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Connectionist models, also known as Parallel Distributed Processing (PDP) models, are a 
class of computational models often used to model aspects of human perception, cognition, 
and behaviour, the learning processes underlying such behaviour, and the storage and 
retrieval of information from memory. The approach embodies a particular perspective in 
cognitive science, one that is based on the idea that our understanding of behaviour and of 
mental states should be informed and constrained by our knowledge of the neural processes 
that underpin cognition. While neural network modelling has a history dating back to the 
1950s, it was only at the beginning of the 1980s that the approach gained widespread 
recognition, with the publication of two books edited by D.E. Rumelhart & J.L. McClelland 
(McClelland & Rumelhart, 1986; Rumelhart & McClelland, 1986), in which the basic 
principles of the approach were laid out, and its application to a number of psychological 
topics were developed. Connectionist models of cognitive processes have now been proposed 
in many different domains, ranging from different aspects of language processing to 
cognitive control, from perception to memory. Whereas the specific architecture of such 
models often differs substantially from one application to another, all models share a number 
of central assumptions that collectively characterize the “connectionist” approach in 
cognitive science. One of the central features of the approach is the emphasis it has placed on 
mechanisms of change. In contrast to traditional computational modelling methods in 
cognitive science, connectionism takes it that understanding the mechanisms involved in 
some cognitive process should be informed by the manner in which the system changed over 
time as it developed and learned. Understanding such mechanisms constitutes a significant 
part of current research in the domain (Elman et al., 1996; Mareschal, Johnson et al., 2007; 
Mareschal, Sirois, Westermann, & Johnson, 2007; Rogers & McClelland, 2004). 
 
Connectionist models take inspiration from the manner in which information processing 
occurs in the brain. Processing involves the propagation of activation among simple units 
(artificial neurons) organized in networks, that is, linked to each other through weighted 
connections representing synapses or groups thereof. Each unit then transmits its activation 
level to other units in the network by means of its connections to those units. The activation 
function, that is, the function that describes how each unit computes its activation based on its 
inputs, may be a simple linear function, but is more typically non-linear (for instance, a 
sigmoid function).  
 
Representation, processing, and learning in connectionist networks 
 
Representation can take two very different forms in connectionist networks, neither of 
which corresponds to “classical” propositional representations.  One form of representation is 
the pattern of activation over the units in the network. Such patterns of activation are 
generally thought to constitute the representation one has of something while perceiving, 



processing or remembering it.  Units in some connectionist networks are specifically 
designated in advance by the modeller to represent specific items such as identifiable visual 
features, letters, words, objects, etc. Networks that employ such units for all cognizable 
entities of interest are called localist networks – the representation of an item is in a sense 
localized to the single unit that stands for it. Most networks, however, rely on distributed 
representation – the idea that an item, such as a word, object, or memory, is instantiated by a 
pattern of activation over a large ensemble of units. In such systems, each representation 
depends on the activation of many units, and each unit is involved in representing many 
different objects. Distributed representations in early models were assigned by the modeller, 
using for instance a set of primitive features as the components of the representation. In later 
work using multilayer networks with hidden units, the learning methods allow the patterns to 
be determined from an initial random starting place through a learning process.  
 
The other form of representation in connectionist networks consists of the values of the 
connection weights linking the processing units. The connection weights are generally 
viewed as the repository of prior experience that survives the patterns of activation produced 
during the experience itself. Such connection weights may be positive or negative real 
numbers. In some models they are set by hand by the modeller but in most cases they are set 
through a learning process, as discussed below. 
 
Importantly for the relevance of connectionist models to the study of consciousness, neither 
the patterns of activation in a network nor the connection weights linking them are subject to 
direct inspection or manipulation by some other part of a connectionist system. Instead, 
activations in one part of a system simply directly influence the activation of connected units 
elsewhere. Thus, while it is possible to build connectionist networks that have weights that 
allow, for example, patterns of activation on two sets of units to be compared, with another 
set of units then reporting the degree of sameness or difference, this is not necessary for 
processing to occur and indeed most connectionist networks do not embody such 
mechanisms. Connection weights are generally assumed to be completely inaccessible to any 
form of inspection. They can and do, however, encode associative relationships between 
arbitrary patterns (such as the association between a name and a face) and structured or 
lawful mappings between patterns (such as the relationship between the present tense form of 
a word and its past tense, or the features shared by an ensemble of patterns in an *implicit 
learning experiment).  
 
Another important feature of connectionist systems is the fact that the patterns of activation 
that are formed during processing are not subsequently stored in the system as memories.  
Instead, they are thought of as leaving a trace in the network through the adjustments they 
produce in the connection weights. These adjustments can then allow the pattern (or 
something like it) to be reconstructed at a later time, as a form of memory.  Thus, long-term 
knowledge in connectionist networks is always encoded by the connection weights, whereas 
the temporary results of processing occur through activation patterns over units.  
 
