
Transforming task representations to perform
novel tasks
Andrew K. Lampinena,1 and James L. McClellanda

aDepartment of Psychology, Stanford University, Stanford CA 94305

Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved November 6, 2020 (received for review May 11, 2020)

An important aspect of intelligence is the ability to adapt to a
novel task without any direct experience (zero shot), based on its
relationship to previous tasks. Humans can exhibit this cognitive
flexibility. By contrast, models that achieve superhuman perfor-
mance in specific tasks often fail to adapt to even slight task
alterations. To address this, we propose a general computational
framework for adapting to novel tasks based on their relation-
ship to prior tasks. We begin by learning vector representations of
tasks. To adapt to new tasks, we propose metamappings, higher-
order tasks that transform basic task representations. We demon-
strate the effectiveness of this framework across a wide variety
of tasks and computational paradigms, ranging from regression
to image classification and reinforcement learning. We compare
to both human adaptability and language-based approaches to
zero-shot learning. Across these domains, metamapping is suc-
cessful, often achieving 80 to 90% performance, without any
data, on a novel task, even when the new task directly con-
tradicts prior experience. We further show that metamapping
can not only generalize to new tasks via learned relationships,
but can also generalize using novel relationships unseen dur-
ing training. Finally, using metamapping as a starting point can
dramatically accelerate later learning on a new task and reduce
learning time and cumulative error substantially. Our results pro-
vide insight into a possible computational basis of intelligent
adaptability and offer a possible framework for modeling cog-
nitive flexibility and building more flexible artificial intelligence
systems.

cognitive science | artificial intelligence | transfer | zero-shot

Adaptability is a key feature of biological intelligence—
adaptation is necessary for a system to efficiently handle

all of the vagaries of its environment (1). An advantage of neu-
ral networks over ordinary computer programs is that they can
adapt by learning from training examples. Yet this is only a lim-
ited form of adaptability. An intelligent system should be able to
transform its behavior on a task in accordance with a change in
goals, and humans often exhibit this form of adaptability (2). For
example, if we are told to try to lose at poker, we can perform
quite well on our first try, even if we have always tried to win
previously. If we are shown an object and told to find the same
object in a new color or texture, we can do so. By contrast, this
type of first-try adaptation is quite difficult for standard deep-
learning models (2–4). How could models reuse their knowledge
more flexibly?

We suggest that this ability to adapt can arise from exploit-
ing the relationship between the adapted version of the task and
the original. In this work, we propose a computational model
of adaptation based on task relationships and demonstrate its
success across a variety of domains, ranging from regression
to classification to reinforcement learning. Our approach could
provide insights into the flexibility of human cognition and allow
for more flexible artificial intelligence systems.

Our model incorporates several key cognitive insights. First,
to perform different tasks, it is useful for the system to con-
strain its behavior by an internal task representation (5). Prior
work in machine learning and cognitive science has constructed

task representations from a natural language instruction (6–8)
or by learning to infer task representations from examples, a
procedure called metalearning (9, 10). We extend these ideas,
proposing that the model can adapt to a novel task by transform-
ing its representation for a prior task into a representation for
the new task, thereby exploiting the task relationship to perform
the new task.

We refer to these transformations of task representations as
metamappings. That is, metamappings are higher-order func-
tions over tasks—functions that take a task as input and trans-
form it to produce an adapted version of that task. Metamap-
pings allow the model to adapt to a new task zero shot (i.e.,
without requiring any data from that new task), based on the
relationship between the new task and prior tasks. We propose
that metamapping is a powerful way to promote adaptation,
because the task relationships it exploits are the fundamental
conceptual structure on which systematic generalization can be
predicated.

As a concrete example, our model is able to switch to losing
at poker on its first try. To do so, it constructs a representation
of poker from experience with trying to win the game. It then
infers a “try-to-lose” metamapping, either from language or from
examples of winning and losing at other games, such as blackjack.
It then applies this metamapping to transform its representation
of poker, thereby yielding a representation for losing at poker.
This adapted task representation can then be used to perform
the task of trying to lose at poker zero shot—that is, without any
prior experience of losing at poker.

Our main contributions are 1) to propose metamapping as a
computational framework for zero-shot adaptation to novel tasks
and 2) to provide a parsimonious architecture for metamapping.

Significance

An intelligent system should be able to adapt to a novel
task without any data and achieve at least moderate success.
Humans can often do so, while models often require immense
datasets to reach human-level performance. We propose a
general computational framework by which models can adapt
to new tasks based only on their relationship to old tasks.
Our approach is based on transforming learned task repre-
sentations. Our approach allows models to perform well on
novel tasks, even using novel relationships not encountered
during training. This adaptation can substantially accelerate
later learning. Our work could contribute to understanding
the computational basis of intelligence, to cognitive modeling,
and to building more flexible forms of artificial intelligence.

Author contributions: A.K.L. and J.L.M. designed research; A.K.L. performed research;
A.K.L. analyzed data; and A.K.L. and J.L.M. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: andrewlampinen@gmail.com.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2008852117/-/DCSupplemental.y

First published December 10, 2020.

32970–32981 | PNAS | December 29, 2020 | vol. 117 | no. 52 www.pnas.org/cgi/doi/10.1073/pnas.2008852117

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

http://orcid.org/0000-0002-6988-8437
http://orcid.org/0000-0002-8217-405X
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:andrewlampinen@gmail.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2008852117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2008852117&domain=pdf

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

We demonstrate the success of metamapping across a variety
of task domains, ranging from visual classification to reinforce-
ment learning, and show that the model can even adapt using
new metamappings not encountered during training. We further
show that adapting by metamapping provides a useful starting
point for later learning. This work proposes transforming a task
representation to adapt zero shot. We consider related work and
implications for cognitive science and artificial intelligence in
Discussion.

Task Transformation via Metamappings
Basic Tasks Are Input–Output Mappings. We take as a starting
point the construal of basic tasks as mappings (functions)
from inputs to outputs. For example, poker can be seen as
a mapping from hands to bets (Fig. 1A), chess as a map-
ping of board positions to moves, and object recognition as
a mapping from images to labels. This perspective is com-
mon in machine-learning approaches, which generally try to
infer a task mapping from many input/output examples or
metalearn how to infer it from fewer examples. We use the
phrase “basic task” to refer to any elementary task a system
performs (e.g., any card game), including both standard tasks
(“poker”) and variants that can be produced by a transformation
(“lose at poker”).

Tasks Can Be Transformed via Metamappings. We propose
metamappings as a computational approach to the problem
of transforming a basic task mapping. A metamapping is a
higher-order task, which takes a task representation as input
and outputs a representation of the transformed version of
the task. For example, we might have a “lose” metamapping

(Fig. 1D) that would transform the representation of poker into
a representation of losing at poker.

How can a metamapping be performed? We exploit an anal-
ogy between metamappings and basic task mappings—both are
simply functions from inputs to outputs. Thus, to perform a
metamapping we use approaches analogous to those we use for
basic tasks. We infer a metamapping from examples (e.g., win-
ning and losing at a set of example games) or natural language
(e.g., “try to switch to losing”). We can then apply this metamap-
ping to other basic tasks, to infer losing variations of those tasks.
Importantly, the system can generalize to new metamappings—
task transformations never seen in training—as well as to new
basic tasks.

Model Architecture and Training Methods
We propose a class of architectures that can both perform basic
tasks and adapt to task alterations via metamappings. In this sec-
tion, we describe the general features of our architectures and
their training. See SI Appendix, section A for details, including a
formal model description, all hyperparameters, etc.

Constructing a Task Representation (Fig. 1B). When humans per-
form a task, we need to know what the task is. In our model,
we specify the task using a task representation, which we derive
from language, from supporting examples of appropriate behav-
ior, or from metamapping (see Transforming Task Represen-
tations via Metamappings). To construct a task representation
from language, we process the language through a deep recur-
rent network (long-short term memory), as in other work (7,
8, 11). To construct a task representation from examples, as in
other work (12), we process each example (i.e., an input and its

A B C

D E F

Fig. 1. Performing and transforming tasks with a metamapping architecture. (A) Basic tasks are mappings from inputs to outputs, which can be generalized
from examples. (D) Metamappings are mappings from tasks to other tasks, which can be generalized from examples. (B and E) The architecture performs
basic tasks and metamappings from a task representation, which can be constructed from a language cue or examples. (C) The task representation is used to
alter the parameters of a task network (Inset) which executes the appropriate task mapping. (F) The metamapping representation is used to parameterize
the task network to transform a task representation. The transformed representation can then be used to perform the new task zero shot (Inset). Our
architecture exploits a deep analogy between basic tasks and metamappings—both can be seen as mappings of inputs to outputs. This analogy is reflected
in the parallels between A–C and D–F.

Lampinen and McClelland PNAS | December 29, 2020 | vol. 117 | no. 52 | 32971

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental

corresponding target) to construct an appropriate representation
of the example and then aggregate across those representa-
tions by taking an elementwise maximum, to combine examples
in a nonlinear but order-invariant way. This aggregated repre-
sentation then receives further processing to produce the task
representation.

Performing a Task from Its Representation (Fig. 1C). Once we have
a task representation, we use it to perform the task. We allow a
large part of the input processing (perception) and output decod-
ing (action) to be shared across the tasks within each domain
we consider, so that the task-specific computations can be rela-
tively simple and abstract.∗ For example, if a human is playing
card games, the cards will be identical whether the game is poker
or bridge, and the task-specific computations will be performed
over abstract features such as suit and rank relationships. We
thus allow the system to learn a general basis of perceptual
features over all tasks within a domain.

The system then uses these features in a task-specific way
to perform task-appropriate behavior. Specifically, the model
uses a HyperNetwork (13, 14) which takes as input the repre-
sentation of a task. This network adapts the values of learned
“default” connection weights, to make the network task sensitive
(Fig. 1C, Inset). The adapted network transforms the percep-
tual features into task-appropriate output features, which can
then be decoded to outputs via a shared output decoding net-
work. The whole model (including the construction of the task
representations) can be trained end to end, just as a stan-
dard metalearning system would be. Our approach outperforms
an alternative architecture, in which the task representation is
provided as another input to a feedforward task network (SI
Appendix, Fig. S10.)

Transforming Task Representations via Metamappings (Fig. 1 E and
F). We defined a metamapping to be a higher-order task, which
takes as input a task representation and outputs a transformed
task representation. Thus, we need a way of transforming the
task representations constructed in Constructing a Task Repre-
sentation. To do so, we exploit the functional analogy between
basic tasks and metamappings. We infer a representation for a
metamapping from examples of that metamapping or from a lan-
guage description, just like we infer a basic task representation
from examples or language. We use this metamapping represen-
tation to adapt the parameters of the task network to transform
other task representations. This approach is analogous to how we
used a representation of a basic task to adapt the task network to
perform that task. (See SI Appendix, section G.1 for proof that a
simpler vector-analogy metamapping approach is inadequate.)

Homoiconicity. Our architectures exploit the analogy between
basic tasks and metamappings by using exactly the same net-
works (with exactly the same parameters) to infer and perform
a metamapping as for inferring and performing a basic task. To
allow this, the system embeds individual data points, task repre-
sentations, and metamapping representations into a shared rep-
resentational space. This means that all task- or metamapping-
specific computations can be seen as operations on objects in
this shared space and can be inferred using the same processes
regardless of object type. (Note that sharing of the space is only
enforced implicitly in that the same networks are processing dif-
ferent entities.) This approach is in keeping with the idea that
humans have a single mind that implements computations of
all types. Our approach is also inspired by the computational

*Of course, with different input types, this type of processing will be different. While the
core model components are similar across experiments, the input and output systems
can therefore differ.

notion of homoiconicity. In a homoiconic programming lan-
guage programs can be manipulated just as data can. Our task
representations are like programs that perform tasks, and our
implementation is thus homoiconic in the sense that it operates
on data and tasks in the same way.

Homoiconicity is parsimonious, in that it does not require
adding new networks for each new type of computation. Fur-
thermore, in many cases, functions have some common struc-
ture with the entities they act over. For example, both num-
bers and functions can have inverses. For another example,
the set of linear maps over a vector space is itself a vec-
tor space. If the different levels of abstraction share structural
features, sharing computation should improve generalization.
Homoiconicity could also support the ability to build abstrac-
tions recursively on top of prior abstractions, as humans do in
mathematical cognition (15–17). Although homoiconicity is not
a necessary part of metamapping, we suggest that homoiconic
approaches will be beneficial and verify this empirically,
see Polynomials section).

Classifying Task Representations. In several domains, we also
trained the model to classify task representations by relevant
attributes (for example, whether a game was a variation of
poker), again using the same architectural components. See SI
Appendix, section A.3 for details. This may improve generaliza-
tion by helping the model constrain its representation of the task
space, but is not essential (SI Appendix, Fig. S11).

Training the Model. We train the system in epochs, during which
it receives one training step on each trained basic task and one
training step on each trained metamapping, interleaved in a ran-
dom order. To train the system to perform the basic tasks, we
compute a task-appropriate loss at the output of the output
decoding network and then minimize this loss with respect to the
parameters in all networks. This includes the networks used to
construct the task representation and even the representations
of the examples or language input. That is, we train the system
end to end to perform the basic tasks.

When constructing a task representation from examples, we
do not allow the example network to see every example in the
training batch. This forces the model to generalize in a stan-
dard metalearning fashion. Specifically, we separate the batch
of examples into a support set which is provided to the exam-
ple network and a probe set which is only passed through the
task network to compute an output, from which a loss can be
computed against a task target. For example, in a card game the
system will have to construct a task representation from the sup-
port hands that will be useful for playing the probe hands. This
approach encourages the task representations to capture the task
structure, rather than just memorizing examples. We randomly
split the training examples into support and probe sets on each
step, so that over the course of training every training example
would fill both roles. In this approach, the task representation
is constructed anew at each training step. However, to stabilize
learning in difficult domains, it can be useful to maintain a per-
sistent task representation which updates slowly with each new
set of examples (SI Appendix, section A.3).

Training the system to construct basic task representations
from language is similar, except that a language description (e.g.,
“play poker”) is provided rather than examples. Thus, no support
set is needed, so all examples can be used as probes.

