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How do we know that Socrates is mortal? Aristotle
suggested that we reason from two propositions, in this
case: Socrates is a man; and all men are mortal. This
classical SYLLOGISM forms the basis of many theories of
how we attribute properties to individuals. First we cat-
egorize them, then we consult properties known to
apply to members of the category. Another answer —
the one that we and a growing community of researchers
would give — is that the knowledge that Socrates is
mortal is latent in the connections among the neurons
in the brain that process semantic information. In this
article, we contrast this approach with other proposals,
including a hierarchical propositional approach that
grows out of the classical tradition. We show how it can
address several findings on the acquisition of SEMANTIC

KNOWLEDGE in development and its disintegration in
dementia. It can also capture a set of phenomena that
have motivated the idea that semantic cognition rests
on innately specified, intuitive, domain-specific theo-
ries. Although challenges remain to be addressed, this
approach provides an integrated account of a wide
range of phenomena, and provides a promising basis
for addressing the remaining issues.

The hierarchical propositional approach
In the early days of computer simulation models,
researchers assumed that human semantic cognition
was based on the use of categories and propositions.
Quillian1 proposed that if the concepts were organized
into a hierarchy progressing from specific to general
categories, then propositions true of all members of a
superordinate category could be stored only once, at the
level of the superordinate category. For example, propo-
sitions true of all living things could be stored at the top
of the tree (FIG. 1). Other propositions, true of all ani-
mals but not of plants, could be stored at the next level
down, and so on, with specific facts about an individual
concept stored directly with it. To determine whether a
proposition were true of a particular concept, one could
access the concept, and see whether the proposition was
stored there. If not, one could search at successively
higher levels until the property was found, or until the
top of the hierarchy was reached.

Quillian’s proposal was appealing in part for its
economy of storage: propositions true of many items
could often be specified just once. The proposal also
allowed for immediate generalization of what is known
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SEMANTIC KNOWLEDGE 

Knowledge about objects and
their properties, and of
relationships between and
among them, including
knowledge of word meanings.
General encyclopaedic
knowledge is sometimes also
included.

SEMANTIC DEMENTIA 

A degenerative
neuropathological condition
that results in the progressive
loss of semantic knowledge as
revealed through naming,
description and non-verbal tests
of semantic knowledge, resulting
from disease of the anterior and
lateral aspects of the temporal
lobes.

PERCEPTUAL-TO-CONCEPTUAL

SHIFT

A hypothesized developmental
transition whereby infants
initially categorize objects on the
basis of their directly perceived
visual properties, but later come
to categorize them on the basis
of deeper relationships.

TAXONOMIC HIERARCHY

A structured set of concepts
linked together with class-
inclusion relationships.

PARALLEL DISTRIBUTED

PROCESSING

(PDP). A computational
modelling framework in which
cognitive and other mental
processes arise from the
interactions of simple, neuron-
like units through their weighted
connections. PDP models are a
subset of connectionist or
artificial neural network models
that use distributed
representations (a scheme in
which the representation of an
item is distributed as a pattern of
activity across a pool of units
also used for the representation
of other items) and that treat any
act of information processing as
involving the simultaneous
participation of many units.

In spite of its initial appeal to Warrington and oth-
ers, Quillian’s model is confronted with problems by
psychological findings. For example, the model pre-
dicts that people will be faster to verify idiosyncratic,
specific properties of objects than their shared proper-
ties, as specific properties are stored directly with the
concept but the general ones are stored further away.
Once potential confounds16 are controlled for, how-
ever, no such effect is found17,18. And there is something
paradoxical about the model; the essential message
from development and disintegration is that the gen-
eral properties of concepts are more strongly bound to
an object than its more specific properties, but in
Quillian’s model the specific properties are stored clos-
est and are therefore most strongly associated with 
a concept.

A more fundamental problem arises from the
reliance on storing knowledge at the superordinate cate-
gory level rather than with individual concepts. The
question arises, just which superordinates should be
included, and which properties should be stored with
them? At what point in development are they intro-
duced? What are the criteria for creating such categories?
And how does one deal with the fact that properties that
are shared by many items, which could be treated as
members of the same category, are not necessarily shared
by all members? For example, many plants have leaves,
but not all do — pine trees have needles. If we store ‘has
leaves’ with all plants, then we must somehow ensure
that it is negated for those plants that do not have leaves.

about stored members of a category to new members,
and immediate application of newly learned proposi-
tions about the general properties of a concept to all of
the more specific subordinate concepts. In a seminal
article in 1975, Warrington2 used Quillian’s hierarchical
model as the basis for capturing a progressive neuro-
logical condition that has come to be called SEMANTIC

DEMENTIA3. Patients suffer a progressive deterioration in
semantic tasks such as naming objects, sorting them
into taxonomic categories or verifying their properties4.
Such patients do not lose all information about a con-
cept at once, but seem first to lose more specific distin-
guishing information (for example, that a tiger has
stripes), with general properties (for example, that a
tiger has fur) remaining relatively spared even late in the
illness’s progression (FIG. 2). Patients also tend to attribute
general properties of a superordinate category to indi-
viduals that lack them (for example, to add an extra pair
of legs to animals such as swans and ducks)5,6.