Processing in connectionist networks occurs through the propagation of activation signals 
among the processing units, via the weighted connections. The process is generally regarded 
as a continuous-time process subject to random variability. Thus, it is widely assumed that 
the state of activations of units evolves continuously over time, and is not completely 



deterministic so that the same input can give rise to different real-time trajectories. While in 
reality much of our experience consists of a fairly continuous flow e.g. of visual or auditory 
experience, many connectionist networks settle over time after the presentation of an input 
into what is called an attractor state (see *attractor networks) – a stable pattern of activity 
that tends to remain in place until some sort of reset occurs so that the next input can be 
presented. Such attractor states may be seen, perhaps, as representing the sequence of states a 
perceiver might enter into while making fixations on different points in a static scene, or 
experiencing a set of discrete items presented one after another in a sequence. In this respect, 
Rumelhart et al. (1986), reflecting on the implications of a connectionist approach to 
cognition and consciousness, noted for instance that “consciousness consists of a sequence of 
interpretations—each represented by a stable state of the system” (p. 39). This process is 
often further simplified as a simple, one-pass, feed-forward process that allows the pattern of 
activation over a set of input units, together perhaps with an internal pattern left over from the 
last round of settling, to influence the next state of the network. Networks of this type – 
known as Simple Recurrent Networks – have many of the essential properties of PDP 
models, and so have been a subject of fairly intensive study, particularly in the domains of 
language processing (e.g., Elman, 1990) and implicit learning (e.g., Cleeremans & 
McClelland, 1991) 
 
Learning in connectionist models is the process of connection weight adjustment. In contrast 
to traditional models in cognitive science, most connectionist models learn through 
experience, that is, through repeated exposure to stimuli from the environment. Two broad 
classes of learning mechanisms can be distinguished based on whether adjustments to the 
connection weights are dependent on an error signal or not. In the former case, learning is 
said to be supervised for it is driven by the difference between the current response of the 
network and a target response specified by the environment. Such supervised learning (e.g., 
back-propagation) instantiates the computational objective of mastering specific input-output 
mappings (i.e., achieving specific goals) in the context of performing specific tasks. By 
contrast, unsupervised learning (e.g., Hebbian learning) instantiates the different 
computational objective of capturing the correlational structure of the stimulus environment, 
so enabling the cognitive system to develop useful, informative models of the world. 
Unsupervised learning procedures do not depend on the availability of a “teacher” signal, but 
instead determine adjustments to the connection weights based on the simultaneous activation 
of connected units, so instantiating Hebb’s (1949) notion that “neurons that fire together wire 
together” — the same principle that is also observed in the neural process of long-term 
potentiation. 
 
In simple models, the environment specifies the states of all units in the system, in which 
connection weights can be seen as establishing associative links between these units. In 
localist networks, individual connections mediate meaningful associative relationships. In 
distributed models, however, the situation is more complex. In such systems, if one wishes to 
associate, let us say, the sight of a rose with the smell of a rose, and if the sight and smell are 
each represented as a pattern of activation over a set of units, then the connection weight 
changes needed to store the association may in many cases impact all of the connections. It 
remains surprising to many people that many different associations can be stored in the same 
set of connection weights, especially if, as is often done, one or more layers of intermediate 



units are interposed between input and output. The consequence of this is to then introduce 
intermediate representations that can re-represent input patterns in new ways. 
 
Connection adjustment schemes in connectionist networks are used both for processes 
usually thought of as ‘learning’ and also for processes usually thought of as ‘memory’.  In the 
former case, connectionist models generally rely on very gradual connection adjustment 
procedures to give rise to a set of connections that implement a learned skill such as reading 
(mapping patterns representing the sounds of words to other patterns representing their sound 
and meaning). One such learned skill is the ability to anticipate the successive elements of a 
sequence from preceding elements, as a result of prior experience with many such sequences. 
 
In the case of memory for a particular episode or event, the event is by definition experienced 
only once. To store it effectively in memory it is generally assumed that relatively large 
changes to connection weights must be made at or very near the time of the actual 
experience. In many models, the elements of the experience are thought of as forming a 
widely distributed pattern of activation (perhaps spanning many brain areas) representing all 
different aspects of the experience. An architecture that may involve many layers of 
intermediate units with very easily modifiable connections in its deepest layers then 
essentially allows all elements of the pattern to become inter-associated with all other 
elements. As a result, later presentation of a unique subset of the pattern can then allow the 
rest of the pattern to be reinstated over the units of the network. 
 