To train the system to perform metamappings from examples,
we start with a training set of example task representation pairs,
where each pair consists of a source task representation and the
corresponding transformed task representation. Again, on each
training step, a subset of these examples is used as a support
set to construct a metamapping representation. The remaining
examples are used as a probe set to train the system to transform

32972 | www.pnas.org/cgi/doi/10.1073/pnas.2008852117 Lampinen and McClelland

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2008852117

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

the source representation for each pair to its corresponding tar-
get. Specifically, we present the source task embedding as input
to the task network and minimize an `2 loss on the difference
between the output embedding the task network produces and
the task representation for the target transformed task. For
example, suppose the system has been trained to play winning
and losing variations of blackjack, hearts, and rummy. We might
use the representations of winning and losing hearts and rummy
as support-set examples to instantiate the metamapping, then
input the task representation for winning blackjack as a probe,
and try to match the output to the task representation for losing
blackjack. Again, we randomly chose which examples were used
as support or probes on each training step. On the next training
step, we might use hearts and blackjack as examples and train the
metamapping to generalize to losing at rummy.

Training the system to perform metamappings from language
is similar, except that again a language description (e.g., “switch
to losing”) is provided rather than examples of the transfor-
mation. Thus, as when using language rather than examples to
perform basic tasks, all pairs can be used as probes.

Evaluating Base-Task and Metamapping Performance. After train-
ing, we can evaluate the model’s base-task performance using
held-out examples unseen during training. To test generaliza-
tion of a metamapping (e.g., try to lose), we can pass in the
representation for a task that has never been used for any train-
ing on this metamapping (either as a support example or as a
probe for generalization), for example, poker. We construct a
metamapping representation using all of the training examples
of the lose metamapping as a support set. We then apply the
lose metamapping to the task representation of poker (i.e., pass
it through the task network parameterized by the lose metamap-
ping representation) to produce a transformed representation.
We then actually perform the losing variation of poker with
this transformed representation. Metamapping performance is
always evaluated by zero-shot performance on held-out tasks
that the system has never performed during training.

In metamapping, generalization is possible at different
levels of abstraction. The paragraph above refers to basic
generalization—applying a metamapping seen during training
to a basic task that metamapping has not been applied to dur-
ing training, to perform a held-out transformed version of that
task. However, if the system has experienced sufficiently many
metamappings during training, we can also test its ability to gen-
eralize to held-out metamappings. For example, if the system has
been trained to switch various pairs of colors in a classification
task (red for blue, green for yellow, etc.), it should be able to
generalize to switching held-out pairs (red for yellow, green for
blue, etc.) from an appropriate cue (examples or instructions).
That is, even if a metamapping has never been encountered
during training, we can construct a representation for it by pro-
viding a support set of transformation examples or a language
instruction that is systematically related to those used for trained
metamappings. We view this as an important part of intelligent
adaptability—the system should be able not only to adapt to tasks

via metamappings that it has directly experienced, but also to
infer and use novel metamappings based on specific instructions
or examples. We demonstrate this ability in the subset of our
experimental domains where we can instantiate sufficiently many
metamappings.

Experiments
Metamapping is an extremely general framework. Because the
assumptions are simply that the basic tasks are mappings from
inputs to outputs and that metamappings transform basic tasks,
the approach can be applied to most paradigms of machine learn-
ing with minor modifications. We demonstrate our results in four
experimental domains. We summarize the contributions of each
domain in Table 1.

Polynomials. As a proof of concept we first apply metamapping
to polynomial regression (Fig. 2). We construct basic tasks that
are polynomial functions (of degree ≤2) in four variables (i.e.,
from R4→R). These polynomials can be inferred from a support
set of (input, output) examples, where the input is a point in R4

and the output is the evaluation of that polynomial at that point.
For details, and to see that the system performs this simple met-
alearning regression problem extremely well, see SI Appendix,
section B.1 and Fig. S4.

These basic tasks/polynomials can be transformed by various
metamappings—we considered squaring a polynomial, permut-
ing its variables, or adding or multiplying by a constant. We
considered 36 metamappings in total, of which we trained the
model to perform 20, and held out the remaining 16 to evaluate
the model’s ability to generalize to held-out metamappings (see
Evaluating Base-Task and Metamapping Performance). The held-
out metamappings included some of the possible permutation,
addition, and multiplication transformations. We used 60 exam-
ple (source polynomial, transformed polynomial) mapping pairs
as a training set for each metamapping and held out another 40
transformed polynomials per metamapping for evaluation. The
source and transformed polynomials for all 60 example pairs
were trained for each trained or held-out metamapping. This
results in a total of 2,260 polynomials trained and 1,440 held out
for evaluation. For the 20 trained metamappings, the 60 trained
(source polynomial, transformed polynomial) pairs were used to
train the metamapping and as the support set for evaluation. For
the 16 held-out metamappings, these pairs were used only as the
support set for evaluation.

In Fig. 3, we show the success of our metamapping approach
in this setting. We plot a normalized performance measure,
100%(1− loss/c), where the loss is the mean squared error,
and c is the loss for a baseline model that always outputs
zero. This measure is 0% for a model which outputs all zeros
and 100% if the system performs perfectly. See SI Appendix,
Table S4 for raw losses. Metamapping achieves good perfor-
mance on the support set examples that are used to instanti-
ate the mapping, with 98.3% performance (bootstrap 95% CI
across runs [97.3, 99.0]) on trained metamappings and 92.1%
[91.3, 93.0] on held-out metamappings. More importantly, on

Table 1. The contributions of our four experimental domains

Domain Held-out MMs Lang. comp. Type Input Output

Polynomials X Regression Vector (R4) Scalar (R)
Cards X Regression Binary features Bet values (R3)
Visual concepts X X Classification 50×50 image Label ({0, 1})
RL X RL 91× 91 image Action Q values (R4)

Our results span various computational paradigms and data types. (Note that “Held-out MMs” refers to
held-out metamappings, and “Lang. comp.” refers to a comparison to language alone; see Language and
Metamapping section.)

Lampinen and McClelland PNAS | December 29, 2020 | vol. 117 | no. 52 | 32973

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental

Fig. 2. The polynomial task domain. A basic polynomial task consists of
regressing a single polynomial; i.e., the inputs are points in R4 and the out-
puts are the value of the polynomial at that point. These basic regression
tasks can be transformed by various metamappings, such as multiplying by
a constant, or permuting their variables.

polynomials never experienced during training, metamapping
achieves 89.0% [89.3, 89.8] zero-shot performance on aver-
age based on a trained metamapping and 85.5% [85.1, 85.9]
performance based on a held-out metamapping. We also show
the performance the model obtains when it is scored on the
new task using the untransformed source task representation
(no adaptation). This baseline yields only 4.3 and 19.3% perfor-
mance, respectively. In summary, metamapping is able to achieve
good performance on a new task without any data, based only on
its relationship to prior tasks. This success is consistent across all
of the metamapping types we evaluated (SI Appendix, Fig. S6).

We show in Fig. 4 that polynomial and metamapping represen-
tations are systematically organized and transform in systematic
ways. In general, the transformed representations are close to
the nominal targets where targets are known. (Note that even
missing the nominal target does not necessarily mean the model
is incorrect; just as we could write 2(x +1) instead of 2x +2, the
model may have different representations for the same function.)
The model is sample efficient at inferring both polynomials and
metamappings (SI Appendix, Figs. S5 and S7).

Finally, our homoiconic approach significantly outperforms
a nonhomoiconic baseline, which differs from the homoiconic
architecture only in that separate example networks and hyper-
networks are used for the basic tasks and metamappings (SI
Appendix, Fig. S9). Sharing these networks improves general-
ization. Why is homoiconicity beneficial? We show that there is
nontrivial overlap between the basic-task and metamapping rep-
resentations (SI Appendix, Figs. S17–S19) and that some of this
overlap reflects structural isomorphisms (SI Appendix, Fig. S20).
While this may not fully explain the benefits of homoiconic-
ity, it suggests that the model may exploit the shared structure
between basic tasks and metamappings. By contrast, there is little
alignment between the representations of numerical polynomial
inputs and task representations, perhaps because there are fewer
constraints encouraging such alignment.

Card Games. We motivated our work in part by observations
about human flexibility, so we next compare our model to human
adaptation in a simple card game. Performing a basic task con-
sists of receiving a hand of two cards and making a bet. The
human (or model) plays against an opponent and wins (or loses)
the bet if the human’s (or model’s) hand beats (loses to) the
opponent’s.

We trained human participants to play one poker-like game
with two-card hands (card rank 1 to 4, suit red or black). We eval-

uated their ability to play that game and then to switch strategy
when told to try to lose. We evaluated on multiple trials with-
out feedback, to get multiple “zero-shot” measurements from
each participant. (Our protocol was approved by the Stanford
University Institutional Review Board Panel on Human Subjects
in Non-Medical Research, and all subjects provided informed
consent. See SI Appendix, section C for details.)

We compare human adaptation to that of a metamapping
model trained on poker and four other card games. The spe-
cific rules vary from game to game. We created eight variations
of each game, by applying any subset of three transformations,
each of which could be learned as a metamapping (SI Appendix,
section B.2). The most dramatic transformation is switching from
trying to win to trying to lose. This variation requires completely
inverting the strategy. We trained the network on 36 of the 40
basic tasks; all losing variations of poker were held out. We
used the learned task representations to train metamappings for
each of the three transformations. Two of the metamappings
were trained using all five games, but the lose metamapping was
trained only on the games other than poker.

After training, the lose metamapping is applied to the task
representation of poker, to transform it into a task representa-
tion of losing at poker. This representation is then used to play
the losing variation of poker. This evaluation exactly matches the
evaluation of the human participants.

Since rewards are observed only for the action taken, we must
alter the representation of basic task examples. Instead of (input,
target) examples we use (state (action, reward)) examples (SI
Appendix, section A.4).

See Fig. 5 for the results. Human subjects are not opti-
mal at the game (mean performance 64%, bootstrap 95% CI
[0.57, 0.70]), but are adapting well, at least in the sense that per-
formance is similar in the losing variation on average (losing
phase mean performance 64%, bootstrap 95% CI [0.55, 0.72]).
However, there is substantial intersubject variability in base task
performance and adaptation. The evaluation hands were sam-
pled in a stratified way in each phase, so this variability in
adaptation is due to randomness either in participants’ behavior
(e.g., because they are probability matching rather than opti-
mizing bets) or in the way that their behavior changes between

Fig. 3. Metamapping can adapt to a new polynomial zero shot, based on its
relationship to prior polynomials. We plot performance (normalized, main
text) on transformed polynomials via metamappings. The system performs
well on support-set target tasks after adaptation. More importantly, it can
perform probe target polynomials that it has never encountered before zero
shot and does so substantially better than if it did not adapt (dotted lines).
It generalizes well both on trained metamappings (purple) and on held-out
metamappings (orange). (Dots show mean and lines show bootstrap 95% CI
across five runs.)

32974 | www.pnas.org/cgi/doi/10.1073/pnas.2008852117 Lampinen and McClelland

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2008852117

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

3.97

−3.55−1.60−1.64z

3.54x0.43+0.34w^2

2.39+3.07y+0.20x^2−2.23y^2

PC 1

P
C

 2

PC 1

P
C

 2

3.97

−3.55−1.60−1.64z

3.54x

1.56+1.46y

−2.18+1.10x

PC 1

P
C

 2

PC 1

P
C

 2

Mapping
Nom.
target
Actual
output

−16

−4

0

4

16

Poly.
constant
coeff.

A B

Fig. 4. Visualizing how metamappings systematically transform the model’s polynomial representations. A and B show two metamappings: (A) multiplying
by 3 and (B) squaring. Each arrow shows how a single polynomial’s representation transforms under the metamapping. The arrows are colored by the
constant term of the polynomial, and the representations are generally organized so that constant polynomials are around the outside, with constant value
increasing clockwise, and the polynomials involving more variables are closer to the center. (A) Multiplying by 3 pushes polynomials away from the center,
with the negative constant polynomials rotating counterclockwise as they become more negative and the positive constant polynomials rotating clockwise as
they become more positive. The nonconstant polynomials extend in similar directions, but their trajectories are more complicated. (B) Squaring polynomials
results in both rotation of the representation space and folding as the negative constants flip to being positive. Insets show that polynomial transformations
align closely to their nominal targets (that is, the model’s representation of the target task). (Plots show the top two principal components (PC 1 and PC 2).
Note that only 60 of the 1,200 polynomials shown were used for training each mapping. See SI Appendix, section F.2 for further representation analysis.)

winning and losing phases. The metamapping model performs
near optimally at the trained task and adapts quite well (mean
85%, 95% CI [79, 90]). In summary, the model performed
differently than the human participants, but both the model and
humans were able to switch from winning to losing zero shot. See
SI Appendix, section F.3 for further analyses.

Visual Concepts. We next applied metamapping to visual con-
cepts, a long-standing cognitive paradigm (18). Past work has
focused almost entirely on learning a concept from examples.
However, adult humans can also understand some novel con-
cepts without any examples at all. If you learn that “blickets”
are red triangles and then are told that “zipfs are cyan blickets,”
you will instantly be able to recognize a zipf without ever having
seen an example. This zero-shot performance can be understood
as applying a “switch-red-to-cyan” metamapping to the blicket
classification function (Fig. 6). To capture this ability, we applied
metamapping.

We constructed stimuli by selecting from eight shapes, eight
colors, and three sizes. We rendered each item at a random posi-
tion and rotation within a 50× 50 pixel image. We defined the
basic concepts (basic tasks) as binary classifications of images
(i.e., functions from images to {0, 1}). We trained the system on
all unidimensional concepts (i.e., one-vs.-all classification of each
shape, color, and size) as basic tasks, so that it could learn all of
the basic attributes. We also constructed composite basic tasks
based on conjunctions, disjunctions, and exclusive disjunctions
(XOR) of these attributes. For example, one composite concept
might be “red and triangle.”

For each concept, we chose balanced datasets of examples
(that is, there was a 50% chance that each stimulus was a
member of the category), during both training and evalua-
tion. We included negative examples that were only one alter-
ation away from being a category member. These careful con-
trasts can encourage neural networks to extract more general
concepts (19).

In this domain we constructed both the basic task and meta-
mapping representations from language rather than examples
(Fig. 1 B and E), to show that metamapping can use this human-
relevant cue. That is, there is no example network; instead a lan-
guage network processes descriptions of tasks and metamappings
to construct task and metamapping representations.

We trained the system on metamappings that switched one
shape for another or one color for another. We sampled six com-
posite concept transformation pairs that supported each map-
ping and another six with held-out targets for evaluation. How-
ever, our task sampling meant that each held-out example had a
closely matched trained example, unlike the other experimental
domains. See SI Appendix, section B.3 for details of sampling.