Warrington2 also suggested that young children first
acquire very general conceptual distinctions, and then
progress to finer and finer ones. There is considerable
evidence that is consistent with an overall general-to-
specific progression7–12, although debate surrounds just
how general children’s first distinctions are and whether
there is a PERCEPTUAL-TO-CONCEPTUAL SHIFT13–15. Warrington
suggested that development proceeds from the top 
of the TAXONOMIC HIERARCHY and works its way down,
whereas disintegration starts at the bottom and works
its way up.
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Figure 1 | The hierarchical propositional model of Quillian1 applied to the domain of living things, as adapted by
Rumelhart60,61. Each arrow represents a proposition, with the subject argument at the tail of the arrow, the relation written along the
shaft, and the predicate argument at the head. The ‘ISA’ relations express propositions of the form ‘X ISA Y’, such as ‘robin ISA
bird’, and are arranged in a hierarchical taxonomy. The relations ‘CAN’ and ‘HAS’ specify actions and parts, whereas ‘IS’ primarily
captures superficial appearance properties. In addition to ‘robin ISA bird’ the network also encodes the proposition ‘bird CAN fly’: it
therefore follows that ‘robin CAN fly’. 
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1970s to explore alternatives. Several models sprang up
in this period that were designed to capture the notion
that category membership is graded and depends on
patterns of feature values19 or proximity in a multi-
dimensional representational space22. More recently, an
explicitly Bayesian approach to categorization has been
developed on the basis of principles of optimal infer-
ence in the face of a probabilistic relationship between
categories and their properties23,24. These approaches
have all been used to address basic aspects of categoriza-
tion, and to develop models of induction (if a dog has
an omentum, does a duck have one too?)25. Another
development26,27 was the suggestion that categories
might be represented not by a single summary repre-
sentation, but by the full set of previously experienced
exemplars, with category membership being deter-
mined by assessing the summed similarity of a test item
to known exemplars. Models based on this idea have
been successfully elaborated to address many findings
from artificial category learning experiments28–30. But in
spite of these developments, no successful, integrated
theory of categorization and other aspects of semantic
cognition has emerged from these efforts31.

Parallel distributed processing
In this article, our goal is to describe progress towards
such a theory within the framework of PARALLEL DISTRIBUTED

PROCESSING (PDP)32. PDP models share some properties
with several of the models mentioned above, but pose
an even more radical alternative to hierarchical propo-
sitional models. Although the field of semantic cogni-
tion is broad and contains many aspects that no extant
theory can fully address, there has been considerable
progress in the use of PDP models to address several
aspects that were not previously encompassed by a 
single account.

In PDP models, processing takes place by the propa-
gation of activation among simple, neuron-like pro-
cessing units (BOX 1). Semantic information is not stored
as such, but instead is reconstructed in response to
probes, in a process called pattern completion. In
Hinton’s early model33, two of the consituents of a three-
item proposition (such as ‘canary ISA —’) could be pre-
sented, with the task of filling in the third constituent
(‘bird’). Filling in occurs through the propagation of
activation among units through their connections, and
the outcome depends on the strengths (or weights) of
the connections, which are shaped by experience. When
Hinton introduced the model, only primitive algo-
rithms existed for learning the connection weights.
Research in the early 1980s produced more powerful
learning algorithms34,35 with the ability to assign useful
INTERNAL REPRESENTATIONS to items, including algorithms
for recurrent network architectures36 and biologically
plausible implementations37–39.

A growing body of work addresses semantic cogni-
tion within the PDP framework6,40–51. Much of this work
has focused on deficits in semantic cognition or on
semantic errors that result from brain disorders (for
example, reading ‘apricot’ as ‘peach’), reflecting the suit-
ability of PDP models for addressing the graded nature

If instead we store it only with plants that have leaves, we
cannot exploit the generalization.

Graded category membership
A related consideration is that typicality, instead of the
number of intervening ‘ISA’ links in Quillian’s hierarchy
(FIG. 1), seems to be a better predictor of human perfor-
mance in category verification and other semantic tasks.
For example, subjects verify the statement ‘robin is a
bird’ faster than they verify ‘chicken is a bird’, and they
verify ‘chicken is an animal’ faster than ‘chicken is a
bird’19,20. These findings are better captured by models
(like the one in REF. 19) in which category verification
occurs by comparing representations of the item and
the category, and responding on the basis of similarity,
rather than by models in which verification occurs by
searching a hierarchical tree.

These and other limitations of hierarchical proposi-
tional models21 spurred a movement that began in the

INTERNAL REPRESENTATION

In a PDP network, a pattern of
activity that arises across a layer
of hidden units. When a
network is presented with a
given input, the pattern of
activity arising across its hidden
layer is the internal
representation of that input.
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Figure 2 | Evidence of conceptual disintegration in semantic dementia. a | Naming
responses given by patient JL to pictures of birds (drawn from a set of line drawings for which
control subjects consistently provide the name given in the left column117) at three times during
the progression of his illness. ‘+’ indicates correct responses. b | Proportion of features of different
types omitted from drawings by three other semantic dementia patients. Patients were shown a
picture of the object including all of the tested properties and were asked to copy the picture from
memory after a 10-s delay. All patients copied the picture accurately while it remained in view, but
had difficulty in reproducing the distinctive but not the domain-general properties of the pictured
objects after a delay. SDom, properties shared by typical members of the general domain (for
example, eyes, shared by animals) of the test item; SCat, properties shared by typical members
of the superordinate category (for example, wings, shared by birds); Dist, distinctive features of
the test item itself (for example, stripes, distinctive attribute of tiger). c | Delayed copy of a camel;
no hump is evident. d | Delayed copy of a swan. A long neck is present, indicating some
preserved representation of specific information, but there are four legs, illustrating the tendency
these patients have to fill in properties that are generally present in items within the overall domain
(animals) even if not present in the specific item (swan) or its immediate superordinate (bird). 
IF and DC, patients with semantic dementia. Part a reproduced, with permission, from REF. 4

 (1995) Taylor & Francis. Part b reproduced, with permission, from REF. 6  (1999) Cognitive
Neuroscience Society. 
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most simply how the PDP approach can address many
aspects of the psychological findings.

Rumelhart addressed the processing and learning of
the specific body of information stored in the hierarchi-
cal propositional network shown in FIG. 1. The units in
one of the two groups on the left (input) side of the net-
work stand for the concepts at the bottom of the hierar-
chy. The units in the other group on the left stand for the
relations. The units on the right (output) side stand for
all possible completions of three-term propositions true
of the concepts. However, connections are initially set to
small random values so that activations produced by a
particular input are weak and undifferentiated. The net-
work is trained by presenting it with experiences based
on the information contained in Quillian’s hierarchy.
For example, the hierarchy specifies that a canary can
grow, move, fly and sing, so one of the training examples
specifies ‘canary’ and ‘CAN’ for the input and ‘grow’,
‘move’, ‘fly’ and ‘sing’ as the target output. For this case,
‘canary’ and ‘CAN’ are activated on the input units;
activity propagates forward through the HIDDEN UNITS to
the output units; and the activations resulting there are

of such deficits. There have also been many applications
to cognitive development52–59, reflecting the sensitivity
of PDP models to structure in experience, and their
corresponding ability to capture patterns of change in
cognitive abilities during childhood.