Connectionism and consciousness 
 
A starting place for consideration of the relevance of connectionist models and our concept of 
consciousness lies in the distinction, made above, between patterns of activation and the 
knowledge stored in connections. It is likely that the patterns of activation over some brain 
area are associated with states of conscious experience.  Thus, one may experience a friendly 
beagle through the pattern of white and brown blotches of its fur, the yipping sounds it 
makes, the excited frisking about that it does when it meets you, and this may be crucially 
dependent upon active patterns of activation in a relevant ensemble of brain areas.  One may 
imagine or remember an experience with the beagle by activating (pale, incomplete, and 
likely distorted) versions of these patterns over the same ensemble of brain areas when the 
beagle is not physically present. Within the connectionist framework it is often imagined that 
not all aspects of these patterns are likely to be consciously experienced; those that are 
especially emphasized by control processes and persist in a relatively stable form as attractor 
states may, however, be more likely to be consciously experienced, both during the initial 
event itself, and during a subsequent episode of imagination or memory. Stability of 
representation has been proposed as a *computational correlate of consciousness by Mathis 
and Mozer (1995, see also *attractor networks) and also by philosophers O’Brien & Opie 
(O'Brien & Opie, 1999) in their “Vehicle theory of phenomenal experience”.  
 
An idea related to the above is the proposal by Kirsh (1991, see also this volume) and Koch 
(2004) that the distinction between implicit and explicit processing is best captured by the 
extent to which additional computations are required to retrieve content. Thus, an activation 
pattern that directly encodes some state of affairs would, in this light, constitute a more 
explicit form of representation than a pattern of connection weights, for instance, because 



more computations are required in the latter, but not in the former case, to retrieve the 
represented content.  
 
Thus, the fact that connectionist models rely on knowledge stored in connections is important 
for the study of consciousness since it makes it clear how processing can be guided by 
learned knowledge without that knowledge being accessible to inspection. A central feature 
of explicit representations is that one is, at least potentially, conscious of having them. 
However, the knowledge acquired by a trained connectionist network is stored in the form of 
connection weights between processing units. The information contained in the pattern of 
connectivity that characterizes a trained network can not be accessed directly by the network 
itself. Instead, this knowledge can only manifest itself by the influence it exerts on the 
activation level of the units of the network. In this sense, such weights are not 
representational: They do not constitute objects of representation in and of themselves.  
Indeed, Clark and Karmiloff-Smith (1993) have pointed out that in connectionist networks, 
“knowledge of rules is always emergent. [These models] do not depend on symbolic 
expressions that stand for the elements of a rule. Instead, they exploit a multitude of 
subsymbolic representations whose complex interaction produces behaviour which, in central 
cases, fits the rule” (p. 504). Clark and Karmiloff-Smith continue by noting that such 
networks have no “… self-generated means of analyzing their own activity so as to form 
symbolic representations of their own processing. Their knowledge of rules always remains 
implicit unless an external theorist intervenes” (p. 504). 
 
Knowledge is thus always implicit in what Clark and Karmiloff-Smith (1993) dubbed “first-
order connectionist networks”. In contrast, knowledge in classical, symbolic systems always 
seems to be at least potentially explicit, to the extent that it is stored in a format (symbolic 
propositions) that makes it impossible for it to influence behaviour (i.e., to have causal 
powers) without being accessed or manipulated by an agent (i.e., the processor). In other 
words, information processing in classical systems always appears to entail access to stored 
representations in a way that is strikingly different from what happens in connectionist 
networks.  
 
Finally, an important aspect of connectionist modelling is the use of some parts of a complex 
connectionist network to control the states of activation in other parts of the network.  In this 
respect, a useful distinction was recently offered by O’Reilly & Munakata (2000) — the 
distinction between weight-based and activation-based processing. According to O’Reilly & 
Munakata, “Activation-based processing is based on the activation, maintenance, and 
updating of active representations to influence processing, whereas weight-based processing 
is based on the adaptation of weight values to alter input/output mappings” (p. 380). The 
main advantage of activation-based processing is that it is faster and more flexible than 
weight-based processing. Speed and flexibility are both salient characteristics of high-level 
cognition. O’Reilly & Munakata further speculate that activation-based processing is one of 
the central characteristics of the frontal cortex, and suggest that this region of the brain has 
evolved specifically to serve a number of important functions related to controlled 
processing, such as working memory, inhibition, executive control, and monitoring or 
evaluation of ongoing behaviour. To serve these functions, processing in the frontal cortex is 
characterized by mechanisms of active maintenance through which representations can 
remain strongly activated for long periods of time so as it make it possible for these 



representations to bias processing elsewhere in the brain. This attentional modulation of 
activation may have important implications for what aspects of a visual scene become 
available for overt responding or storage in memory, and indeed, Dehaene et al. (2006) have 
recently proposed to distinguish between unconscious, preconscious, and conscious 
processing based precisely on interactions between top-down and bottom-up processing in 
the brain. Note that such interactions presuppose the existence of recurrent connections— 
another proposed correlate of consciousness (e.g., Lamme & Roelfsema, 2000). Likewise, 
Maia and Cleeremans (Maia & Cleeremans, 2005) have proposed that many connectionist 
networks can be thought as implementing a process of global constraint satisfaction whereby 
biased competition between neural coalitions result in the network settling onto the most 
likely interpretation of the current input. Importantly, this suggests a strong link between 
attention, working memory, cognitive control, and availability to conscious experience, for 
the mechanisms underlying each of these different aspects of information processing in the 
brain can be thought of as depending on the operation of the same computational principles. 
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