidenberg, & Patterson, 1996).

More important, we have argued, the behavioral and linguistic phenomena do not support

a separation into dissociable categories of regular and exceptional items subject to dissocia-

ble mechanisms and processes, as some continue to claim (e.g., Coltheart, Rastle, Perry,

Langdon, & Ziegler, 2001; Jackendoff, 2007; Pinker & Ullman, 2002). Many items others

are forced to treat as exceptions exhibit characteristics of regular forms (e.g., ‘‘said’’ or

‘‘kept,’’ treated by some as exceptions but really just slight reductions of the regular past

tenses of ‘‘say’’ and ‘‘keep’’), and behavioral and linguistic evidence suggests that these

items benefit from their similarity, not only to other similar exceptions (‘‘wept,’’ ‘‘slept,’’

etc.) but also from their near-regularity. We argue that approaches in which sensitivity to

regularities as well as to the properties of individual items arise within a single system are

better suited to capturing the regularity in both fully and partially regular items (McClelland

& Bybee, 2007; McClelland & Patterson, 2002b). Further development of such approaches

is clearly warranted, in my view.

4.2. Architectural constructs from cognitive science and cognitive neuroscience

Cognitive scientists and cognitive neuroscientists have introduced or maintained a set of

constructs that sometimes show up as explicit separate parts of an overall architecture, but

that, in many cases, can be seen instead as functions that emerge from the interdependent
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activity of a number of contributing mechanisms or processes. Consider, for example, the

‘‘central executive.’’ The central executive might be viewed as a separate mechanism that

plays a special role in controlling processes elsewhere in the system, and it has often been

associated with regions in the prefrontal cortex—regions that, when damaged, lead to

reduced ability to flexibly control behavior according to current goals and an increased ten-

dency to make stereotypical or habitual responses. If fact, however, many researchers pro-

pose that the control of processing is actually distributed across many contributing brain

areas; in some versions of these ideas, the ability to maintain control depends on coherent

engagement of several brain areas, including but not limited to regions of prefrontal cortex

(Fuster, 1997). Others have noted that patterns of behavior others treat as reflecting the loss

of a central executive can arise from diffuse damage and capture such patterns by diffuse

damage to simple recurrent networks in which there is no separate component correspond-

ing to the central executive (Botvinick & Plaut, 2004).

Several putative features of the architecture of memory can also be approached in similar

ways. But perhaps there still may be a tendency to see declarative memory as a separate

memory system and within declarative memory, to see semantic and episodic memory as

further subdivisions (see, e.g., the widely reprinted Figure 1 in Squire, 1992). It seems

increasingly clear, however, that declarative memory involves the collaborative engagement

of complementary learning systems, including the medial temporal lobes and many areas of

the anterior and lateral temporal neocortex (McClelland, 2010; McClelland, McNaughton,

& O’Reilly, 1995), as well as many regions of the prefrontal cortex (Badre & Wagner,

2007). Likewise, ‘‘semantic memory’’ is now often seen as an emergent property of

mutually interconnected brain areas (Martin, 2007).

4.3. Cognitive processes and their outcomes: Decision making

In both popular and scientific writing about choice and decision making, there is a sense

that a choice is being made by a deliberative agent, and in common parlance we speak of

people as making choices, and treat choices and decisions as discrete outcomes. But how

are these choices and decisions made, and are they necessarily discrete? Some approaches

have tended to ignore the process, instead focusing on the principles of rational choice or on

specific violations of rationality, which are then described in terms of ‘‘heuristics’’ and

‘‘biases’’ that affect the decisions made. As alternatives to these approaches, dynamical

process models that treat decision making as arising from a dynamic, competitive process

now account in detail for the pattern of data from a large number of choice and decision-

making experiments, including details of response time distributions and dependence of

responses on stimulus and payoff information (Roe, Busemeyer, & Townsend, 2001; Usher

& McClelland, 2001; Wang, 2002). These models rely on competition between pools of

units representing choice and response alternatives to create a decision-like state, in which

the population of units associated with one outcome reaches a sustained activity state while

the activation of units in populations associated with alternative outcomes are relatively sup-

pressed. Decision states can be attractor states in such systems, emergent consequences of

the interplay of excitatory and inhibitory interactions among neuronal processing elements.
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One interesting feature of such states is that they can have characteristics that lie between

completely discrete and completely continuous states. For example, because of competition,

one alternative can win out over other alternatives and suppress their activity; yet the degree

of activation of the winning alternative can still reflect the strength of the input supporting

that state, and this can have consequences for the speed, confidence, and malleability of the

‘‘decision’’ the system has ‘‘made.’’