This article focuses on a simple example of the gen-
eral class of PDP models that addresses core issues in
semantic cognition, while also encompassing concep-
tual development and semantic disorders. The model
(FIG. 3), which was introduced by Rumelhart60,61, has a
feedforward structure, so that activation flows only in
one direction — from units that represent items (such
as ‘canary’) and relations (such as ISA) through inter-
mediate or ‘hidden’ layers, to an output layer contain-
ing units corresponding to possible completions of
three-constituent propositions. This simplifies
Hinton’s model, in which activation could flow in all
directions. Such recurrent networks are more fully
consistent with our (and Rumelhart’s) view of the
nature of cognitive processes, and the approach has
been used in many PDP models of semantic cognition.
We focus on the feedforward case because it shows

HIDDEN UNITS

Units in a neural network that
mediate the propagation of
activity between input and
output layers. The activations or
target values of such units are
not specified by the
environment, but instead arise
from the application of a
learning procedure that sets the
connection weights into and out
of the unit.

FEEDFORWARD NETWORK 

A class of neural networks
wherein activation propagates
only in one direction, from a set
of inputs towards a set of output
units, possibly through one or
more layers of hidden units.

Box 1 | Processing and learning in a feedforward parallel distributed processing network

A FEEDFORWARD NETWORK35 consists of input units, one or more groups of hidden units,
and output units. Input units project through weighted connections to hidden units
and/or directly to output units. Hidden units project to hidden units in other groups
and/or to output units. There are no connections within groups or return connections
to previous groups. A network with only one hidden unit is illustrated. Subscripts i, h
and o are used for input, hidden and output units, respectively.

Connection weights are initially small and random. The network is trained with a
series of examples that specify activations for input units (a

i
) and target activations

for output units (t
o
). One sweep through the examples constitutes an epoch. For each

example, specified values are assigned to the input units, and activation propagates
forward (top panel). Each unit calculates its net input — the sum over each incoming
connection of the activation of the sending unit multiplied by the weight w on the
connection. Activations of the units are set using a smooth monotonic function 
(green curve in bottom panel), and are propagated forward. Learning depends on 
the differences between the target and obtained activations of the output units.
Adjustments to the weights are made to reduce the error E — the sum of the squares
of the differences. To derive the weight changes, one asks, how would an increment to
each weight influence E, given the existing weights and activations? This can be
broken down into (a) the effect of changing the weight on the input to the receiving
unit, and (b) the effect of changing the input to the receiving unit on E. (a) depends 
on the activation of the sending unit; if the activation is 0, changing the weight does
nothing. (b), called δ, depends on (c) the effect of changing the unit’s input on its
activation, and (d) the effect of changing its activation on E. Term (c) is a scaling
factor s(a) that depends on the unit’s input (red curve in bottom panel). For an output
unit, term (d) depends on the difference between the target and the current activation;
if positive, E decreases with a increment in activation; if negative, E decreases with a
decrement in activation. Changing the activation of a hidden unit will affect the error
at each output unit. The amount depends on the weight from the hidden unit to the
output unit, multiplied by the effect of changing its activation on E, which is its δ
term. Accordingly, δ for each output unit is scaled by the weight from the hidden unit
to the output unit and propagated back to the hidden unit, where these terms are
summed and scaled to obtain the hidden unit’s δ (middle panel). Once δ has been
computed for a hidden unit, it can be propagated back further. The weight
adjustments are scaled by a constant ε that must be small to ensure progress63. Some
adjustments cumulate across examples, whereas others cancel out. Overall the weights
adapt slowly, yielding gradual evolution of the patterns of activation and gradual
reduction of error.
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children’s experience, and the coding of experience for
the network finesses some important issues. However,
we argue that the training data capture two essential fea-
tures. First, many types of naturally occurring things
have a hierarchical similarity structure, as Quillian
noticed; and second, from exposure to examples of
objects children learn just what the similarities are and
how they can be exploited.

The Rumelhart model can show how learning can
shape not only overt responses, but also internal repre-
sentations. A special set of internal or hidden units,
labelled ‘representation’ units, was included between the
input units for the individual concepts and the large
group of hidden units that combine the concept and
relation information. When the network is initialized,
the patterns of activation on the representation units are
weak and random, owing to the random initial connec-
tion weights, but gradually these patterns become 
differentiated, recapitulating the general-to-specific
progression seen in many developmental studies. The
simulation results in FIG. 4 show that patterns represent-
ing the different concepts are similar at the beginning
of training, but gradually become differentiated in
waves. One wave of differentiation separates plants from
animals. The next waves differentiate birds from fish,
and trees from flowers. Later waves differentiate the
individual objects. The process is continuous, but there
are periods of stability punctuated by relatively rapid
transitions also seen in many other developmental
models54,56,59, reminiscent of the seemingly stage-like
character of many aspects of cognitive development62.

Rumelhart focused on showing how this network
recapitulates Quillian’s hierarchical representation of
concepts, but in a different way than Quillian envi-
sioned it — in the pattern of similarities and differences
among the internal representations of the various con-
cepts, rather than in the form of explicit ‘ISA’ links. This
characteristic of the model is clearly brought out in the
hierarchical clustering analysis of the representations of
the concepts (FIG. 4b). Rumelhart also showed how the
network could generalize what it knows about familiar
concepts to new ones. He introduced the network to a
new concept,‘sparrow’, by adding a new input unit with
0-valued connections to the representation units. He
then presented the network with the input–output pair
‘sparrow–ISA–bird/animal/living thing’. Only the con-
nection weights from ‘sparrow’ to the representation
units were allowed to change. As a result, ‘sparrow’ pro-
duced a pattern of activation similar to that already used
for the robin and the canary. Rumelhart then tested the
responses of the network to other questions about the
sparrow, by probing with the inputs ‘sparrow–CAN’,
‘sparrow–HAS’ and ‘sparrow–IS’. In each case the net-
work activated output units corresponding to shared
characteristics of the other birds in the training set
(CAN grow, CAN move, CAN fly; HAS skin, HAS
wings, HAS feathers), and produced very low activation
of output units corresponding to attributes not charac-
teristic of any animals. Attributes varying between the
birds and attributes possessed by other animals received
intermediate degrees of activation. This behaviour is a

compared to the correct output (activation of ‘grow’,
‘move’,‘fly’ and ‘sing’ should be 1, and activation of other
output units should be 0). The connection weights are
then adjusted to reduce the difference between the tar-
get and the obtained activations. The set of training
experiences includes one for each concept–relation pair,
with the target specifying all valid completions consis-
tent with FIG. 1.