We varied the number of metamappings trained and evalu-
ated the system on its ability to apply metamappings to trained
source concepts to recognize the held-out target concepts.
(Note that we exclude disjunctions from evaluation, because not

Chance

Optimal

0%

50%

100%

Winning
(trained)

Losing
(zero−shot adaptation)

Experiment phase

N
or

m
al

iz
ed

 e
xp

ec
te

d
ea

rn
in

gs

Meta−
mapping

Human

Fig. 5. Comparing metamapping to human adaptation in simple card
games. This plot shows performance in the two phases of the experiment:
baseline testing on the basic game and after adapting to losing zero shot.
Human participants are behaving suboptimally on average, but are achiev-
ing similar performance after adaptation, although there is substantial
inter- and intrasubject variability. The model performs near optimally at
baseline and by metamapping achieves around 90% performance at the
new game. (We plot performance as expected earnings from the bets made,
as a percentage of the expected earnings of an optimal policy. Thick lines
are averages, and thin lines are five runs of the model and 19 individual
participants.)

Lampinen and McClelland PNAS | December 29, 2020 | vol. 117 | no. 52 | 32975

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental

Fig. 6. The visual concepts domain. Concepts consist of mappings from images to binary labels, e.g., 1 for images that are red and triangle, 0 otherwise, for
example for a red circle or yellow triangle. These concepts can be transformed by metamappings that alter their attributes, such as switching red to cyan.

adapting works fairly well on them.) Because there are many
metamappings available, we were able to hold out one shape
metamapping and one color metamapping for evaluation. The
same basic concepts instantiating a held-out metamapping were
trained as would be for a trained mapping, but the metamapping
itself was not. This reduces possible confounds when evaluating
metamapping generalization.

The model generalizes well (Fig. 7). On trained metamap-
pings, its performance reaches close to ceiling around 12 training
mappings. Furthermore, given enough training metamappings
it is able to generalize well to held-out metamappings from
a language description of that metamapping. This generaliza-
tion improves rapidly as the number of metamappings trained
increases. Although the average held-out metamappings perfor-
mance is not perfect even at 32 training metamappings, it is
perfect in 40% of the runs.

Reinforcement Learning. We next apply our approach to rein-
forcement learning (RL). RL-like computations relate to neural
activity (20, 21), and RL has driven recent artificial intelli-
gence achievements in complex tasks like Go and StarCraft (22,
23). Furthermore, RL requires sophisticated adaptation, since
actions have lasting consequences. Thus, RL is an important
testing domain for metamapping.

Our RL tasks consist of simple two-dimensional games
(Fig. 8), which take place in a 6× 6 room with an additional
impassable barrier of one square on each side. This grid is ren-
dered at a resolution of 7 pixels per square to provide visual input
to the agent. The agent receives egocentric input; i.e., its view is
always centered on its position. This improves generalization (8).
The agent can take four actions, corresponding to moving in the
four cardinal directions. Invalid actions, such as trying to move
onto the edge of the board, do not change the state.

The tasks the agent must perform relate to objects that are
placed in the room. The objects can appear in 10 different colors.
In any given task, the room only has two colors of objects in it.
Each color of objects appears only with one other color, so there
are in total five possible color pairs that can appear. In any given
task, one of the present colors is “good” and the other is “bad.”
On some tasks, the good and bad colors in a pair are switched.

There are two types of tasks, a “pick-up” task and a “push-off”
task. In the pick-up task, the agent is rewarded for moving to the
grid location of each good object, which then disappears, and is
negatively rewarded for moving to the location of bad objects.
In the push-off task, the agent is able to push an adjacent object
by moving toward it, if there is no other object behind it. The
agent is rewarded for pushing the good-colored objects off the
edges of the board and negatively rewarded for pushing the bad-
colored objects off. The two types of tasks (pick up and push
off) are visually distinguishable, because the shapes of the objects
used for them are different. However, which color is good or bad
is not visually discernible and must be inferred from the exam-
ple (state, (action, reward)) tuples used to construct the task
representation.

There are in total (2 task types) × (5 color pairs) × (binary
switching of good and bad colors) =20 tasks. (See SI Appendix,
section B.4 for details.) We trained the system on 18 tasks, hold-

ing out the switched color combinations of (red, blue) in both
task types. That is, during training the agent was always posi-
tively rewarded for interacting with red objects and negatively
rewarded for interacting with blue objects. We trained the sys-
tem on the “switch-good-and-bad-colors” metamapping using the
remaining four color pairs in both task types and then evaluated
its ability to perform the held-out tasks zero shot based on this
mapping. This evaluation is a difficult challenge, since the model
was always negatively rewarded during training for interacting
with the objects that it must interact with in the evaluation tasks.

We evaluate the model for each task by requiring the training
accuracy to be above a threshold and selecting an optimal stop-
ping time when the other task is performed well. We also used
two minor model modifications to stabilize learning: persistent
task representations (discussed in Training the Model) and weight
normalization. See SI Appendix, section A.4 for details. Despite
the challenging setting, the model adapts well, achieving 88.0%
of optimal rewards (mean, bootstrap 95% CI [75.0–99.0]) on the
held-out pick-up task and 71.7% (mean, bootstrap 95% CI [42.0,
94.6]) on the held-out push-off task. The results are plotted in
Fig. 9, along with the results from the comparison models from
the next section. (The model is also slower to complete general-
ization episodes [SI Appendix, Fig. S26]; perhaps humans, too,
might be more hesitant in novel situations.)

In SI Appendix, section F.7, we show that metamapping is
able to extrapolate metamappings beyond the dimensions it has
been trained on, to transform new dimensions. Specifically, when
trained with the switch-good-and-bad metamapping applied to
colors, it can generalize to switching shapes. This is further
evidence for the flexibility and systematicity of metamapping.

Fig. 7. Applying metamapping to visual concepts, after training the model
on varying numbers of metamappings. The model is able to generalize
trained metamappings to perform new tasks zero shot. Furthermore, it
can generalize to new metamappings once it experiences sufficiently many
training metamappings. (Results are from 10 runs with each training set size.
Error bars are bootstrap 95% CIs across runs.)

32976 | www.pnas.org/cgi/doi/10.1073/pnas.2008852117 Lampinen and McClelland

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2008852117

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

Fig. 8. Illustrative RL task state transitions. In the pick-up example (Top),
the agent moves down and picks up the green object. In the push-off exam-
ple (Bottom), the agent moves right and pushes the red object. Each image
is precisely the visual input the agent would receive. Note that the agent is
always centered (egocentric perspective).

Language and Metamapping. Language is often key to human
adaptation, and prior work on zero-shot performance has often
used a task description as input (6–8). We showed in the visual
concepts domain that language provides a suitable cue for basic
tasks and met-mappings; in this section we explore the relation-
ship between language, examples, and metamapping further. We
compare three approaches to zero-shot task performance in the
RL domain: metamapping from examples (shown in the previous
section), metamapping from language, and generalization from
language alone.

First, we consider metamapping from language. We use lan-
guage input both to generate task representations (e.g., “pick-up,
red, blue, first” to indicate picking up objects, where the first
color, red, is good) and as a cue for metamapping (“switch col-
ors”). Applying this approach to the same training and hold-out
setup used above for metamapping from examples yields compa-
rable performance: 69.2% (mean, bootstrap 95% CI [49.5, 84.5])
on the pick-up task and 74.9% [60.9, 85.5] on the push-off task
(Fig. 9). This shows (as with the visual concepts) that generating
task representations from examples is not essential—language
can support metamapping.

However, a model that generates task representations from
language offers an alternative approach to performing a new
task zero shot. If language descriptions systematically relate to
tasks, the model should be able to generalize to new tasks from
their description alone. If the system learns that “green, yellow,
first” means that the objects will be green and yellow, and the
first color (green) is good; that “green, yellow, second” means
that yellow will be good; and that “red, blue, first” means that
red will be good and blue bad; it could in principle generalize
appropriately to “red, blue, second.” Indeed, this approach to
zero-shot task performance has been demonstrated in prior work
(7, 8). However, we find that transforming the task representa-
tion via a metamapping can provide a stronger basis for adapting,
compared to systematic language alone.

To demonstrate this, we compare the example- and language-
based metamapping approaches to generalizing from language
alone, again using the same basic tasks to train the network to
perform tasks from language, but without metamapping training
(Fig. 9). Performing the new tasks from language alone results in
very poor generalization performance: −92.8% (mean, bootstrap
95% CI [−96.3, −88.4]) on the pick-up task and −79.7% [−92.8,
−59.1] on the push-off task. Metamapping provides much better
generalization.

The direct comparison between language-based metamapping
and language alone shows that metamapping is beneficial, but
there are two mechanisms by which it could help. Metamap-
ping at test time could be key to generalization, or metamapping
training could simply improve the learning of the basic task
representations, such that even language alone would allow
good generalization in a metamapping trained model. However,
language-alone generalization is not significantly improved even
in the language-based metamapping model (SI Appendix, sec-
tion F.6), suggesting that metamapping at test time is key to the
benefits we observe.

We also compared metamapping to language alone in the
cards and visual concepts domains. We summarize the results
here; see SI Appendix, section F.6 for details. In the cards
domain, the language-based model was not able to general-
ize well to the losing game, instead degrading to chance-level
performance. In the visual concepts domain, by contrast, the
language model generalizes comparably to metamapping. This
may be due to the concept sampling—each evaluation concept
had several closely related training concepts, unlike the other
domains. Indeed, metamapping shows a greater advantage when
new concepts are less similar to trained ones.

In summary, metamapping (from examples or language) out-
performs or equals language alone in all our experiments.
Metamapping is especially beneficial when the task space is
sparsely sampled or generalization is challenging. We consider
the advantage of metamapping further in Discussion.

Metamapping as a Starting Point for Later Learning. Zero-shot
adaptation by metamapping allows a model to perform a new
task without any direct experience. However, as we have seen,
zero-shot performance is not always as good as the ultimate per-
formance after training on the task. Here, we show that even if
zero-shot performance is not completely optimal, it makes learn-
ing much faster than starting from scratch. We also show that
this learning can be done in a way that avoids interference with
performance on prior tasks.

We return to the polynomials domain to demonstrate this. We
reinstate a trained model and consider how it could learn on the
held-out tasks once it encounters them. To do so, we optimize
the representations of the new tasks to improve performance

Fig. 9. Comparing RL adaptation performance when metamapping (MM)
with task representations constructed from examples, when metamapping
with task representations constructed from language, or when generaliz-
ing from language alone. Metamapping generalizes well with either type
of task representation, while language alone generalizes poorly. (Chance
refers to taking random actions.)

Lampinen and McClelland PNAS | December 29, 2020 | vol. 117 | no. 52 | 32977

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental

on those tasks, without allowing any of the network weights
to change (SI Appendix, section A.5). This approach improves
performance on the new tasks without interfering with prior
knowledge (24) (cf. refs. 25 and 26). Thus, it provides a useful
approach to learning after zero-shot adaptation, once the system
is actually performing the new tasks.

We evaluate a variety of starting points for initializing the new
task representations. We compare initializing via metamappings
to a variety of reasonable alternatives, such as small random
values (the standard in machine learning), the embedding of
an arbitrary trained task, and the centroid of all trained task
representations. We plot learning curves from these different
initializations in Fig. 10. Producing an initial task representa-
tion by metamapping results in much lower initial loss and faster
learning than any other method.

To quantify this, we consider the cumulative loss over learn-
ing, i.e., the integral of the learning curves. This measures how
much loss the model had to suffer to reach perfect behavior on
the new tasks. Starting from a metamapping results in almost
an order of magnitude less cumulative error (mean =24.58,
bootstrap 95% CI [17.71, 32.08]) than the next best initializa-
tion (centroid of trained task representations, mean =192.89,
bootstrap 95% CI [151.98, 234.53]). Metamapping provides a
valuable starting point for future learning. (We also show this
in the visual concepts domain in SI Appendix and show that a
hypernetwork architecture is essential.)

Discussion
We have proposed metamappings as a computational mecha-
nism for performing a novel task zero shot—without any direct
experience on the task—based on the relationship between the
novel task and prior tasks. We have shown that our approach
performs well across a wide range of settings, often achieving 80
to 90% performance on a new task with no data on that task
at all. With enough experience, as in the visual classification set-
tings with enough training tasks, it can adapt perfectly. It can also
adapt using novel relationships (held-out metamappings) that it
has never encountered during training.

As noted in the Introduction, there are computational benefits
to adaptivity. Its potential contributions to biological intelligence
have been highlighted by Siegelmann (1), who proposes that

Chance

0.01

0.1

1

10

100

0 50 100 150 200 250
Epoch (training task representations on new data)

G
eo

m
et

ric
 m

ea
n

lo
ss

 o
n

ne
w

 ta
sk

s Meta−mapping output
Centroid of tasks
Arbitrary train task
Random vector
Untrained model

Fig. 10. Metamapping provides a good starting point for later learning.
Shown are learning curves (geometric mean of loss on new tasks) while
optimizing task representations on new tasks in the polynomials domain.
Using metamapping as a starting point offers much lower initial loss and
results in faster learning than alternative initializations. (Thin curves are five
individual runs, thick curves are averages.)

there is a “hierarchy of computational powers” and that a partic-
ular system’s location in that hierarchy depends on its “particular
level of richness and adaptability.” Because our work offers an
additional perspective on adaptation, it would be interesting to
explore the theoretical computational power of metamapping
under different input and representation regimes.

As Siegelmann notes, for a model to be able to adapt, it must
first be capable of performing a variety of related tasks (1). Thus,
instead of learning parameters that execute a single task, our
model learns to construct task representations from examples
or language and to use those representations to perform appro-
priate behaviors. The key insight of this work is that those task
representations are then available for transformation and that
transforming task representations by metamappings can allow
effective adaptation.

In our experiments, directly exploiting task relationships by
metamapping allowed more systematic adaptation than indi-
rectly exploiting them by generalizing through compositional
language alone. Even when language alone generalized poorly,
as in the RL domain, metamapping with language-based task
representations resulted in strong generalization. This illustrates
the value of a transformation-oriented perspective.

Why is transforming tasks according to task relationships so
effective? We suggest that this is because metamapping con-
structs and uses an explicit cognitive operation that captures
what is systematic in the task relationships. For example, “try-
ing to lose” is systematic precisely insofar as the relationship
between winning and losing is similar across different games. The
metamapping approach gives primacy to these relationships. It
thus directly exploits systematic structure where it exists in the
cognitively meaningful relationships between tasks.