4.4. Developmental processes and outcomes

Cognitive development affords a very rich domain for emergentist approaches, including

both connectionist (Elman et al., 1996) and dynamical systems approaches (Thelen &

Smith, 1996). The idea that the mind emerges gradually from interactions between the child

and its physical and cultural milieu has parallels in ideas about the physical development of

the human body. Until surprisingly recently, it was widely believed that human adults (and

other adult animals) developed from preformed miniature versions—an idea known as

preformation (Correia, 1997). Early microscopists fancied that they could faintly make out

these miniature forms within individual sperm cells. Of course, preformation presented a

problem—if humans existed in miniature form before conception, when and how were these

miniature forms themselves created? The problem leads to a regress, in which each sperm

cell contains within it all possible future sperm cells, in an infinite series; in accordance with

this, a 17th-century philosopher named Nicolas Malebrance proposed that Adam must have

had in his testicles the preformed versions of every single human being that subsequently

ever was born or would be born. This problem of infinite regress no longer exists, of course,

now that we understand that the forms of humans and other animals emerge through merger

of parent cells, followed by cell division and differentiation that occurs in a highly context-

dependent fashion over the course of embryological development (Waddington, 1942).

Similar issues arise in the history of thinking about the origins of conceptual knowledge.

Keil (1981) and others argued that conceptual knowledge consisted of theory-like structures.

These theory-like structures provided the crucial scaffolding for the acquisition and elabora-

tion of domain knowledge, on this view; without them, learning would be under-

constrained; and therefore, Keil proposed that an initial set of proto-theories would have to

be available from the outset—that is, innate. There are, of course, emergentist alternatives.

As one example, Tim Rogers and I (Rogers & McClelland, 2004) have explored the possi-

bility that some of the constraints on learning can themselves be learned; relatedly, it was

our view that the constraints were not explicitly represented as they would be in an actual

scientific theory but where instead embedded in the learned connections present in a gen-

eral-purpose distributed connectionist network.

Four other topics in developmental cognitive science and developmental cognitive neuro-

science also deserve at least brief consideration; I have grouped them into two subsets.

4.4.1. Stages and sensitive periods
Development is clearly not a completely continuous process. Piaget, of course, was

famous for identifying developmental stages (Flavell, 1963), and although the broad stages
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that he envisioned have not held up, there remain good reasons to believe that children’s

cognitive abilities do not advance in a completely gradual and continuous fashion. Relat-

edly, there appear to be sensitive periods in a wide range of domains, including vision (ocu-

lar dominance) and language (especially for syntactic and phonological aspects of language

if not for other aspects). Just what are the factors that are responsible for these effects?

Recent approaches based on connectionist models have provided a way of seeing stage-like

progressions as possible emergent consequences of a gradual learning process. In the early

days of distributed connectionist models, I considered the developmental progress children

make on a Piagetian task called the balance scale task (Siegler, 1976). In this work, I found

that multilayer networks undergo accelerations and decelerations, exhibiting stage-like

effects (McClelland, 1989). This work remains controversial; as a model that shares features

with many other emergentist models, the transitions in it are not in fact completely abrupt;

furthermore, around transitions in particular, performance in the model is graded and only

approximately characterizable as characteristic of the stages others have seen in children’s

behavior. In recently revisiting these issues (Schapiro & McClelland, 2009), we found

renewed support for the view I have held from the outset, namely that on close inspection of

the data, there is evidence in children of exactly the kinds of graded effects that are seen in

the model. Indeed, even stage theorists now speak in terms of ‘‘overlapping waves’’ instead

of discrete transitions between stages (Siegler & Chen, 2002).

Critical periods in development (and subtler phenomena, including age of acquisition

effects) are another area where emergence-based approaches have received considerable

attention. A wide range of different ways of thinking about the basis of sensitive periods has

been considered. Many modelers have proposed that reduced plasticity might not reflect a

biological switch, but might be an emergent consequence of the accumulated effects of

earlier experience (Flege, 1995; Munro, 1986; Vallabha & McClelland, 2007; Zevin &

Seidenberg, 2004). Similarly, McMurray (2007) has shown how the vocabulary spurt in

child development could reflect the simple cumulative consequences of experience. Though

not quite a critical period phenomenon, it is also worth noting the work of Thelen, Fisher,

and Ridley-Johnson (1984) on the disappearance of stepping behavior in infancy, which

offers an emergentist alternative to the standard notion that this behavior disappears because

of maturation of top-down inhibitory circuits. This work played a seminal role in the further

development of dynamical systems approaches to development (Smith & Thelen, 2003;

Thelen & Smith, 1996).