The network is trained through many epochs or suc-
cessive sweeps through the set of training examples.
Only small adjustments to the connection weights are
made after each example is processed, so that learning is
very gradual — akin to the process we believe occurs in
development, as children experience items and their
properties through day-to-day experience. Of course,
the tiny training set used is not fully representative of
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Figure 3 | Our depiction of the connectionist network used by Rumelhart60,61. The network
is used to learn propositions about the concepts shown in FIG. 1. The entire set of units used in
the network is shown. Inputs are presented on the left, and activation propagates from left to
right. Where connections are indicated, every unit in the pool on the left (sending) side projects to
every unit on the right (receiving) side. An input consists of a concept–relation pair; the input
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correct units to activate are ‘grow’, ‘move’, ‘fly’ and ‘sing’. Subsequent analysis focuses on the
concept representation units, the group of eight units to the right of the concept input units.
Adapted, with permission, from REF. 61  (1993) MIT Press.
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network to acquire new information quickly (by turning
up the learning rate or massive repetition) can lead to
CATASTROPHIC INTERFERENCE63,66, in which the process of
learning new information results in such large changes in
the connection weights that much previous information
is destroyed.

To resolve this dilemma, McClelland, McNaughton
and O’Reilly63 introduced the complementary learning
systems theory, in which a slow-learning semantic
knowledge system is complemented by a second, fast-
learning system in the medial temporal lobes. New infor-
mation is acquired rapidly in connections within this
second system. It provides the initial basis for reconstruc-
tion of newly formed memories, and is also one source of
teaching signals for the semantic system, thought to
reside in the neocortex (BOX 2). This and related
proposals67–70 account for the effects of extensive damage
to the medial temporal lobes71,72, which can result in a

graded version of the pattern of generalization that
would be seen in the Quillian hierarchical semantic
network if the proposition ‘sparrow–ISA–bird’ were
explicitly added to it.

Our own interest in the Rumelhart model63 was
intially sparked by a dilemma. On the one hand, the
progressive differentiation seen in the network captures
a corresponding process seen in cognitive develop-
ment7–11. This ‘progressive penetration into the nature of
things’62 is a general property of child development and
PDP networks and has been expoited in many other
models54–58,64. So, the models provide an appealing
explanation of how experience gradually shapes the
way we think as we develop. But the gradual learning
seen in such models flies in the face of the fact that chil-
dren (and adults) can also learn quickly, acquiring new
object names and other information in one or a very
few exposures65. Worse still, any attempt to force the

CATASTROPHIC INTERFERENCE 

The loss of information
previously stored in a PDP
network that can occur as a
result of later learning. Reducing
overlap among representations
or ensuring that learning is very
gradual and interleaved with
ongoing exposure to material
already known are two ways of
avoiding this problem.

Box 2 | Semantic cognition in the brain

The models described in the main text provide an abstract
theory about the representation and processing of
semantic information; how might it be instantiated in the
brain? Both the effects of brain damage and functional
imaging studies support the idea that semantic processing
is widely distributed. One view is that the act of bringing to
mind any particular type of semantic information about
an object evokes a pattern of neural activity in a part of the
brain dedicated to that type of information103–109. The
brain areas that become activated when thinking about
action on an object are near those directly involved in
action105,106, and similarly for the form, movement,
colours105 and sounds107 of objects. The abstract model can
be brought in line with these findings by supposing that
the output units for each type of information are located in
distinct brain regions. In addition to these units, however,
the model calls for representation units that tie together 
all of an object’s properties across different information
types. Such units might lie in the temporal pole, which is
profoundly affected in semantic dementia76,77. Others103,104

have emphasized the potential role of this region as a
repository of addresses or tags for conceptual
representations. We suggest that the patterns of activation
in these areas are themselves ‘semantic’ in two respects.
First, their similarity relations capture the semantic
similarities among concepts, thereby fostering semantic
induction. Second, damage or degeneration in these areas disrupts the ability to activate elsewhere the more specific
properties of concepts (while still supporting activation of properties shared by semantically similar objects). The
complementary, fast learning system is thought to be located in medial temporal lobe63,72.

There are many applications of parallel distributed processing models to semantic disorders6,42,45,47,50,51, but as yet no
unified account for the full variety of different patterns of semantic deficit108. Many patients show deficits that are specific
to a particular superordinate category (such as living things) rather than to a particular information type, but others do
not. One class of models50,51,111 indicates that apparent category specificity might reflect differences in the pattern of
covariation of features in different categories.Another possibility41,109,112 is that category specificity arises from lesions
affecting neurons that represent the type of information most relevant to the affected category, where this type of
information is central to the representation of category members. It has been argued that these approaches cannot account
for the full range of category-specific cases113. Category-specific organization might emerge over the course of
development114; this might be part of the developmental process of conceptual differentiation2. It is likely that there are
forces at work in the brain that tend to cause neighbouring neurons to represent similar things; this might help to minimize
the lengths of axons and dendrites needed to connect neurons that communicate with each other115. Many neural network
models incorporate such forces47,58,115,116, leading to progressive topographic differentiation in development.
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concepts in the network’s representational space (FIG. 5a).
The dimensionality of this space is large (equal to the
number of representational units, which in this case was
eight), so for visualization we reduce the number of
dimensions using a projection into two dimensions that
preserves, as well as possible, the relative distances
among the representations of the different concepts.

Similar concepts tend to be near each other in this
space, and unrelated concepts are far apart, so we can
find regions of the space that are associated with con-
cepts at different levels of generality. Each concept
(such as ‘canary’) occupies its own small region; its
immediate superordinate occupies a larger region
encompassing it and other members of the same
superordinate (such as ‘bird’); and the more general
category (such as ‘animal’) extends over a larger
region, encompassing the birds as well as the fish. With
this in mind we can consider what will happen if we
degrade the representations of individual concepts.

severe inability to acquire new arbitrary factual informa-
tion and a loss of recently acquired information, but
complete sparing of general semantic knowledge and
(more controversially73,74) relatively preserved memory
for remote over recent information.