We also highlight the results showing that metamapping pro-
vides a useful starting point for later learning. While metalearn-
ing approaches (27) can construct a good starting point for
learning new tasks, they do not use task relationships to offer
a uniquely appropriate starting point for each novel task. Our
results show that using a task relationship to adapt a prior task
can substantially reduce the errors made along the way to master-
ing the new task. This could make deep learning more efficient.
It could also be useful in settings like robotics, where mistakes
during learning can be extremely costly (28).

Our results should not be taken as a suggestion that metamap-
ping is the only possible mechanism for adaptation. We see
intelligence as multifaceted, and any single model is a simplifica-
tion. Metamapping may be useful as one tool for building models
with greater flexibility.

Metamapping increases the adaptability of our models,
although our present work has limitations that we discuss in
Limitations and Future Directions. Our models can perform tasks
from examples, from natural language, and from metamappings,
which we have shown are an effective way to adapt zero shot.
Thus, our work has many potential applications in machine
learning and cognitive science.

Related Work in Machine Learning. To allow zero-shot adaptation,
we built on ideas from several areas of machine learning. First,
there is a large body of prior work on allowing models to learn
to behave more flexibly, for example by metalearning, that is,
learning to learn from examples (9, 27, 29). Our approach to
inferring tasks from examples draws on recent ideas like aggre-
gating examples in a permutation-invariant way to produce a task
representation (12).

Second, a range of work uses the idea of different timescales of
weight adaptation—that is, even if some parameters of a network
may need to be learned slowly, it may be useful to alter others
much more rapidly (30). We have drawn particularly on the idea
that the parameters of a network could be specified by another
network in a single forward inference (13, 14). This approach has

32978 | www.pnas.org/cgi/doi/10.1073/pnas.2008852117 Lampinen and McClelland

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2008852117

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

shown success in metalearning recently (10, 31) and improved
our model’s adaptation (SI Appendix, Fig. S9).

There has been a variety of other work on zero-shot task per-
formance. We compared to the zero-shot task performance from
language alone. The idea of performing tasks from descriptions
was proposed by Larochelle et al. (6). More recent work has
considered zero-shot classification using language (32, 33) or
performing tasks from language in RL (7, 8). Some of this latter
work has even exploited relationships between tasks as a learn-
ing signal (11), but without transforming task representations. As
discussed in the beginning of the Discussion, transforming task
representations with metamappings directly exploits systematic
relationships, allowing metamapping to outperform language
alone in our experiments. To our knowledge none of the prior
work has proposed task transformations to adapt to new tasks.

Other prior work has used similarity between tasks to help
generate representations for a new task (34). Again, metamap-
ping may be a stronger approach, since it can specify along which
dimensions two tasks are related and the specific ways in which
they differ, which a scalar similarity measure cannot.

Aspects of zero-shot adaptation have also been explored in
model-based reinforcement learning. Work in model-based RL
has partly addressed how to transfer knowledge between dif-
ferent reward functions (35). Metamapping can potentially be
applied to this form of transfer as well; indeed, our RL experi-
ments show that metamapping can offer a model-free alternative
to model-based adaptation. Metamapping may also offer advan-
tages that could complement model-based methods. Metamap-
ping provides a principled way to infer a new reward estimator
by transforming a prior one. It could also transform a transition
function used in the planning model in response to environ-
mental changes. Thus, exploring the relationship and synergies
between metamapping and model-based RL methods provides
an exciting direction for future work.

There has also been other recent interest in task represen-
tations. Achille et al. (36) proposed computing embeddings for
visual tasks from the Fisher information of a task-tuned model.
They show that this captures some interesting properties of the
tasks, including some semantic relationships, and can help iden-
tify models that can perform well on a task. Other recent work
has tried to learn representations for skills (37) or tasks (38) for
exploration and representation learning, but without exploring
zero-shot transformation of these skills.

Related Work in Cognitive Science. Our work is related to several
streams of research in cognitive science. Prior work has sug-
gested that analogical transfer between structurally isomorphic
domains may be a key component of “what makes us smart”
(39). Analogical transfer is a kind of zero-shot mapping and has
been demonstrated across various cognitive domains (18, 40).
We hope our work stimulates further exploration of the con-
ditions under which humans can adapt to task transformations
zero shot. Different types of task relationships might be made
accessible through culture or education—“relational concepts
are not simply given in the natural world: they are culturally and
linguistically shaped” (ref. 39, pp. 204–206).

Our work also touches on complex issues of compositional-
ity, productivity, and systematicity. Fodor (41, 42) and Lake and
Baroni (43) have advocated that cognition must use composi-
tional representations to exhibit systematic and productive gen-
eralization. We see our work as part of an alternative approach
to this issue, exploring how systematic, structured generalization
can instead emerge from the structure of learning experience,
without needing to be built in (44, 45). By focusing on task rela-
tionships, rather than building in compositional representations
of tasks, our model can learn to exploit the shared structure in
the concept of “losing” across a few card games to achieve 85%
performance in losing a game it has never tried to lose before.

Crucially, the question of whether the model adapts according
to compositional task structure is distinct from the question of
whether the model’s representations exhibit compositional struc-
ture. Because the mapping from task representations to behavior
is highly nonlinear, it is difficult to craft a definition of compo-
sitional representations that is either necessary or sufficient for
generalization. For example, if “compositional” is taken to mean
that Euclidean vector addition of the representations of two con-
stant polynomials results in the representation of their sum, this
is clearly untrue for our model (SI Appendix, Fig. S13). How-
ever, the nonlinear mapping from representations to behavior
can allow for systematic generalization from nonlinear structure.
Indeed, it appears that the constant polynomial representations
may be approximately systematically arranged in a compressed
polar coordinate system. This may support generalization bet-
ter than a more intuitively compositional representational
structure.

Furthermore, there are a number of potential benefits to let-
ting systematic behavior emerge, rather than attempting to build
in compositional representations. First, the structure does not
need to be hand engineered separately for each domain. Our sys-
tem required no special knowledge about the domains beyond
the basic tasks and the existence of relationships between them.
The fact that some of these relationships corresponded to, e.g.,
permutations of variables in the polynomial domain did not need
to be hard coded; instead, the model was able to discover the
nature of this transformation from the data (in that it was able to
generalize well to held-out permutations). Emergence may also
allow for novel decompositions at test time. The ability of our
model to perform well on held-out metamappings indicates that
it has some promise in this regard. Future work should assess this
capability of the model more fully.

We also believe that our approach can capture some of the
recursive processing that Fodor (42) and others have empha-
sized. We have also been influenced by ideas in mathematical
cognition about how concepts build upon more basic con-
cepts (15–17). This recursive construction reflects the way that
metamappings transform basic tasks—complex transformations
are built upon simpler ones. If humans can handle an indefinite
number of levels of abstraction, the advantage of using a shared
representational space for all levels increases, since it eliminates
the need to create a new space for each level. Relatedly, our
shared workspace for data points, tasks, and metamappings con-
nects to ideas like the global workspace theory of consciousness
(46). The ability to reason about and explain concepts at different
levels of abstraction can be explained parsimoniously by assum-
ing a shared representational space. Exploring these connections
would be an exciting future direction.

We found particular inspiration in Karmiloff-Smith’s (47) and
Clark and Karmiloff-Smith’s (48) work on rerepresenting knowl-
edge. It would be interesting to explore modeling the phenomena
they considered, which they argued required that representations
be “objects for further manipulation” (ref. 48, p. 509), as task
representations are in metamapping.

Our work also relates to Fodor’s (49) ideas about the mod-
ularity of the mind. Indeed, our division of the architecture
into input and output systems, with the flexible, task-specific
computations in the middle, may seem very reminiscent of the
modularity that he advocated. However, we chose this implemen-
tation for simplicity—we believe that in reality processes such as
perception can be influenced by the task, as well as contextual
constraints (50).

Reciprocally, we believe that higher-level computations are
influenced and constrained by the modalities in which they are
supported. This computational feature can emerge in our model;
despite the fact that different types of data and tasks are embed-
ded in a shared latent space, the model generally learns to
organize distinct types of inputs into somewhat distinct regions

Lampinen and McClelland PNAS | December 29, 2020 | vol. 117 | no. 52 | 32979

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental

of this space. This means that the task-specific processing can
potentially exploit domain-specific features of the input, as for
example humans do when they use gestures to think and learn
in spatial contexts like mathematical reasoning (51). At the same
time, the shared space can allow a graded overlap in the struc-
ture that is shared across different entities, insofar as they are
related to each other. For example, in the polynomial domain
there is more overlap between polynomial representations and
metamapping representations than between either type of rep-
resentations and the representations of numerical inputs. Using
a shared space allows the model to discover what should be
shared and what should be separated—that is, modularity “may
not be built in [but] may result from the relationship among
representations” (ref. 52, p. 231).

Finally, our approach relates to work on cognitive control
(5). The “default” task-network weights could be used to model
more automatic processing. This processing can be overridden
by task-specific constraints set by the HyperNetwork, when con-
ditioned on an appropriate task representation. We present a
simple demonstration of these ideas in SI Appendix, section
F.9. Metamapping itself could also be relevant; for example, an
imperfect metamapping might capture some failures of control.

Limitations and Future Directions. Although we believe our
approach is promising, the present work has limitations. We have
explored metamapping within a limited range of settings. While
we used one particular model, metamapping could potentially
be useful in any metalearning approach that uses task repre-
sentations (10). Furthermore, we have demonstrated our model
only within relatively simple, small domains. The model adapts
quite well, but does not always achieve perfect fidelity of adap-
tation. One factor that may contribute is the relatively limited
range of experience of the model—our models lack the rich
lifetime of experience that our human participants have. Fur-
thermore, recent work shows that more realistic and embodied
environments can improve generalization (8). Thus, evaluat-
ing our approach in richer, more realistic settings will be an
important future direction.

Another important limitation is that our approach requires
the imposition of structured training to provide the network with
experience of the relationships between tasks. However, we sug-
gest that identifying task relationships is useful for building more
flexible intelligent systems and that exposure to task relation-
ships is an important part of human experience. A long-term
goal would be to create a system that learns to identify task
relationships for itself from such experience.

Our work suggests many other possibilities. For simplicity we
considered using language, examples, and metamapping to infer
task representations in this work. However, it would likely be
beneficial to use multiple constraints to both infer and adapt task
representations. Furthermore, we considered language as input,
but producing language as output (in the form of explanations)
can improve understanding and generalization in both humans
(53) and neural networks (54). Adding language output would

likely improve performance and better capture the structure of
human behavior.

In addition, we did not thoroughly explore robustness and
the effect of noise. We showed that our approach is reason-
ably robust to sample-size variability (SI Appendix, Figs. S5
and S7), but there is room for further exploration. For exam-
ple, how would input noise affect the computations? How
would errors compound if multiple metamappings were applied
sequentially?

Our model architecture also has limitations; cognitive tasks
often require more complex processing than our model allows.
Replacing the feedforward task network with a recurrent or
attentional network—or a network with external memory (55)—
would increase the flexibility of the model. It will be important to
incorporate these ideas in future work.

Conclusions
An intelligent system should be able to adapt to novel tasks zero
shot, based on the relationship between the novel task and prior
tasks. We have proposed a computational implementation of
this ability. Our approach is based on constructing task repre-
sentations and learning to transform those task representations
through metamappings. We have also proposed a homogeneous
implementation that reuses the same architectures for both basic
tasks and metamappings. We see our proposal as a logical devel-
opment from the fundamental idea of metalearning—that tasks
themselves can be seen as data points in a higher-order task of
learning to learn. This insight leads to the idea of transforming
task representations just like we transform data.

Metamapping is an extremely general approach—we have
shown that it performs well across several domains and compu-
tational paradigms, with task representations constructed from
either examples or language. Metamapping is able to perform
well at new tasks zero shot, even when the new task directly
contradicts prior learning. It is generally able to adapt more
effectively after experiencing fewer tasks than approaches relying
on language alone and sometimes seems to exhibit more system-
atic behavior. We suggest that this is because task relationships
better capture the underlying conceptual structure. Metamap-
ping provides a valuable starting point for later learning, one that
can substantially reduce both time to learn a new task and cumu-
lative errors made in learning. Our results thus provide a possible
mechanism for an advanced form of cognitive adaptability and
illustrate the role it may play in future learning. We hope our
work will lead to a better understanding of human cognitive flex-
ibility and to the development of artificial intelligence systems
that can learn and adapt more flexibly.

Data Availability. All study data are included in this article and SI Appendix.

ACKNOWLEDGMENTS. A.K.L. was supported by a National Science Foun-
dation Graduate Research Fellowship. We appreciate helpful suggestions
from Noah Goodman, Surya Ganguli, Felix Hill, Steven Hansen, Erin
Bennett, Katherine Hermann, Arianna Yuan, Andrew Nam, Effie Li, and the
anonymous reviewers.

1. H. T. Siegelmann, Turing on super-Turing and adaptivity. Prog. Biophys. Mol. Biol. 113,
117–126 (2013).

2. B. M. Lake, T. D. Ullman, J. B. Tenenbaum, S. J. Gershman, Building machines that
learn and think like people. Behav. Brain Sci. 40, e253 (2017).

3. G. Marcus, Deep learning: A critical appraisal. arXiv:1801.00631 (2 January
2018).

4. J. Russin, R. C. O’Reilly, Y. Bengio, “Deep learning needs a pre-frontal cortex” in ICLR
Workshop on Bridging AI and Cognitive Science. https://baicsworkshop.github.io/.
Accessed 26 April 2020.

5. K. Dunbar, J. D. Cohen, J. L. McClelland, On the control of automatic processes: A
parallel distributed processing account of the Stroop effect. Psychol. Rev. 97, 332–361
(1990).

6. H. Larochelle, D. Erhan, Y. Bengio, “Zero-data learning of new tasks” in Proceed-
ings of the Twenty-Third AAAI Conference on Artificial Intelligence, Eds. D. Fox,
C. P. Gomes, Eds. (AAAI Press, Menlo Park, CA, 2008), pp. 645–651.

7. K. M. Hermann et al., Grounded language learning in a simulated 3D world.
arXiv:1706.06551 (26 June 2017).

8. F. Hill et al., “Environmental drivers of generalization in a situated agent” in
Proceedings of the 8th International Conference on Learning Representations.
https://openreview.net/pdf?id=SklGryBtwr. Accessed 5 May 2020.

9. O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra, Matching net-
works for one shot learning. Adv. Neural Inf. Process. Syst. 29, 3630–3639
(2016).