4.4.2. Cognitive modules and developmental disorders
The notion that mental (and corresponding neural) modules are not intrinsic or biologically

preprogrammed as such, but emerge from a complex competitive and interactive process

shaped by a wide range of forces, has become increasingly recognized as an important pos-

sibility. What exactly these forces are, and how strong any initial constraints may be, may

vary from case to case. Crucial support for such a view comes from studies like those of

Sur, Angelucci, and Sharma (1999) demonstrating that cortical areas that usually specialize

in auditory processing can take on many of the properties of visual cortex if incoming con-

nections are redirected so that visual instead of auditory input comes to these areas.
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Two interesting cases that have been the focus of considerable interest are the so-called

visual wordform area and the fusiform face area. The former surely must be the product of a

convergence of forces rather than a prespecified module as such, given the recency (in

evolutionary terms) of the introduction of visual word forms. Whether the latter is also an

emergent structure (as Plaut, 2008, has proposed) or whether it and a few other evolution-

arily privileged modules are strongly predetermined (Kanwisher & Yovel, 2009) remains a

heated topic of debate. Whatever the details, surely some of the apparent physiological

modularity that is seen in the brain is the emergent consequence of a complex interplay of

forces.

In recent years, there has also been a very important shift in thinking about the basis of a

wide range of developmental disorders, including specific language impairment (SLI),

Williams syndrome, and others. In the early 1990s, it was possible for Pinker (1994) to

claim that there was a specific gene that targeted the ability to learn regular but not excep-

tional morphology, popularly described as ‘‘the grammar gene.’’ The evidence Pinker

pointed to in support of this particular claim (Gopnik & Crago, 1991) has not held up

(Vargha-Khadem et al., 1998). Other work has found that individuals diagnosed with SLI

may have greater problems with regular inflectional morphology, but this can occur either

because of a system-wide change in an underlying parameter of the learning system

(Thomas & Karmiloff-Smith, 2003) or because of difficulty processing complex and ⁄ or

acoustically weak phonological material. Karmiloff-Smith et al. (2004) have made a similar

argument in their analysis of the pattern of spared and impaired performance in children

with Williams syndrome. They argue that the disorder should not be viewed as one of

spared modules for one set of skills and impaired modules for other skills, but of a

developmental trajectory resulting in different parameterizations of neural circuits, leading

to a broad pattern of performance differences that belies any specificity with respect to puta-

tive modules such as ones for face processing or theory of mind.

4.5. Language structure and language change

Another very fertile domain for emergentist approaches is the evolution of language.

Instead of thinking, as Chomsky (1965) proposed, that there exists a set of innate constraints

on language in the form of Universal Grammar, many researchers have begun to explore

instead the idea of language as an emergent process (Christiansen & Kirby, 2003). From an

emergentist starting point, it is easy to envision how the structure of language might be

shaped by a wide range of factors, including the sequential nature of speech, a tendency for

temporal proximity to accompany relatedness, a pressure to keep messages simple, and a

tendency toward faster and more fluent processing of items that are used more frequently.

As one example, Bybee (2003) has proposed that the units we find in natural lan-

guages—phonemes, morphemes, words—and the changes that we see over time in these

units, often resulting in the grammaticization of elements of meaning into such things as

inflectional morphemes—are consequences of effects of usage on accessibility and fluency

on articulation. Many other researchers have explored how characteristics of grammatical

and phonological structure might arise as consequences of simple and very general
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constraints. This is a large and growing domain in which emergentist approaches are bur-

geoning.

As with the characteristics of the human species and the characteristics of English

orthography, the characteristics of natural language may not in fact conform perfectly to

any specific grammar. It was exciting in an earlier day to see just how much of the structure

of English sentences Chomsky (1957) was able to capture with the small set of rules he

introduced in Syntactic Structures. But it became clear very soon that the original approach

was not fully adequate. The exploration of alternatives began, and of course such investiga-

tions continue. While continued progress along these lines may indeed occur, an emergentist

approach may lead us to question whether in fact it makes sense to think that there really is

a specific grammar or type of grammar that underlies real natural languages. Perhaps these

too are best construed as emergent consequences of an interplay of forces that will render

any specific characterization of structure only approximate. Culicover and Nowak (2003) is

one example of a step in this direction.

4.6. Consciousness

Our discussion of emergence in cognitive science would not be complete without con-

sideration of the emergence of consciousness, as consciousness seems clearly to be an

emergent property. Just where does consciousness emerge? Is it a property of all matter?

Of all biological systems? Of all multicellular organisms? Of all organisms with multicel-

lular nervous systems, including molluscs? Of organisms with remote sensing systems

(vision and ⁄ or audition), such as flies and bees? Of all vertebrates, but not invertebrates?