In the complementary learning systems theory63,75,
the gradual learning characteristics of PDP networks are
thought to capture essential properties of the semantic
learning system in the neocortex. With this idea in
mind, we inquired whether the Rumelhart model could
also provide a basis for understanding the progressive
loss of semantic knowledge in semantic dementia,
which results from the degeneration of the anterior and
lateral regions of the temporal neocortex76,77. We found
that as the model’s internal representations are increas-
ingly degraded, it shows a pattern of knowledge disinte-
gration that is strikingly similar to that seen in the
patients. In considering how this arises in the model, it is
useful to visualize the relative locations of the different
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Figure 4 | The process of differentiation of conceptual representations. The representations are those seen in the feedforward
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training set at three points in
the learning process (epochs 250, 750 and 2,500). Early in learning, the patterns are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant–animal) and intermediate
(bird–fish/tree–flower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the similarity
structure remains. b | A standard hierarchical clustering analysis program has been used to visualize the similarity structure in the
patterns shown in a. The algorithm searches the patterns to find the two that are the closest, according to a Euclidean distance
measure, creates a node in the tree at a vertical position corresponding to the distance between them, replaces the two patterns
with their average, and then iterates until one grand average pattern remains. c | Pairwise distances between representations of
groups of concepts or individual concepts, illustrating the continuous but stage-like character of progressive differentiation. d | The
network’s performance in activating various properties of the canary, indicating that correct performance is acquired in a general-to-
specific manner, and tracks the differentiation of concepts shown in c. Also shown is the activation of ‘leaves’ when the network is
probed with ‘pine-HAS’. This shows an inverted ‘U’-shaped developmental course, capturing the ‘illusory correlations’ or incorrect
attributions of typical properties that have been cited in support of children’s use of innately constrained naive domain
theories85,89,118. (Based on simulations reported in REF. 78.)



© 2003        Nature  Publishing Group

NATURE REVIEWS | NEUROSCIENCE VOLUME 4 | APRIL 2003 | 317

R E V I E W S

Basic level and item-frequency effects
Although the model shows a general-to-specific process
of conceptual differentiation, the names that children79

and adults20,80 use to describe objects are generally at an
intermediate level of categorization, often called the
BASIC LEVEL81. For English-speaking city dwellers, the
words ‘tree’, ‘bird’ and ‘dog’ tend to be acquired earlier
than the superordinate terms ‘plant’ or ‘animal’, or than
more specific terms such as ‘canary’, ‘pine’ or ‘poodle’.
Why, if concepts are initially differentiated at the super-
ordinate level, does naming first emerge at an interme-
diate level? An additional curious property of chidren’s
early naming behaviour is that the names they acquire
early (such as ‘dog’) tend to be over-extended to other
items (especially other four-legged animals).

Our simulations78 indicate that these phenomena
might arise from a combination of factors, including the
clustering of objects in the world into tight-knit inter-
mediate-level groups within superordinate categories81,
the tendency for parents to use intermediate-level words
more frequently than more general or more specific
words when speaking to children, and the fact that a few
items — such as dogs — are discussed far more fre-
quently in such speech than are related items — such as
other land animals, birds or fish82,83.

We have addressed these issues in an extension of
the model described earlier, using a larger number of
concepts (21), including four trees, four flowers, four
fish, four birds and five four-legged land animals (dog,
cat, pig, goat and mouse78). In the runs of the simula-
tion considered here, the dog occurred eight times
more frequently than any of the other land animals.
Also, training experiences in which the network was
given exposure to names typically occuring in spoken
input to children (tree, flower, bird and fish for the
members of these categories, and the names dog, cat,
pig, goat and mouse for the land animals) occurred
more frequently than training with names at more spe-
cific or more general levels. The results of this simula-
tion (FIG. 6) indicated several important points. First, the
network still shows progressive differentiation, begin-
ning with the basic distinction between plants and ani-
mals, and progressing to the second-level distinction
between the different types of animals and plants
before the third-level distinction between specific
examples. We illustrate this process by tracing the
movement over time of a subset of the concepts in a
two-dimensional projection of the network’s state space
(thin lines in FIG. 6a). Second, the network’s naming
responses at different points (FIG. 6b) indicate earlier
mastery of the frequently encountered intermediate
names than more general and more specific names.
Finally, the network’s naming responses reflect the ten-
dency to overextend, for a time, the frequently encoun-
tered name ‘dog’ to other animals, but not to unrelated
concepts such as the pine (FIG. 6c). This tendency is elim-
inated first for birds and fish, and later for other land
animals, such as the goat. So, like children, the network
differentiates concepts progressively, but names first at
an intermediate level, overextending frequent names
during an intermediate stage of development.

One form of degradation, which might resemble the
loss of neurons in semantic dementia6,78, is random
perturbation of the representation of each concept,
with the amount of perturbation increasing to repre-
sent increasing neuronal loss. Increasing degrees of
perturbation degrade the network’s ability, first to acti-
vate specific information about the item (specific
name, object-specific properties) and later to activate
more general properties, recapitulating the pattern of
progressive deterioration of conceptual knowledge
seen in semantic dementia (FIG. 5b). In addition, prop-
erties that a concept does not have, but which are char-
acteristic of its superordinate domain (for example,
leaves on a pine tree), are applied to it when they
should not be, just as in semantic dementia.