10. A. A. Rusu et al., “Meta-Learning with latent embedding optimization” in
Proceedings of the 7th International Conference on Learning Representations
(International Conference on Learning Representations, 2019).

11. J. Oh, S. Singh, H. Lee, P. Kohli, “Zero-shot task generalization with multi-task deep
reinforcement learning” in Proceedings of the 34th International Conference on
Machine Learning, D. Precup, Y. W. Teh, Eds. (Journal of Machine Learning Research,
2017), Vol. 70, pp. 2661–2670.

32980 | www.pnas.org/cgi/doi/10.1073/pnas.2008852117 Lampinen and McClelland

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008852117/-/DCSupplemental
https://baicsworkshop.github.io/
https://openreview.net/pdf?id=SklGryBtwr
https://www.pnas.org/cgi/doi/10.1073/pnas.2008852117

CO
M

PU
TE

R
SC

IE
N

CE
S

PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

12. M. Garnelo et al., “Conditional neural processes” in Proceedings of the 35th Interna-
tional Conference on Machine Learning, J. G. Dy, A. Krause, Eds. (Journal of Machine
Learning Research, 2018), Vol. 80, pp. 1704–1713.

13. D. Ha, A. Dai, Q. V. Le, Hyper networks. Proceedings of the 5th Interna-
tional Conference on Learning Representations. https://openreview.net/references/
pdf?id=BkXLhI7te. Accessed 15 June 2018.

14. J. L. McClelland, Putting knowledge in its place : A scheme for programming parallel
processing structures on the fly. Cogn. Sci. 146, 113–146 (1985).

15. U. Wilensky, “Abstract meditations on the concrete and concrete implications for
mathematics education” in Constructionism, I. Harel, S. Papert, Eds. (Ablex Publishing,
1991). https://ccl.northwestern.edu/papers/concrete/. Accessed 25 March 2020.

16. O. Hazzan, Reducing abstraction level when learning abstract algebra concepts. Educ.
Stud. Math. 40, 71–90 (1999).

17. A. K. Lampinen, J. L. McClelland, Different presentations of a mathematical concept
can support learning in complementary ways. J. Educ. Psychol. 110, 664–682 (2018).

18. L. E. Bourne, Knowing and using concepts. Psychol. Rev. 77, 546–556 (1970).
19. F. Hill, A. Santoro, D. Barrett, A. Morcos, T. Lillicrap, “Learning to make analogies

by contrasting abstract relational structure” in Proceedings of the 7th International
Conference on Learning Representations https://openreview.net/pdf?id=SylLYsCcFm.
Accessed 14 June 2019.

20. Y. Niv, Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154 (2009).
21. W. Dabney et al., A distributional code for value in dopamine-based reinforcement

learning. Nature 577, 671–675 (2020).
22. D. Silver et al., Mastering the game of Go with deep neural networks and tree search.

Nature 529, 484–489 (2016).
23. O. Vinyals et al., Grandmaster level in Starcraft II using multi-agent reinforcement

learning. Nature 575, 350–354 (2019).
24. S. Reed, N. de Freitas, “Neural programmer-interpreters” in Proceedings of the

4th International Conference on Learning Representations https://arxiv.org/pdf/1511.
06279.pdf. Accessed 5 September 2017.

25. T. T. Rogers, J. L. McClelland, Semantic Cognition: A Parallel Distributed Processing
Approach (MIT Press, 2004).

26. A. K. Lampinen, J. L. McClelland, One-shot and few-shot learning of word embed-
dings. arXiv:1710.10280 (27 October 2017).

27. C. Finn, P. Abbeel, S. Levine, “Model-agnostic meta-learning for fast adaptation of
deep networks” in Proceedings of the 34th Annual Conference on Machine Learning,
D. Precup, Y. W. Teh, Eds. (Journal of Machine Learning Research, 2017), Vol. 70, pp.
1126–1135.

28. M. Turchetta, F. Berkenkamp, A. Krause, Safe exploration in finite Markov deci-
sion processes with Gaussian processes. Adv. Neural Inf. Process. Syst. 29, 4312–4320
(2016).

29. A. Ravichandran, R. Bhotika, S. Soatto, Few-shot learning with embedded class
models and shot-free meta training. arXiv:1905.04398 (10 May 2019).

30. G. E. Hinton, D. C. Plaut, “Using fast weights to deblur old memories” in Proceedings
of the 9th Annual Conference of the Cognitive Science Society (Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1982), pp. 177–186.

31. H. Li et al., “LGM-Net: Learning to generate matching networks for few-shot learn-
ing” in Proceedings of the 36th International Conference on Machine Learning,
K. Chaudhuri, R. Salakhutdinov, Eds. (Journal of Machine Learning Research, 2019),
pp. 3825–3834.

32. R. Socher, M. Ganjoo, C. D. Manning, A. Y. Ng, “Zero-shot learning through
cross-modal transfer” in Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Q. Weinberger, Eds. (Neural
Information Processing Systems Foundation, 2013), pp. 935–943.

33. Y. Xian, C. H. Lampert, B. Schiele, Z. Akata, Zero-shot learning - A comprehensive
evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell.
41, 2251–2265 (2018).

34. A. Pal, V. N. Balasubramanian, “ Zero-shot task transfer” in Proceedings of the 2019
IEEE Conference on Computer Vision and Pattern Recognition, A. Gupta, D. Hoiem,
G. Hua, Z. Tu, Eds. (IEEE, 2019), pp. 2189–2198.

35. R. Laroche, M. Barlier, “Transfer reinforcement learning with shared dynamics” in
Proceedings of the Thirty First AAAI Conference on Artificial Intelligence, S. Singh
and S. Markovitch, Eds. (AAAI Press, Palo Alto, CA, 2017), pp. 2147–2153.

36. A. Achille et al., Task2Vec: Task embedding for meta-learning. arXiv:1902.03545 (10
February 2019).

37. B. Eysenbach, A. Gupta, J. Ibarz, S. Levine, “Diversity is all you need: Learning skills
without a reward function” in Proceedings of the 7th International Conference
on Learning Representations. https://openreview.net/pdf?id=SJx63jRqFm. Accessed 9
May 2019.

38. K. Hsu, S. Levine, C. Finn, “Unsupervised learning via meta-learning” in Pro-
ceedings of the 7th International Conference on Learning Representations
https://openreview.net/pdf?id=r1My6sR9tX. Accessed 9 May 2019.

39. D. Gentner, “Why We’re So Smart” in Language in Mind: Advances in the Study of
Language and Thought, D. Gentner, S. Goldin-Meadow, Eds. (MIT Press, Cambridge,
MA, 2003), pp. 195–235.

40. M. L. Gick, K. J. Holyoak, Analogical problem solving. Cogn. Psychol. 12, 306–355
(1980).

41. J. A. Fodor, Language, thought and compositionality. Mind Lang. 16, 1–15 (2001).
42. J. A. Fodor, LOT 2: The Language of Thought Revisited (Oxford University Press, 2008).
43. B. M. Lake, M. Baroni, “Generalization without systematicity: On the compositional

skills of sequence-to-sequence recurrent networks” in Proceedings of the 36th Inter-
national Conference on Machine Learning, K. Chaudhuri, R. Salakhutdinov, Eds.
(Journal of Machine Learning Research, 2018), pp. 2873–2882.

44. J. L. McClelland et al., Letting structure emerge: Connectionist and dynamical systems
approaches to cognition. Trends Cognit. Sci. 14, 348–356 (2010).

45. S. S. Hansen, A. Lampinen, G. Suri, J. L. McClelland, Building on prior knowledge
without building it in. Behav. Brain Sci. 40, e268 (2017).

46. B. J. Baars, Global workspace theory of consciousness: Toward a cognitive neuro-
science of human experience. Prog. Brain Res. 150, 45–53 (2005).

47. A. Karmiloff-Smith, From meta-processes to conscious access: Evidence from children’s
metalinguistic and repair data. Cognition 23, 95–147 (1986).

48. A. Clark, A. Karmiloff-Smith, The cognizer’s innards: A psychological and philo-
sophical perspective on the development of thought. Mind Lang. 8, 487–519
(1993).

49. J. A. Fodor, The Modularity of Mind (MIT Press, 1983).
50. J. L. McClelland, D. Mirman, D. J. Bolger, P. Khaitan, Interactive activation and mutual

constraint satisfaction in perception and cognition. Cogn. Sci. 38, 1139–1189 (2014).
51. S. Goldin-Meadow, The role of gesture in communication and thinking. Trends Cogn.

Sci. 3, 419–429 (1999).
52. M. K. Tanenhaus, M. M. Lucas, Context effects in lexical processing. Cognition 25, 213–

234 (1987).
53. M. T. Chi, N. De Leeuw, M. H. Chiu, C. Lavancher, Eliciting self-explanations improves

understanding. Cogn. Sci. 18, 439–477 (1994).
54. J. Mu, P. Liang, N. Goodman, “Shaping visual representations with language for

few-shot classification” in Visually Grounded Interaction and Language Workshop,
NeurIPS (2019). https://vigilworkshop.github.io/2019. Accessed 13 December 2019.

55. A. Graves et al., Hybrid computing using a neural network with dynamic external
memory. Nat. Publ. Group 538, 471–476 (2016).

Lampinen and McClelland PNAS | December 29, 2020 | vol. 117 | no. 52 | 32981

D
ow

nl
oa

de
d

at
 S

T
A

N
F

O
R

D
 U

N
IV

 M
E

D
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

30
, 2

02
0

https://openreview.net/references/pdf?id=BkXLhI7te
https://openreview.net/references/pdf?id=BkXLhI7te
https://ccl.northwestern.edu/papers/concrete/
https://openreview.net/pdf?id=SylLYsCcFm
https://arxiv.org/pdf/1511.06279.pdf
https://arxiv.org/pdf/1511.06279.pdf
https://openreview.net/pdf?id=SJx63jRqFm
https://openreview.net/pdf?id=r1My6sR9tX
https://vigilworkshop.github.io/2019

Supplementary Information for

Transforming task representations to allow models to perform novel tasks

Andrew K. Lampinen, James L. McClelland

1To whom correspondence should be addressed. E-mail: andrewlampinen@gmail.com

This PDF file includes:

Supplementary text
Figs. S1 to S37
Tables S1 to S4
SI References

Andrew K. Lampinen, James L. McClelland 1 of 37

Supporting Information Text

The Supporting Information is organized as follows: in Section A, we describe the details of the model, including providing a
mathematical formulation, diagram of gradient flow, and architectural and hyperparameters for all experiments. In Section
B we describe the different task domains and dataset sizes for our experiments. In Section C we describe the behavioral
experiment that we performed on human adaptibity. In Section D we provide links to the repositories containing the code for
all experiments and analyses. In Section F we show supplemental analyses, and in Section G we provide a proof that a simpler
vector-analogy approach is insufficient for meta-mapping.

A. Model details, training, and methods. This section is organized as follows: in Section A.1 we give a formal (mathematical)
description of the model, In Section A.2 we describe the architectural details and hyperparameters, and provide motivation for
some of them. In Section A.3 we provide further details of model training and evaluation. In Section A.4 we provide details of
the model modifications for the Cards and RL domains. Finally, in Section A.5 we provide details about the optimization of
task representations for the Meta-mapping as a starting point for later learning experiments.

A.1. Mathematical formulation of the model. In this section we describe each of the networks in the system mathematically and give
functional representations of each computation used in the model.

First, in Table S1 we remind the reader of the notation we use, and provide a mathematical characterization of each
component, as well as its description. Given this notation, we next describe the computations of the model mathematically,
with annotations indicating the meaning of key elements of each equation.

Constructing a basic task representation (from examples): Given a support set of (input, target output) examples
tuples {(input0, target0), (input1, target1)...}, the representation would be computed as

ztask = E({ (P(input0)︸ ︷︷ ︸
input embedding∈Z

, O(target0)︸ ︷︷ ︸
target embedding∈Z

)

︸ ︷︷ ︸
(input embedding, target embedding) tuple∈Z2

, · · · }

︸ ︷︷ ︸
set containing encoded tuple for each support-set example

)

Constructing a basic task representation (from language): The representation would be computed as

ztask = L(language︸ ︷︷ ︸
description of task

)

Performing a task from a representation: Given a task representation denoted by ztask, and an input, the output
embedding (zout ∈ Z) would be computed as:

zout = T (H(ztask)︸ ︷︷ ︸
parameters∈Θ

, P(input)︸ ︷︷ ︸
input embedding∈Z

)

and the output would be computed as:
output = Od(zout)

Constructing a meta-mapping representation (from examples): Given a support set of (input task, target task)
example tuples, the representation would be computed as follows:

zmeta = E({ (zinputtask0︸ ︷︷ ︸
task embedding∈Z

, ztargettask0︸ ︷︷ ︸
task embedding∈Z

)

︸ ︷︷ ︸
(input embedding, target embedding) tuple∈Z2

, · · · }

︸ ︷︷ ︸
set containing tuple for each mapping example

)

Constructing a meta-mapping representation (from language): The representation would be computed as

zmeta = L(language︸ ︷︷ ︸
description of meta-mapping

)

Performing a meta-mapping from a representation: Given a meta-mapping representation zmeta and an input task
representation ztask, the transformed task representation would be computed as:

ztransformed task = T (H(zmeta)︸ ︷︷ ︸
parameters∈Θ

, ztask)

2 of 37 Andrew K. Lampinen, James L. McClelland

Symbol Characterization Description
input Varies. The input space for the base tasks, e.g R4 for polynomials, or RGB im-

ages for visual concepts.

output Varies. The output space for the base tasks, e.g R for polynomials, 4 action Q-
values for the RL domain.

language Varies. A sentence of words from a discrete vocabulary.

Z Rn The shared representational space used for representing inputs, tasks,
etc.

Θ Rl0×l1︸ ︷︷ ︸
weights

× Rl1︸︷︷︸
biases︸ ︷︷ ︸

one layer’s parameters

× · · · The parameter space of the task-network T , that is, the set of matrices
(and vectors) representing the weights (and biases) of each layer of the
MLP.

(a) Representation spaces.

Symbol Characterization Description
zinput

Representation ∈ Z

The representation of a base-task input (e.g. zhand for a hand of cards),
after it is processed by the perception network P .

zoutput The representation of a base-task output (e.g. zbet for a bet in the card
game). This is processed by the output decoder Od to produce the task
output.

ztarget The representation of a base-task target output (e.g. a ground-truth clas-
sification of an image for a visual concept). This is processed by the
target output encoder Oe to produce a target embedding for the input
processor. Note that in the case of the cards and RL domains, the “tar-
get” is actually an (action, reward) tuple (see below).

ztask Representation of a task. These are used to perform the task, and as
inputs and outputs (and targets) of meta-mappings.

zmeta Representation of a meta-mapping, used to perform that meta-mapping.