Of only primates? Of only humans? It is interesting how little agreement there is on these

questions. A related question: Where in the biological development of those organisms

that possess it does consciousness arise? Is consciousness something that admits of mat-

ters of degree, or only of differences in content? Many authors, scientific and nonscien-

tific, have considered these questions. One notion is that consciousness is a special kind

of emergent property—a property that does arise somehow from merely physical and ⁄ or

biological processes but is so complex in the way in which it arises that it will never be

possible for science to understand exactly how it arises (Chalmers, 2006). Others view

consciousness as little different in character from other emergent phenomena and pursue

the possibility that the properties of consciousness are subject to scientific explanation in

ways not fundamentally different from the investigation of other macro-properties of

physical systems. While I tend to side with the latter perspective, it is worth reminding

ourselves that there are other instances of emergent phenomena that may never be fully

explained. Perhaps we will someday have a fuller understanding of the nature of con-

scious experience in general and of how such experience can in principle arise, without

yet having a full understanding of its detailed properties in the case of human conscious-

ness. This parallels the idea that we may someday achieve an understanding of the general

nature of the processes through which physical, biological, and linguistic structures arise,

yet this may not yield a full understanding of the basis for all the specific properties of

particular structures.
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5. The future directions and challenges for emergentist approaches in cognitive
science

Throughout the previous section, I have suggested how various constructs in cognitive

science, cognitive development, and cognitive neuroscience might best be seen, not as

fundamental entities that serve as the basis of explanation, but as the emergent consequences

of simpler, more general, or more basic processes. It seems fair to say that over the last

30 years or so, the tendency to see such entities as emergents has certainly increased. How-

ever, this does not mean that we now understand these emergent phenomena. I believe there

has been real progress in some domains, at least in developing models that account for quite

a bit of experimental data. Yet even in such cases, this does not necessarily mean that we

really understand how the phenomenon occurs; as Holland (1975) explores at length, models

governed by simple laws, especially models that learn, can give rise to emergent patterns

that were not predicted in advance and that, even after they have been observed, may not be

fully comprehended by the modeler. To what extent such patterns can or ever will be fully

understood remains an open question.

I think the greater challenge will be to extend emergentist approaches so that they address

more fully the achievements of human intelligence of the sort I mentioned in the introduc-

tion. Most of the models I have described address relatively simple tasks (single-word read-

ing) or else rely on highly simplified versions of the cognitive tasks humans are capable of

performing. Neither symbolic nor emergentist approaches have yet succeeded in capturing

everyday cognitive abilities in real-world context, much less emulating great insights and

artistic accomplishments.

New fields and new approaches have sprung up to address some of these challenges. As

one example, there is now a branch of robotics that focuses on the problem of autonomous

mental development. This emerging discipline arises from the belief that artificially intelli-

gent systems cannot be programmed in advance, but must instead be created out of an epige-

netic process, one in which, through their emerging abilities, such systems largely organize

their own development (Weng et al., 2001). It is a dream that work of this kind may some-

day lead to synthetic systems with emergent cognitive functions equaling our everyday abil-

ities to perceive, remember, and act appropriately in our environments, and may even

someday lead to abilities that rival the accomplishments of great scientific and artistic

minds. Up to now such approaches have not been strongly represented in the Cognitive

Science Society. Perhaps a greater degree of engagement with these approaches will arise

over the course of the next 30 years of the Society’s history.

Even if such approaches lead us toward synthetic systems with ever-greater intelligence,

we should not lose sight of the very real possibility that a full understanding of the emergent

properties of both real and synthetic adaptive intelligent systems will still remain elusive.

Holland (1975) has considered neural network models and models based on genetic algo-

rithms and their emergent properties. The properties of such systems can be fully specified

by the modeler, up to, say, the random initial values of connection weights or other parame-

ters of the model system; likewise, the rules by which these systems adapt to experience

may also be fully specified (either completely deterministically or subject to some degree of

J. L. McClelland ⁄ Topics in Cognitive Science 2 (2010) 765



randomness). The modeler may even completely specify the regime of experiences to which

such a system is subjected. Even so, a full understanding of the properties these specified

conditions give rise to often remains elusive. Holland exhibits optimism that a fuller under-

standing may be possible. Yet there remains the possibility that it may never be possible to

succinctly characterize all aspects of the evolved computational properties that arise in such

systems. Might it be likewise for our efforts to understand the nature of human insight

and other cognitive abilities? Perhaps the next 30 years of research in cognitive science will

provide the answer to this question.
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