BASIC LEVEL

The level of a taxonomic
hierarchy at which normal
participants typically identify 
a given object. For most
concepts, the basic level is at an
intermediate level of specificity,
such as bird rather than animal
or canary. So, when shown a
photograph of a canary, people
will be more likely to identify 
it as a bird then as a canary or 
an animal.
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properties of individual concepts. a | The relative positions of the eight concepts after
learning, with shading used to suggest the regions spanned by various concepts, which have
fuzzy boundaries. b | The effect of adding random noise of increasing magnitude into the inputs to
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expected effects of destruction of the neurons involved in the representations of concepts in the
brain. In a network with a small number of hidden units like those used here, any perturbation
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larger number of units119. Simulation of the effect of neuron loss, therefore, requires averaging
over many instances of the same degree of perturbation. Shared properties tend to be preserved
whereas idiosyncratic ones tend to be lost, and properties that a concept does not share with
other similar concepts (leaves on a pine tree) tend to come back as the representations become
less differentiated. (Based on simulations reported in REF. 78.)
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trained with dogs occurring more frequently than other
land animals, it over-generalizes the name dog to other
animals when its semantic representations are
degraded. This tendency reflects the fact (FIG. 6a) that
when it occurs frequently, a concept’s features (includ-
ing its name) will tend to be associated with a relatively
large region of the semantic space, surounding other
related concepts. Degrading the representation of a sim-
ilar concept will tend to cause it to fall into the space
associated with the more common concept.

What are the reasons for these aspects of the net-
work’s behaviour? Progressive differentiation arises
from the COHERENT COVARIATION of attributes across many
different items. All animals share several properties
(have skin, eyes, mouths; can see, eat) that differentiate
them from all plants, and vice versa. In the model, the
connection weights that determine the representation
and processing of all the animals tend to be driven in the
same direction by their shared properties; the corre-
sponding weights for the plants tend to be driven in the
opposite direction. This accounts for the first wave of
differentiation that separates animals from plants.
Similarly, birds share properties that differentiate them
from fish and land animals. The shared properties that
distinguish each of these groups from the others drive
the second wave of differentiation. The timing of the
waves of differentiation are jointly determined by 
the number of coherently covarying properties and the
number of concepts that exemplify them; the super-
ordinate differentiation of plants and animals arises first
primarily because all of the concepts fall on one side or
the other of this split. The differentiation of individual
concepts from each other tends to be late, since individ-
ual concepts tend to be differentiated by a few properties
that do not coherently covary with other properties.
Note that progressive differentiation does not depend
on the fact that the network is trained with the names of
concepts: the same progression is seen when training is
restricted to the ‘IS’, ‘CAN’, and ‘HAS’ properties of the
items. This is consistent with the emergence of early
signs of conceptual differentiation in children as young
as seven months9.

The tendency to produce intermediate level names
before names at other levels arises as a consequence of
both differential exposure frequency and the pattern of
covariation of properties across concepts; we have
shown this in simulations in which exposure frequency
and covariation of properties are independently manip-
ulated78. The tendency to name dogs correctly before
other animals arises from the high frequency of occur-
rence of dog experiences in the training set. The ten-
dency for ‘dog’ to be overextended to other animals early
in learning reflects the interaction of this frequency
effect with the progressive differentiation process. When
the network is beginning to learn to activate the name
dog when the dog is presented, the representations of
the dog and all the other animals are differentiated from
the representations of the plants, but the representation
of the dog is not well differentiated from the representa-
tions of the other animals. So the weights that allow the
representation of dog to activate the name ‘dog’ will pro-
duce the same result for the other animals. It is only as
the semantic patterns for the animals become differenti-
ated that the tendency to apply the name dog to other
animals falls off.

Patients with dementia also tend to overextend the
names of very common objects to similar objects.
Patient JL4 reached a point in his deterioration where he
correctly named only 3 out of 24 land animals: cat, dog
and horse. He used these three names for 20 of the
remaining 21 cases. Similarly, when our network is

COHERENT COVARIATION

Consistent co-occurrence of a
set of properties across different
objects. The concept is distinct
from simple correlation in that 
it generally refers to the 
co-occurrence of more than 
two properties. For example,
having wings, having feathers,
having hollow bones and being
able to fly all consistently 
co-occur in birds.

Land animal

Robin

Canary

Oak

Maple

RoseSunflower

Bird

Dog

Goat

Pig

Tree

Flower

AnimalPlant

a

b

c

Epochs

Epochs

A
ct

iv
at

io
n

A
ct

iv
at

io
n

0
0.0

0.2

0.4

0.6

0.8

1.0

500 1,000 1,500 2,000 2,500 3,000

0
0.0

0.2

0.4

0.6

0.8

1.0

1,000 2,000 3,000 4,000 5,000 6,000

Specific
Intermediate
General

Dog (pine ISA)
Dog (canary ISA)
Dog (goat ISA)
Goat (goat ISA)
Dog (dog ISA)

Figure 6 | Trajectories of learning concepts and their
names in a network trained with 21 concepts in five
categories (trees, flowers, birds, fish and land animals).
a | The end-points of a subset of the concepts, with the
trajectories followed during learning overlayed on the diagram.
b | Initial acquisition of the intermediate level names ‘bird’,
‘fish’, ‘flower’ and ‘tree’ before names at either more general
(‘animal’, ‘plant’) or more specific (‘robin’, ‘sunfish’, ‘rose’,
‘oak’) levels. c | The network quickly learns to apply the name
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name to other animals (goat, canary) but not plants (pine).
Eventually, correct names for goat (illustrated) and other
concepts (not illustrated) are learned. (Based on simulations
reported in REF. 78.)



© 2003        Nature  Publishing Group

NATURE REVIEWS | NEUROSCIENCE VOLUME 4 | APRIL 2003 | 319

R E V I E W S

greater frequency of learning about having wings than
being yellow; in the eight-concept corpus only one other
thing has wings (robin) but two other things are yellow
(sunfish and daisy). Instead, it is because having wings
coherently covaries with other properties that the canary
shares with the robin. The connection weight changes
that support correct activation of one of these properties
tend to support activation of the others, so the learning
that occurs for each is mutually beneficial. By contrast,
the set of objects that are all yellow share no coherently
covarying attributes, so the network must learn about
yellowness individually for each concept. In our model,
coherent covariation of properties has two other impor-
tant effects. First, it leads to the overextension of proper-
ties to objects that do not have them. For example,‘HAS
leaves’ covaries with other properties that differentiate
plants from animals, and as a result the network tends to
over-extend these properties to plants (such as the pine)
that do not have leaves, but instead have needles (FIG. 4c).
Second, it determines the strength with which a given
feature contributes to representational change in a single
learning episode. Properties that covary together gener-
ate larger weight changes throughout the network, and
therefore exert more of an influence on the development
of internal representations. The consequence is that the
similarities represented by the network are primarily
determined by the properties that covary coherently78.
The model’s sensitivity to coherent covariation can
therefore explain why some sets of properties are easier
to learn and remember than others, why such properties
are sometimes incorrectly attributed to members of the
domain, and why coherent properties are more central to
category membership than other properties.