(b) Different types of representations in Z.

Symbol Characterization Description
P input→ Z The perception network, an MLP (for polynomial and card tasks) or

CNN (for visual concepts and RL tasks), which processes inputs into the
shared representational space.

Oe target output→ Z The target output encoder network, an MLP, which processes base-task
example targets into the shared representational space. Note that in the
case of the cards and RL models, these are not in fact outputs, but are
rather (action, reward) tuples, see below.

L language→ Z The language network, a multi-layer LSTM, which processes langauge
into the shared representational space.

E {Z2} → Z The example network, which processes a support set of tuples of (em-
bedding of input, embedding of target output), and outputs a task repre-
sentation in the shared representation space. This network consists of 1)
parallel application of an MLP to each of the (input, output) tuples to pro-
duce a representation for each, 2) followed by max-pooling across that
set of representations to produce a single representation, 3) followed by
another MLP to produce the task representation.

H Z → Θ The hyper network, an MLP, which maps a task representation to a set of
parameters for the network T .

T Θ× Z → Z The task network, which is an MLP parameterized by the parameter-
space Θ. Once the parameters are specified, it serves as an MLP map-
ping Z → Z.

Od Z → output The output decoder, an MLP mapping from the representational space Z
to the output space for the task (e.g. R for the polynomials, and Q-values
for the actions for the RL tasks).

(c) Networks.

Table S1. Notation used for the (a) representation spaces, (b) types of representations in the shared space Z, (c) and networks in the paper.

Andrew K. Lampinen, James L. McClelland 3 of 37

Polynomials Cards Visual RL

Z-dimension 512
P num. layers 2
P num. hidden units 128
P conv. layers. (num filters, size, all
strides are 2)

- (64, 5), (128, 4),
(256, 4), (512, 2),
max pool

(64, 7), (64, 4), (64,
3)

L architecture - 2-layer LSTM + 2 fully-connected
L num. hidden units - 512
Oe num. layers 1 3 1 3
Oe num. hidden units - 128 - 128
E architecture 2 layers per-datum, max pool across, 2 layers
Task, MM representations from Examples Language Examples
H architecture 4 layers
E num. hidden units 512 1024
H num. hidden units 512
T num. layers 3 1 MM: 1, Lang: 3 3
T num. hidden units 64 128
H output init. scale 1 1 30 10
T weight norm. (1) No Yes
Od num. layers 1 2 1
Od num. hidden units - 128 -
Nonlinearities Leaky ReLU in most places, except no non-linearity at final layer of networks outputting to the latent

space Z, and (where applicable) sigmoid for classification outputs, and softmax over actions.
Base task loss `2 `2 (masked) Cross-entropy `2 (masked)
Meta-mapping loss `2

Persistent task representations No Yes
Persistent embedding match loss
weight

- 0.2

Optimizer Adam RMSProp
Learning rate (base) 3 · 10−5 1 · 10−5 3 · 10−5 1 · 10−4

Learning rate (meta) 1 · 10−5 1 · 10−5 1 · 10−5 1 · 10−4

L.R. decay rate (base) ×0.85 ×0.85 ×0.8 ×0.8
L.R. decay rate (meta) ×0.85 ×0.9 ×0.85 ×0.95
L.R. min (base) 3 · 10−8 1 · 10−8 3 · 10−8

L.R. min (meta) 1 · 10−7 3 · 10−8 1 · 10−8 3 · 10−7

L.R. decays every 100 epochs 200 epochs 400 epochs 10000
Num. training epochs 5000 100000 (optimally

stopped)
10000 for 4 train
mappings, 7500 for
8, 5000 for others

300000 (optimally
stopped)

Num. runs 5 5 10 5

Base memory buffer size 1024 336 1000
Base memory buffers refreshed Every 50 epochs Every 20 Every 1500
Target network updated - Every 10000 epochs
RL discount - 0.85
RL exploration probability (ε) - Initial: 1., decay: -0.03

when LR decays.
Action softmax inv. temp. (β) - 8 - 8

Table S2. Detailed hyperparameter specification for different experiments. A “-” indicates a parameter that does not apply to that experiment.
Where only one value is given, it applied to all the experiments discussed. See Table S1 for a guide to the notation for the networks.

4 of 37 Andrew K. Lampinen, James L. McClelland

Perception
network

P

−$$

Target output encoder
network

Oe

Task examples
(encoded){

(zhand1 , zwin1)
...

} Example
network

E ztask

Hyper
network

H

Perception
network

P zhand T

Task network

zbet

Output decoder
network

Od $ Loss

(a) Basic task inference/training (from examples).

Mapping examples
(input/output tasks){

(zchess, zlosechess)
...

} Example
network

E zmeta

Hyper
network

H

zpoker T

Task network

ẑlosepoker Loss

(b) Meta-mapping inference/training (from examples).

Fig. S1. Schematic of architecture, showing inference and gradient flow through the model on a training step. Thin black lines moving rightward represent inference, thick red
lines moving leftward represent gradients. (a) Inference and gradients for the basic tasks. (b) Inference and gradients for meta-mappings. The gradients end at the examples of
the meta-mapping, rather than propagating through to alter how those representations are constructed, due to GPU memory constraints. In the future, it might be useful to
explore whether allowing further propagation would improve results for both basic tasks and meta-mappings. (These figures depict the inference/gradient flow when performing
tasks and meta-mappings from examples, performing from language is similar, except that the example inputs and example network are replaced with language inputs and the
language processing network.)

A.2. Model architecture & hyperparameters. See Table S2 for detailed architectural description and hyperparameters for each
experiment (note that dataset sizes for the different different domains are specified in Table S3). Hyperparameters were
generally found by a heuristic search, where mostly only the optimizer, learning rate annealing schedule, and number of training
epochs were varied. Architectural parameters were generally chosen based on domain complexity (larger networks for more
complex tasks, especially RL), and standard architectural practices.

For example, the convolution sizes and strides were generally chosen to result in reasonably even downsampling of the image,
while also maintaining sizes divisible by powers of two (which can increase computational efficiency). The activation function
chosen for the hidden layers of the MLPs was Leaky ReLU (leaky Rectified Linear Units), which are piecewise defined as

Leaky ReLU(x) =
{
x if x ≥ 0
0.2x if x < 0

This function suppresses negative inputs (but does not completely shut them off). It has been shown to be useful for training
deep networks (2).

Initialization scales for the HyperNetwork outputs were chosen based on the heuristic that there should be significant
transmission of signal through the network at initialization to allow for efficient learning (3, 4), i.e. that when different inputs
are presented to the untrained network, its output should vary substantially. Learning rate schedules were chosen by search to
be slow enough to give fairly stable learning, but fast enough to not harm generalization (c.f. 5).

Many of the remaining parameters take the values they do for somewhat arbitrary reasons, e.g. the polynomial experiments
were run earlier, before 1-layer task networks were found to be useful in some settings (although the complex tasks and
transformations in the polynomial setting may benefit from the more complex task networks). While it would be ideal to fully
search the space of parameters for all models, unfortunately our computational resource limitations prohibited it. Thus the
results in the paper should be interpreted as a lower bound on what would be possible.

Andrew K. Lampinen, James L. McClelland 5 of 37

A.3. Model training details. In all experiments, each epoch of training consisted of a single learning step on each task (both base
and meta), in a random order. That is, training of the base tasks and meta-mappings was fully interleaved. However, the
greater prevalence of base tasks, the learning rate schedules, and the fact that the loss on the meta-mappings is small when the
base-task embeddings are small (near initialization) all mean that the base tasks are effectively prioritized earlier in learning.

Examples & generalizing: Where tasks were performed from examples, in each task training step, the meta-learner
received only a subset (the “support set size“ in Table S3) of the examples to generate a task representation, and would need
to generalize to the remaining probe examples in the batch. In fact, the system was trained to execute the mapping on both
the support set and the probe set. This likely did not substantially alter the learning compared to just training the mapping
on the probe set, but may perhaps have made it easier for the model to understand the overall structure of the problem early
in learning. Where the task or meta-mapping representations were generated from language, there was no need for a separate
support set of examples to generate the task representation. Thus, again, the full batch was used to train the mapping.

The representations of the basic tasks for meta-mappings were computed and cached once per epoch, so as the network
learned over the course of the epoch, the task representations became “stale,” but this did not seem to be too detrimental to
learning. In the case of the RL tasks, where there were persistent task representations (see below), they were used instead.

Gradients: In Fig. S1, we show the flow of inference (forward) and gradients (backward) through our architecture on
basic task and meta-mapping training steps. All networks used for performing the base tasks were trained by end-to-end
optimization on the appropriate base task loss. That is, the task loss gradients update all networks from the output decoder
back through the hyper network, example network, and even the encoding of the task examples and task inputs.

During meta-mapping training, the model was trained to match its transformed task representations to target task
representations by an `2 loss. Gradients were stopped at the example and inference task representations, rather than updating
how those representations were constructed. This simplification was due to memory constraints; it was not possible to fit
the construction of all task representations used as examples within GPU memory. An implementation that allowed for this
(at least for some task representations, e.g. the source task) might improve learning, and could allow meta-mappings to
improve basic meta-learning generalization directly, by shaping the construction of the basic task representations to follow the
relationship structure of the task space.

Multiple runs & robustness: The results reported in the figures in this paper are averages across multiple runs, with
different trained and held-out basic tasks (in the polynomial and visual concepts domains), different trained and held-out
meta-mappings (again in the polynomial and visual concepts domains), and different network initializations and training orders
each epoch (in all domains), to ensure the robustness of the findings.

Classifying task representations: For classification of task representations, we constructed a representation of the
meta-classification, either from examples — i.e. (task representation, binary classification) tuples — or language. We constructed
these representations using the same example or language network that was used for the basic tasks and meta-mappings.
This meta-classification representation then parameterized the task network (via the same hyper network used for the other
tasks). Probe task representations were then fed into the task network, and the model was then trained to output appropriate
classifications for them through a separate classification output network — it was necessary to have a separate classification
output network because in most domains there was not an appropriate classification output. The model was trained on these
meta-classifications via a cross-entropy loss.

The idea of this training was that it would help the model identify important features of the task representations that would
be relevant for the meta-mappings it needed to perform. However, as we show in Fig. S11, meta-classification did not prove
substantially beneficial in our domains. This may be due to the limited set of classifications we provided. See section B for the
specific classifications that were used in each domain.

Persistent task representations: In the main approach to performing tasks from examples in our paper, the task
representations for basic and meta-mappings were constructed anew on each episode. However, in domains where superficially
similar tasks have directly contradicting goals, it can be useful to maintain partly persistent task representations that update
more slowly across training steps. Associating each task with a more consistent representation makes it easier for the model to
learn the idiosyncrasies of the tasks. We used this approach when performing the RL tasks from examples.

Specifically, the model stored a representation of each task that was updated slowly over learning (persistent), and additionally,
on each step constructed a new representation from examples (as in other settings). On each training step, a uniformly random
t ∈ [0, 1] was chosen, and the representation used for actually performing the task was the convex combination

t · (persistent representation) + (1− t) · (representation from examples)

The model also tried to constrain the persistent and example-constructed representations to match, by minimizing an `2 loss
between the two representations. This both updated the persistent task representation to be closer to the representation
constructed from examples (thus making the persistent representation essentially a slowly moving average of the example
representations), and also updated the representation constructed from examples to be closer to the persistent representation
(thus encouraging any useful knowledge contained in the persistent representation to be incorporated in how the example
network processed examples). In this way, the knowledge from each representation could support the other.

Note that persistent task representations are not required when performing basic tasks or meta-mappings from language-based
representations — because the language input is consistent across training steps (unlike the examples), the language-based task
representations already change relatively slowly between training steps.

6 of 37 Andrew K. Lampinen, James L. McClelland

A.4. Model & training modifications for Cards & RL. Because in both the Cards and RL domains the system can only take one action,
and only receives feedback on that action, we needed to modify the architecture and training slightly. As noted in the main
text, we thus replaced the (input, target) examples used to infer a supervised task with (state, (action, reward)) example tuples.
These tuples are the basic currency of model-free RL algorithms. To use these tuples, we provide both the action and reward
to the target output encoding network, so that it can process them together and produce a single representation.

The model is trained to output the expected reward of the actions (in the Cards domain), or the Q-value (in the RL domain),
via an `2 loss. Again, the fact that the network only receives rewards for the action it takes means that, for any given step in
memory, the model can only be trained to better predict the reward (or Q-value) of the single action that it took.

Additional model & training modifications for RL: There are a number of additional changes that were necessary
for the RL tasks, due to the additional complexity of the temporal structure. These changes generally followed the approach of
the original DQN (6). The model received pixel-images as input, and produced Q-values as output. Target Q-values were
produced by the Bellman equation (that is, the target was the max Q-value of the subsequent state plus any reward received),
but following Mnih and colleagues (6), the target next-state Q-values were produced by a second (identical) network with frozen
weights, that had its weights copied from the main network every 10000 epochs. This helps stabilize learning (by allowing
estimates to converge somewhat before the targets change).

We made two additional changes to improve the stability of learning. First, the model maintained persistent representations
(see previous section) for each trained task and meta-mapping. The persistent representations helped the model overcome
conflicting signals from switched-color tasks, and thereby accelerated learning. (Note that in the experiments performing the
RL tasks from language-based task representations, persistent task representations were not used, since the language is already
consistent across training steps, unlike examples.) We also incorporated weight normalization (1) in the task network, which
reparameterizes the weights so that their magnitude and direction are estimated separately. Although learning might have
converged without these changes, they seemed to stabilize and accelerate convergence.

The memory buffers of the system were refreshed every 1500 epochs by allowing the system to play each (training) task for
as many episodes as were necessary to generate the 1000 (state, action, reward) tuples necessary to fill the memory buffer. The
examples used in any particular network training step were sampled uniformly at random from this buffer, without regard
to continuity or epsiode boundaries, as is standard in DQN training. During play to fill the memory buffers, we used both
ε-exploration and chose actions from a softmax over Q-value.

As in all other experiments, the base tasks and meta-mappings were trained simultaneously, but with different learning rate
schedules (see Table S2).

Evaluation for RL: Evaluation was performed by allowing the system to play each task for a total of 10 randomly generated
episodes, with the return assessed as the mean return across this set. While ε-exploration was turned off during evaluation,
the softmax policy was left on. Without the softmax over actions, the model generalized somewhat worse, presumably
because its Q-values are not adapting perfectly and it could easily get stuck in a loop of incorrect actions. The softmax
allows some possibilty of breaking out of these loops. Some of the recordings linked in the repository exemplify this, e.g.
https://github.com/lampinen/homm_grids/blob/master/recordings/run0_pusher_red_blue_True_False_recording_0.gif, where the agent
gets stuck in the corner after pushing the first three blocks, before eventually breaking out and converging on the correct final
block.

We decided when to evaluate the model on each task by:

1. Requiring the performance on all trained base tasks to be above 95% (to ensure that the model had learned both tasks,
since the “push-off” tasks were slower to learn).

2. Selecting the time when the performance on the other evaluation task was highest (i.e. using the other task as a
validation set).

This means that the performance on each evaluation task may be evaluated at different times during the run. Selection of
the stopping point for each task is independent of selecting the stopping point for the other. Note that this optimal stopping
approach is not biased, since the task used to decide when to evaluate is always the task that is not being evaluated. To see
why this is valid, note that we could have run the model twice for each run, once where we held out one task as a validation
set, and the other as the test set, and another run where these were switched. Our evaluation approach is essentially equivalent
to this, except applying the two independent evaluations within the same run to save running the entire training process twice
as many times.

A.5. Optimizing task representations. To optimize the task representations on new tasks, we perform gradient descent on those
embeddings through the model architecture. We use the same optimizer as was used in the main experiments (i.e. Adam for
the polynomials results, RMSProp for the visual concepts), but with a fixed learning rate of 1 · 10−4.

For the random vector initialization, we sampled the values IID from a normal distribution with variance 1/
√

512 to give
approximately a unit-length vector. The centroid initialization was the centroid of all the trained basic-task representations (i.e.
meta-mappings were not included), and the arbitrary trained task representation was likewise an arbitrary trained basic task
representation. The untrained model comparison was initialized to exactly the initialization states from which our architectures
were trained.

Andrew K. Lampinen, James L. McClelland 7 of 37

https://github.com/lampinen/homm_grids/blob/master/recordings/run0_pusher_red_blue_True_False_recording_0.gif

B. Task and dataset details and methods. In this section, we describe the details of basic tasks and meta-mappings in each of
our domains. See table S3 for a summary of the training and hold-out sizes (at the level of support sets and probes for both
basic tasks and meta-mappings) for each domain. In the remainder of the section, we describe details of how the tasks were
sampled, how they were encoded into language (if applicable), etc.

Polynomials Cards Visual RL

Base input type R4 Several-hot vector ∈ {0, 1}12 50×50 RGB image 91×91 RGB image
Base output type R Bet values (R3) Label ∈ {0, 1} Action Q-values ∈ R4

Num. base tasks (training) 2260 (= 60 + 60 ×
36 + 40)

36 Varies (∼100-300) 18

Num. base tasks (held out for meta-
mapping evaluation)

1440 (= 40× 36) 4 Varies 2

Num. meta classifications 6 8 8 -
Num. train meta-mappings 20 3 Varies (4-32) 1
Num. held-out meta-mappings 16 0 2 0

Base batch size 1024 1024 336 64
Base support set size 50 768 - 32
Meta batch size (train) 60 36 Varies 18
Meta support set size (train) Half of train dataset - Half of train dataset
Meta support set size (eval) All of train dataset - All of train dataset

Table S3. Dataset compositions and specifications for the different experiments. A “-” indicates a parameter that does not apply to that
experiment. Batch sizes refer to the total number of data points used per training step (or the number of (s, a, r) tuples for the RL tasks),
including both those used as support set examples provided to the example network, and those used as probe examples for generalization.
Support set sizes refer to the number of examples presented to the example network in order to construct a task representation. The
difference between the batch size and the support set size provides the number used as probes. Note that for the language-based meta-
mapping (performed in the visual concepts domain, as well as in later experiments in the RL domain) all the meta-batch is used as probes,
since no support set is needed.

B.1. Polynomials. We randomly sampled 100 train polynomials as follows:
1. Sample the number of relevant variables (k) uniformly at random from 0 (i.e. a constant) to the total number of variables.

2. Sample the subset of k variables that are relevant from all the variables.

3. For each term combining the relevant variables (including the intercept), include the term with probability 0.5. If so give
it a random coefficient drawn from N (0, 2.5).

We then split this set of 100 polynomials into 60 that were used to train the meta-mappings, and 40 for which the targets
would be held-out to evaluate each meta-mapping. We thus needed to also train the system on the transformed targets for
each meta-mapping applied to the 60 polynomials, so the total number of trained polynomials was 60 + 60× 36 + 40 = 2260.
The total number held-out for evaluation was 40 per meta-mapping, i.e. 40× 36 = 1440.

Note that the above means that we trained the system on the transformed polynomials that were in the support set of
even the held-out meta-mappings. That is, a held-out meta-mapping is held-out in the sense that the meta-mapping itself
is not trained, but the supporting polynomials are still in the train set. Of course, in principle the model would be able to
perform a meta-mapping supported by polynomials it had never encountered before (using task representations constructed
from examples of those polynomials). However, our approach allows more careful evaluation of the meta-mapping generalization
of the model, by making the supporting polynomial representations more reliable. This eliminates a confound when comparing
held-out meta-mapping generalization to trained meta-mappings, by ensuring base knowledge is matched.

The data points on which these polynomials were evaluated were sampled uniformly from [−1, 1] independently for each
variable, and an independent set was sampled for each polynomial. Note that although input domain is restricted, the output
range can be quite large under this distribution (often around [−40, 40]), because of the wide distribution of coefficients and
the summing of multiple terms. The datasets were resampled every 50 epochs of training.

Meta-mappings: We trained on 20 meta-mapping tasks, and held out 16 related meta-mappings.
• Squaring polynomials (where applicable, i.e. where degree was ≤ 1, so that the squared polynomial wouldn’t have degree
> 2).

• Adding a constant (trained constants: -3, -1, 1, 3, held-out: 2, -2).
• Multiplying by a constant (trained constants: -3, -1, 3, held-out: 2, -2).
• Permuting inputs (trained on 12 permutations, held-out 12, randomly chosen on each run).

Meta-classifications: We also trained the network on 6 task-embedding classification tasks:
• Classifying polynomials as constant/non-constant.
• Classifying polynomials as zero/non-zero intercept.
• For each variable, identifying whether that variable was relevant to the polynomial.

8 of 37 Andrew K. Lampinen, James L. McClelland

B.2. Card games. Our card games were played with two suits (red and black), and 4 values per suit. In our setup, each hand in a
game has a win probability (proportional to how it ranks against all other possible hands). The agent is dealt a hand, and then
has to choose to bet 0, 1, or 2 (the three actions it has available). We considered a variety of games which depend on different
features of the hand:

• Straight flush: Most valuable is adjacent numbers in same suit, i.e. 4 and 3 in most valuable suit (royal flush) wins
against every other hand. This is the game on which we tested adaptation in the models and human participants.

• High card: Highest card wins.
• Pairs Same as high card, except pairs are more valuable, and same suit pairs are even more valuable.
• Match: The hand with cards that differ least in value (suit counts as 0.5 pt difference) wins.
• Blackjack: The hand’s value increases with the sum of the cards until it crosses 5, at which point the player “goes bust,”

and the value becomes negative.

We also considered three binary attributes that could be altered to produce variants of these games:

• Losers: Try to lose instead of winning! Reverses the ranking of hands. This is the mapping we evaluated in the models
and human participants.

• Suits rule: Instead of suits being less important than values, they are more important (essentially flipping the role of
suit and value in most games).

• Switch suit: Switches which of the suits is more valuable.

Any combination of these options can be applied to any of the 5 games, yielding 40 possible games. We held out all losing
variations of the Straight Flush game for evaluation.

Meta-mappings: We trained the network on meta-mappings that toggled each of the binary attributes, but evaluated
primarily on switching to losing the Straight Flush game (since that corresponded to the human experiment).

Meta-classifications: For meta-tasks, we gave the network 8 task-embedding classification tasks (one-vs-all classification
of each of the 5 game types, and of each of the 3 attributes)

Language: We encoded the tasks in language by sequences of the form
[‘‘game’’, <game_type>, ‘‘losers’’, <losers-value>, ‘‘suits rule’’, <suits-rule-value>,
‘‘switch suit’’, <switch-suit-value>].

Fig. S2. Sample stimuli for visual concept tasks, showing all shapes, colors, and sizes.

B.3. Visual concepts. In Fig. S2 we show all shapes (triangle, square, plus, circle, tee, inverseplus, emptysquare, emptytriangle),
colors (blue, pink, purple, yellow, ocean, green, cyan, red), and sizes (16, 24, and 32 pixels) that we used in our experiments.
All stimuli were rendered at random positions within a 50× 50 image (constrained so that the full shape remained within the
frame), and at random angles within ±20◦ of their canonical orientation.

Sampling of meta-mappings: We sampled an equal number of meta-mappings that switched colors and meta-mappings
that switched shape. We held-out one meta-mapping of each type. Within each type, the particular meta-mappings used for
training and evaluation on a given run were sampled uniformly at random.

Andrew K. Lampinen, James L. McClelland 9 of 37

Sampling of basic concepts: We trained the system on all uni-dimensional concepts as training examples (i.e. one-vs.-all
classification of each shape, color, and size), so that it could learn all the basic attributes. We included 6 training example pairs
of each mapping (one for each combination of rule type and other attribute). We also included 6 other pairs for evaluation,
where the source concept was trained, but the target was held-out for evaluation. Note that our selection criteria mean that each
held-out example will have a closely matched trained one. That is, the number of basic concepts the system encounters during
training is roughly 18 trained per meta-mapping (roughly because it can be reduced if the meta-mappings have overlapping
examples), and the number of evaluation concepts is roughly 6 per meta-mapping. For example, the system might be trained
on mappings like “switch-red-to-blue,” with corresponding examples like AND(red, triangle) 7→ AND(blue, triangle). It would
then be evaluated on closely matched examples like AND(red, circle) 7→ AND(blue, circle), where the latter is untrained.

In addition to these sampled pairs, we trained the meta-mapping on any other pairs of concepts which were valid examples of
the mapping and happened to be sampled as part of support for other meta-mappings. For example, if AND(red, square) was
a train target task for some other mapping, and AND(blue, square) was a trained source task for another, the pair AND(red,
square) 7→ AND(blue, square) would be used to train the “switch-red-to-blue” meta-mapping.

For a held-out meta-mapping, e.g. “switch-green-to-blue,” the same basic concepts instantiating the meta-mapping were
trained as would be for a trained mapping, but the meta-mapping itself was not. As in the polynomials domain, matching the
training of the supporting basic tasks between trained and held-out meta-mappings makes the comparison between them more
precise.

Meta-classifications: In addition to the meta-mappings mentioned in the main text, we trained the system on 9 meta-
classifications: classifying whether the task was a basic-level rule on any of the three basic dimensions, classifying whether each
dimension was relevant (regardless of whether the task was basic or composite), and classifying the type of composite (if the
task was not basic).

Language: We encoded the tasks in language by sequences from the following grammar:

• Basic rules: encoded as [<attribute-name>, ‘‘=’’, <attribute-value>], for example
[‘‘shape’’, ‘‘=’’, ‘‘triangle’’]

• Composite rules: encoded as [<composite-type>, ‘‘(’’, ‘‘(’’, <basic-rule>, ‘‘)’’,
‘‘&’’, ‘‘(’’, <basic-rule>, ‘‘)’’, ‘‘)’’], where the <composite-type> is one of “AND”, “OR”, or “XOR”, and
each <basic-rule> is substituted with a sequence as above.

• Meta-mappings: encoded as [‘‘switch’’, <attribute-name>, <old-attribute-value>, ‘‘~’’,
<new-attribute-value>].

• Meta-classifications: encoded as [‘‘is’’ <composite-type>] or
[‘‘is’’, ‘‘basic’’, ‘‘rule’’, <attribute-name>] or
[‘‘is’’, ‘‘relevant’’, <attribute-name>], depending on the type of classification.

B.4. RL. The RL tasks were implemented using the open-source Pycolab library (https://github.com/deepmind/pycolab). The
tasks were implemented in a 6× 6 room, surrounded by an impassable varrier. The agent could navigate using four actions,
corresponding to moving in the four cardinal directions. If it attemtped an invalid action, the state did not change.

Each episode ended after either 150 timesteps elapsed (that is, after the agent took 150 actions, including invalid actions), or
after the agent had picked up 4 of the 8 objects (regardless of whether they were good or bad) in the pick-up task, or pushed
off 4 of the 8 in the push-off task The agent received a reward of +1 for picking up or pushing off the good-colored objects,
and −1 for the bad-colored objects. Selected recordings of the agent playing the games after meta-mapping can be found at
https://github.com/lampinen/homm_grids/tree/master/recordings, which may help clarify any unclear aspects of the tasks.

Meta-classifications: We did not train any meta-classifications in this setting.
Language: We encoded the tasks in language by sequences of the following form:

• Basic task: encoded as [<game-type>, <color1>, <color2>, <good-color-position>], where <game-type> was
either “pusher” or “pickup”, colors were names of a color pair, and <good-color-position> was “first” or “second”
depending on whether the first color was good, or the second color (after switching).

• Meta-mapping: encoded as [‘‘switch’’, ‘‘colors’’].

C. Cards behavioral experiment. Here we provide the details of the human experiment for the cards tasks. The human
experiment was conducted on Amazon Mechanical Turk. Our study protocol was approved by the Stanford University
Institutional Review Board panel on Human Subjects in Non-Medical Research. At the beginning of the experiment, subjects
were given overview of the general topic of the experiment (game playing) and the compensation scheme, and then were
informed that they could opt out of the experiment at any time if they did not wish to participate further.

We tried to design the game that participants played to make it easy for them to learn, without relying on their prior
knowledge of card games. The game was a simplified variation of poker, which we denoted “Straight Flush” in the card game
descriptions above. The participants were dealt hands which consisted of two cards, each with a number (rank) between 1 and
4, and a color (suit) of red or black. The participants played against a computer opponent that was dealt a similar hand. The
hands were ranked such that straight flushes (adjacent cards in the same suit) beat adjacent cards in a different suit, which
beat non-adjacent cards (including pairs). Ties were broken by the highest card, or by suit if both cards were tied.