Second, we consider the fact that people, including
young children, generalize properties differently,
depending on the type of property and the type of con-
cept to which it is applied. In one relevant study90, chil-
dren were shown an alligator puppet called Allie and
were told that Allie liked to eat a particular object
(thereby suggesting that the object was a food) or that
he liked to play with the object (suggesting that it was a
kind of toy). The children were then asked to indicate
which of two other objects might be the same kind of
thing. Children who were induced to treat the objects as
food tended to choose another object with the same
colour but a different shape, whereas children induced
to treat the objects as toys tended to choose another with
the same shape but a different colour. This indicates that
shape might be more important for defining toys and
colour for foods. In another study91, children saw unfa-
miliar target objects (such as a triceratops) named at a
superordinate level (dinosaur) to which they assigned
either a biological property (has cold blood) or a physical
property (weighs 1 ton). Children tended to generalize
biological properties to objects with the same super-
ordinate category name but a different appearance (they
generalized cold blood to a brontosaurus more than to a
rhinocerous) but they tended to generalize physical
properties to objects with a similar appearance (they
generalized weighing 1 ton to a rhinocerous more than
to a brontosaurus). Though the effects in these studies

PDP and theory theory
The success of our model in addressing these issues led
us to consider whether it could be extended to address
additional issues raised by a viewpoint on semantic 
cognition that is sometimes called ‘THEORY THEORY’84–86.
Proponents of this view suggest that semantic knowl-
edge is built on naive, domain-specific, causal knowledge
about objects and their properties — knowledge that is
thought to play the part for the child that a theory plays
for a scientist87. Such knowledge determines what con-
cepts are good ones, which properties are central to a
concept, and which properties are only incidental. For
example, the category of birds, and the intuitive impor-
tance for this category of the ability to fly and having
wings, are viewed as flowing from a naive DOMAIN THEORY

of the causal structure underlying flight85. A naive
domain theory can be vague and need not be one that
its holder can explicitly articulate88, but it is thought to
guide us to view wings and other properties such as
feathers and hollow bones as central (because they
enable flight). Some proponents of this and related
approaches have suggested that known learning meth-
ods are too weak to explain concept acquisition, and
that some initial domain knowledge (or constraints
leading to that knowledge) must therefore be innate85,89.
Other proponents (including Carey84), pointing to the
reorganization of knowledge that occurs through devel-
opment in some domains, have argued that it is possible
to reformulate domain knowledge, but even these the-
ory theorists have had relatively little to say about what
drives reoganization.

We consider several classes of findings raised by pro-
ponents of theory theory. The first is why some con-
cepts might be better or more coherent than others, and
why some properties might be more central to a con-
cept than other properties. For the theory theorist,
good concepts are those whose properties are linked by
causal relations (having wings and hollow bones
enables flight), and the CENTRAL PROPERTIES are those that
are so linked (CAN fly, HAS wings, HAS hollow bones).
Naive domain theories render these properties easier to
learn, and might lead us to impute them to objects that
do not seem to have them85,89. We suggest instead 
that causal structure in the physical world (wings and
hollow bones do enable flight) leads to coherent co-
variation among observed properties (many objects
have wings and hollow bones, and can fly). By virtue of
mechanisms similar to those that operate in the network,
we as cognizers come to treat properties that covary
coherently as central in importance, and to represent
different objects that share these central properties as
similar to one another — even though they might differ
in other respects.

We have already seen how coherent covariation dri-
ves progressive differentiation. Here we discuss its role in
determining the relative importance of different features,
by contrasting two features of the canary: ‘HAS wings’
and ‘IS yellow’. Even though the network receives direct
training on each of these properties equally often, the
network learns that the canary has wings far more
quickly than it learns that it is yellow. This is not due to

THEORY THEORY 

A class of theories that take as
their main premise the
proposition that human
cognition is underpinned by
naive domain theories. Under
this view, naive theories help the
learner to determine which
concepts are good ones, and
which properties are important
for determining conceptual
relations among objects; and
conceptual development is
likened to the process of theory
change in science.

DOMAIN THEORY

Knowledge of the causal
explanations that are
appropriate to a particular kind
of object. For example, gravity
and momentum are relevant for
inanimate objects, whereas
beliefs and desires are relevant
for human beings (and might be
extended to other animals by
young children).

CENTRAL PROPERTIES

Properties of an object that are
understood to be most
important for determining what
kind of thing it is.
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properties do not covary reliably with the structure of
the taxonomic hierarchy.

Third, we consider the reorganization of conceptual
knowledge in development. Carey84 found that young
children tend to treat plants and animals very differ-
ently, essentially failing to appreciate their conceptual
unity as living things. By contrast, older children come
to understand what it means to be a living thing, and
appreciate the common structure between the domains
of plants and animals (both require nutrition, both have
self-sustaining processes that can be terminated but not
re-started, both involve reproduction of offspring from
products that pass on the traits of the parent). Infor-
mation about these sorts of properties might not be
available as frequently as other information that tends
to support a distinction between plants and animals,
but eventually experience with these commonalities
accumulates. Carey suggests that the overarching con-
cept of ‘living thing’ coalesces as a result of learning
about these commonalities, several of which arise in
seemingly distinct contexts, but which she nevertheless
sees as related to the concept of being alive as we intu-
itively understand it. A key element of Carey’s argument
is that the reorganization that occurs represents the
replacement of one ‘theory’ in the child’s mind with
another, similar to the replacement of one theory 
with another in the progress of science92.

A similar process of coalescence can occur in our
model, leading to a reorganization of its internal repre-
sentations (FIG. 7). Here we consider the coalescence of
the concepts of plant and animal, and within these of
the different basic types (trees, flowers, birds and fish).
This kind of coalescence might follow an earlier stage in
which object repesentations are based on their more
superficial appearance properties. Such a restructuring
can occur if the model is more frequently exposed to
superficial appearance properties of concepts (the ‘IS’
properties) than to other properties (the ‘CAN’, ‘HAS’
and ‘ISA’ properties) that covary more coherently. In the
simulation, the network masters the more frequently
available appearance information first (FIG. 7a), and ini-
tially establishes an organization based on this informa-
tion. Gradually, as it acquires information about the
other three types of relation, the coherent covariation of
HAS, CAN and ISA information comes to dominate
learning, and the internal representations reorganize to
capture the underlying taxonomic organization rather
than the appearance information (FIG. 7b).

The role of causal information
Finally, we consider more direct evidence that causal
information has a role in semantic cognition. Children
and adults place more weight on the CAUSAL PROPERTIES of
certain objects than on their appearance, or on other
properties that are seen as effects of underlying causal
properties93–95. If a coloured block seems to cause
another object to flash and emit noise, children will
group it with other blocks that exert similar effects,
ignoring shape or colour differences. Furthermore,
semantic judgements are influenced by information
about the causal mechanisms that give rise to an object’s

are weak, it is interesting that the 3–4-year-old children
used show an effect at all, and stronger effects are seen in
older individuals.

The PDP model also tends to generalize properties
differently depending on the type of concept and prop-
erty78. Differential generalization by type of concept
arises in our model when there is domain-specific
covariation of properties in experience. Shape tends to
covary more than colour with type of toy (cars can be
any colour but must have four wheels) whereas colour
tends to covary more than shape with type of food. The
model’s learning algorithm is sensitive to this domain-
specific covariation. To illustrate this, we carried out
simulations in which two properties (IS large and IS
small) vary coherently with those that distinguish trees
from flowers, but vary randomly with respect to those
that distinguish fish from birds. As a result, the network
learns more readily about the relative sizes of plants
than animals. It also assigns different internal represen-
tations to plants that differ only in size, but similar inter-
nal representations to animals that differ only in size. In
other words, size becomes ‘important’ for representing
plants, but not animals. This outcome results from the
same forces of coherent covariation that underlie the
network’s sensitivity to having wings versus being yel-
low; the simulation shows that the network is sensitive
to differences in coherent covariation of the same feature
in different domains. Importantly, no innate domain-
specific knowledge is required for this learning — only
exposure to training experiences exemplifying the rele-
vant domain-specific covariation. The model also
shows differential generalization of different properties
of the same concept: newly acquired ‘HAS’ properties
tend to generalize in accordance with the taxonomic
hierarchy, whereas new ‘IS’ properties generalize much
more idiosyncratically, reflecting the fact that such

CAUSAL PROPERTIES

The properties of objects that
give rise to predictable outcomes
in event sequences in which the
object is observed to participate.
For example, when pressing a
button on the remote control
consistently precedes the TV
turning on, the remote can be
said to have the causal property
of turning on the TV.
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Figure 7 | Hierarchical clustering of the 21 concepts used in the simulation capturing the
coalescence of underlying conceptual structure after initial acquisition of superficial,
appearance-based structure. a | The similarity structure acquired early in learning, when the
superficial appearance (‘IS’) properties, available on every learning trial, have been learned. The
groupings are strongly affected by these properties (‘IS yellow’ applies to ‘sunfish’, ‘daisy’ and
‘canary’; ‘IS red’ applies to ‘robin’, ‘rose’ and ‘salmon’). b | The similarity structure acquired later
in learning, when the network has become sensitive to the coherent covariation of properties that
occur less frequently and in different relational contexts. The concepts of plant and animal, and
the subordinate concepts of trees, flowers, birds, fish and land animals, have coalesced at this
point. (Based on simulations reported in REF. 78.)
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properties such as shape or colour, would arise for such
objects because their causal powers covary coherently
with other properties (such as having buttons to press,
requiring batteries inside, depending on a clear line of
sight). Similarly, we suggest, our understanding of what it
means to be in a costume arises from experiences of one-
self and others in costume, in which we learn that the
wearer can still feel, sound and behave like himself while
wearing the costume and will return to his former appear-
ance upon removing it. On the basis of experience with
costumes, children and networks could come to know
that the wearer is unchanged by the costume, in spite 
of current appearances, and so they would know that a
raccoon in skunk’s clothing is still a raccoon underneath.

In summary, work within the theory-theory frame-
work has increased appreciation for the subtlety and
complexity of human semantic cognition. For some this
work has suggested that something more structured than
a PDP network — with built-in symbol-manipulation
abilities101 or built-in domain specific constraints85,102 —
must be required to capture the power of human
semantic cognition. But simulation models have shown
that the very simple Rumelhart network can capture
many of the relevant findings. Other models, in which
object representations are learned from event sequences,
indicate how sensitivity to causal information might 
be acquired through experience. Further research is 
certainly needed to establish the viability of the PDP
approach to address these issues and to determine just
how much built-in structure might be required, but we
are optimistic that the principles of learning at work in
the models will allow them to address the full range of
relevant findings.

observed properties. In one study96, children were told
about a raccoon that has come to look like a skunk. In
one case, the raccoon looked like a skunk because it was
wearing a costume; in another it was given an injection
right after birth, and when it grew up it looked like a
skunk. Other stories were also used.Very young children
thought that the animal had become a skunk in all
cases, whereas older children tended to accept some
transformations (such as the injection) as changing the
raccoon into a skunk but did not accept others (such as
the costume). Thus, for older children, whether the rac-
coon has become a skunk depended on the causal
mechanism that gave rise to the object’s appearance.

Under the theory theory, naive domain theories about
causal mechanisms produce the effects seen in these stud-
ies. We suggest that the principles of PDP can explain
how we learn to be sensitive to the causal properties of
objects.Although PDP models have not been applied to
modelling these studies, we have suggested78 that this
would be possible using recurrent networks that learn
representations of items in event sequences55,97–99 or verbal
descriptions of such sequences100. In these networks,
events are broken into a series of steps, and the task is to
learn to predict each step from information extracted
from previous steps. In such networks the representations
assigned to items are affected by the consequences of the
item’s occurrence and by the influences of other items.
Knowledge about the causal properties of an object such
as a remote control device could be acquired in such net-
works through learning from events in which pressing 
a button on the device is followed by the TV switching 
on or off. The tendency to generalize on the basis of
shared causal powers, rather than superficial appearance
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