10 of 37 Andrew K. Lampinen, James L. McClelland

https://github.com/deepmind/pycolab
https://github.com/lampinen/homm_grids/tree/master/recordings

(a) Before betting. (b) Feedback.

Fig. S3. The card game experiment trials, as seen by participants. (a) The beginning of the trial, in which participants can see their hand, and choose an amount to bet by
clicking on it. (b) The feedback phase, where participants saw their opponents hand and the result. In the evaluation trials, where participants did not receive feedback, this
phase was replaced with a semi-transparent gray overlay before the next trial.

On each trial, participants were dealt a hand and asked to make a bet of 0, 5, or 10 cents (see Fig. S3). If their hand beat
the opponent’s hand, they won the bet amount. If their hand lost, they lost it. If the hands were tied, they neither won nor
lost money.

The experiment had several phases. First, participants were instructed in the rules and payment scheme for the experiment.
Next, they were instructed on the rules of the game. After this, they were tested with four hand-comparison trials intended to
probe their understanding of each of the rules of the game. If they failed more than one of these trials, they were not allowed
to continue with the experiment.

Following this understanding check, participants played a block of 32 hands (sampled to have a diversity of expected values),
where they saw the results of their play (as in Fig. S3b). After this block, they played a similar block of 24 trials where they
did not see the results of their play. The results were replaced with a brief grayed-out screen, and participants were payed the
net expected value of their actions over the block (rounded to the nearest 10). The evaluation phase without feedback provides
an evaluation with relatively less potential for learning, in order to get a precise estimate of their performance.

Finally, participants were told that we wanted them to try to lose for the remaining trials, and that “for the remainder of
the experiment, if you bet and lose, you’ll gain the amount you bet, and if you bet and win, you’ll lose the amount you bet.”
They were then given an attention check to evaluate whether they had understood this instruction. Subjects who failed this
attention check were excluded from the analysis. They then played another block of 24 trials where they were rewarded for
losing instead of winning (i.e. the relationship between actions and expected returns was reversed relative to the first phase
of the experiment). As in the previous block, they did not see the results of their actions, they were only shown their total
earnings at the end of the block. By not providing feedback on each trial, we were able to get many trials of “zero-shot” data,
to more carefully evaluate their performance. They were finally asked a few demographic questions.

Our target comparison was performance in the two blocks without feedback – were participants able to switch their behavior
to lose at the game as well as they won at it? Rather than evaluating on stochastic rewards based on sampled opponent hands,
we evaluated them by the expected value of their performance across the hands they played. This is exactly analogous to the
experiment performed for the model (except that the performance of the model was evaluated on all possible hands in each
condition, which was infeasible for the human participants).

Participants were paid $1 for starting the experiment and completing the instruction section. If they failed the first
understanding check, the experiment ended. Otherwise, they were paid an additional $1.50 to complete the performance phase,
and then were bonused based on their winnings to incentivize performance. We recruited 40 participants for the experiment,
but only 19 successfully passed the first understanding trials. Of those 19, only 17 passed the try-to-lose attention check, so our
analyses were restricted to 17 subjects.

Further details of the experiment, including the text of all instructions, can be found in the first author’s dissertation (7, pp.
112-117, accessible at https://stacks.stanford.edu/file/druid:xj689nb3522/dissertation-augmented.pdf).

D. Source repositories. The full code for the experiments and analyses can be found on github:

• Meta-mapping library: https://github.com/lampinen/HoMM
• Polynomials: https://github.com/lampinen/HoMM_polynomial_analysis
• Cards (models): https://github.com/lampinen/HoMM_cards
• Cards (human experiment): https://github.com/lampinen/cards_for_humans

Andrew K. Lampinen, James L. McClelland 11 of 37

https://stacks.stanford.edu/file/druid:xj689nb3522/dissertation-augmented.pdf
https://github.com/lampinen/HoMM
https://github.com/lampinen/HoMM_polynomial_analysis
https://github.com/lampinen/HoMM_cards
https://github.com/lampinen/cards_for_humans

• Concepts: https://github.com/lampinen/categorization_HoMM
• RL: https://github.com/lampinen/HoMM_grids
• Stroop results (below): https://github.com/lampinen/stroop

E. Other acknowledgements. The color palettes used in the figures are adapted from ColorBrewer (8). The playing card images
used in the main text are based on the images at https://commons.wikimedia.org/wiki/Category:Playing_cards_set_by_Byron_Knoll
on WikiCommons, which the creator kindly released for use.

F. Supplemental analyses & figures. The analyses are organized as follows. In F.1, we show additional analyses in the polynomial
domain, including evaluation of sample efficiency and several architectural lesions. In F.2, we analyze the representations of the
models in the polynomial domain, showing that they are systematically organized across runs, and presenting further details on
the representation transformation results presented in the main text. We also show evidence that the meta-mapping and basic
task representations are sharing representational subspaces, and show significant overlap with isomorphisms we know exist
between them in the polynomials domain. In F.3, we show further analyses of the results of the card game experiments, both
from the behavioral and modeling perspective. In F.4 we show more detailed results in the visual concepts domain. In F.5 we
show further analyses of the RL experiments. In F.6 we provide details and analyses for the comparisons to generalizing from
language alone, and in F.7 we provide additional experiments on generalizing from switching colors to switching shapes in the
RL context. In F.8, we provide further analyses of meta-mapping as a starting point for later learning. In F.9, we demonstrate
our model on a simple Stroop-like task, common in cognitive control.

Fig. S4. Basic task (meta-learning) performance in the polynomials domain over learning. The system is generalizing at the meta-learning level. That is, this graph shows that,
after the example network receives a set of (input, output) example tuples, it is generating a sufficiently good representation to regress held-out points from that polynomial. This
is true both for polynomials it was trained with (green), and for polynomials that are held-out and never encountered during training (pink). Performance is plotted normalized as
100%×(1− loss/c), where c is the loss for a system outputting all zeros, as in the meta-mapping results. In this case, this measure corresponds exactly to the percentage of
variance explained. (Thick dark curves are averages over 5 runs, shown as light curves.)

Evaluation types MSE loss Normalized performance

Meta-mapping trained? Polynomial is trained example? Meta-mapping Zeros No adaptation Meta-mapping No adaptation

Trained Support (trained) 0.317 18.8 18.1 98.3% 4.18%
Trained Probe (held-out) 1.85 16.7 16 89% 4.26%

New Support (trained) 0.97 12.4 9.89 92.1% 20.6%
New Probe (held-out) 1.56 10.8 8.71 85.5% 19.3%

Table S4. The raw mean-squared-error (MSE) losses and the normalized performance measures after meta-mapping in the polynomials
domain. The first column indicates whether the meta-mapping is trained or held-out, and the second indicates whether the polynomial is
provided as an example of the mapping (and is therefore used for training the mapping, if the mapping is trained) or if the polynomial is held
out for evaluation. The meta-mapping columns provide the MSE/performance for the model after meta-mapping, the zeros column provides
the loss for a model that outputs all zeros, and the “No adaptation” columns provide the MSE/performance for a model using the unadapted
source task representations. The normalized performance measure is calculated as 100% ×(1−Model MSE/Zeros MSE).

F.1. Polynomials. Basic meta-learning: In Fig. S4, we show that the basic meta-learning is working well in the polynomials
domain. That is, we show that after the example network is presented with a set of example input, output pairs from a

12 of 37 Andrew K. Lampinen, James L. McClelland

https://github.com/lampinen/categorization_HoMM
https://github.com/lampinen/HoMM_grids
https://github.com/lampinen/stroop
https://commons.wikimedia.org/wiki/Category:Playing_cards_set_by_Byron_Knoll

Fig. S5. The effect of number of examples on basic task performance in the polynomials domain. The system is relatively sample efficient. Its performance is quite high by the
time it has received the minimum number of samples that an optimal least-squares solver with knowledge of the ground-truth task space would need (that is, the dimensionality
of the polynomial vectors space, indicated by the vertical dotted line), although the performance continues to improve slowly beyond that point. (Averages across 4 runs, with
bootstrap 95%-CIs across runs.)

polynomial, the system is generalizing well to other points from that polynomial. At the end of training, the mean performance
on trained polynomials is 99.78% (bootstrap 95%-CI [99.74, 99.84]), and for held-out polynomials it is 94.8 (bootstrap 95%-CI
[93.8, 95.9]).

Relationship of raw meta-mapping performance to normalized performance: In Table S4, we show the relation-
ship between the mean-squared-error (MSE) losses of the model on meta-mapped tasks, and the normalized performance
measure we report in the main text. Note that this table includes results for training examples, while the main text only
reports the evaluation results. For context, the MSE of the model when performing a trained polynomial from examples is
0.025, and the performance is 99.8% (see above), so the model is not performing quite as well after meta-mapping even a
trained example polynomial as it performs a trained polynomial from examples. This is not particularly surprising, since there
are more sources of noise in meta-mapping a task — first, the representation of the source task, next the representation of the
meta-mapping, and finally the transformation itself.

Sample efficiency (base tasks): In Fig. S5, we explore the sample efficiency of the basic meta-learning system by
evaluating how the performance of the system changes depending on the number of examples it is given. Note that because the
models were trained with 50 examples per polynomial, performance at smaller sizes would likely improve somewhat beyond
these results if it were trained initially with smaller numbers of examples.

Meta-mapping results by mapping type: In Fig. S6 we show the meta-mapping results in the polynomials domain,
broken down by the type of mapping. The system performs well across all mapping types.

Sample efficiency (meta-mappings): In Fig. S7, we show how the meta-mapping performance depends on the number
of examples — that is, (input task, output task) tuples — that the system is given. Performance is unsurprisingly quite low
with 1 example, but increases rapidly with a few examples. In Fig. S8 we show performance by number of examples for each
meta-mapping type. The square meta-mapping in particular is difficult, and performance is actually negative with only a few
examples of it, unlike the other mappings. However, once the system receives enough examples, it is able to recognize the
square mapping and perform well at it.

Nonhomiconic architectures: We next consider some architecture lesions. In Fig. S9, we compare our homoiconic
architecture to a nonhomoiconic architecture – i.e. one in which there are separate example networks (Ebase, Emeta) and hyper
networks (Hbase,Hmeta) for the base tasks and meta-mappings. The nonhomoiconic approach performs substantially worse.
Specifically, on trained meta-mappings the homoiconic model is achieving a normalized performance of 88.99% (bootstrap
95%-CI [88.20, 89.98]), while the non-homoiconic achieving a normalized performance of 83.2% (bootstrap 95%-CI [81.9, 84.9]).
On new meta-mappings the homoiconic model is achieving a normalized performance of 85.54% (bootstrap 95%-CI [85.14,
85.94]), while the non-homoiconic model is achieving a normalized performance of 81.3% (bootstrap 95%-CI [80.3, 82.2]). (See
also Sec. F.2, in which we show that there is intriguing overlap between the representations of meta-mappings and base tasks
in a homoiconic architecture.)

A simpler task architecture: In Fig. S10a we show that a simpler task network, which just takes a task representation as
another input to feed-forward processing, performs perhaps slightly worse than the HyperNetwork-based approach. Specifically,
in the simpler architecture, there is a fixed feed-forward task network, and rather than using the task representation to alter
the weights of this network, the task-representation is simply concatenated to the input representation and then propagated
through the fixed network. Note that the task-concatenated architecture does not perform worse at meta-learning (normalized
performance on evaluation tasks 95.7%, bootstrap 95%-CI [95.0, 96.6] vs. 94.8% [93.8, 95.9]), it is adapting via meta-mappings

Andrew K. Lampinen, James L. McClelland 13 of 37

that proves challenging for it.
Meta-classification task lesion: In Fig. S11a we show that the meta-classification training is not beneficial in the

polynomials domain. Specifically, on trained meta-mappings the model is achieving a normalized performance of 88.99%
(bootstrap 95%-CI [88.20, 89.98]), while without meta-classification it is achieving a normalized performance of 89.7% (bootstrap
95%-CI [88.87, 90.61]). On new meta-mappings the model is achieving a normalized performance of 85.54% (bootstrap 95%-CI
[85.14, 85.94]), while without meta-classification it is achieving a normalized performance of 86.29% (bootstrap 95%-CI [85.54,
86.79]). However, the effect is small, and in Fig. S11b we show that meta-classification may be helpful in the cards domain,
where there are fewer training tasks.

Fig. S6. Meta-mapping performance in the polynomials domain, broken down by meta-mapping type. We plot a normalized performance measure, as in the main text. The
system is performing well across all meta-mapping types, although there is some variability. Triangles show performance of a baseline model that does not adapt — note that
some meta-mappings are relatively easier for such a model, while in other cases such a model results in worse performance than outputting all zeros.

14 of 37 Andrew K. Lampinen, James L. McClelland

Fig. S7. The effect of number of examples on meta-mapping performance (for add, multiply, and permute) in the polynomials domain. The system is relatively sample efficient.
Although the system was trained with 30 examples of each meta-mapping, performance is relatively stable above 16 examples. (Averages across 4 runs, with bootstrap
95%-CIs across runs. The square meta-mapping is omitted from the data in this plot because of its unique trajectory, see Fig. S8.)

Fig. S8. The effect of number of examples on meta-mapping performance in the polynomials domain, broken down by meta-mapping type. The sample efficiency of the system
depends on the meta-mapping. In particular, the square meta-mapping is difficult to estimate from few examples, and performance on that mapping is quite low with small
numbers of examples. (Averages across 4 runs, with bootstrap 95%-CIs across runs.)

Andrew K. Lampinen, James L. McClelland 15 of 37

(a) The polynomial domain, compare to Fig. 3. (b) The cards domain, compare to Fig. 5.

Fig. S9. Our homoiconic model outperforms or equals a non-homoiconic baseline in the polynomials and cards domains. This figure compares the meta-mapping performance
of our architecture with that of a nonhomoiconic model that instantiates separate copies of the example network (Ebase, Emeta) and hyper network (Hbase,Hmeta) for the
basic tasks and the meta-mappings. In the polynomials domain (a), the homoiconic architecture significantly outperforms the nonhomoiconic one, while in the cards domain (b),
the difference is not significant. These results suggest that there is sufficient shared structure between the basic tasks and the meta-mappings for the homoiconic approach to
improve generalization, at least in the polynomials case, and supports our use of homoiconic architectures.

(a) The polynomial domain, compare to Fig. 3. (b) The RL domain, compare to Fig. 9.

Fig. S10. The HyperNetwork-based architecture we propose in the main text performs as well or better on meta-mappings than an architecture that simply concatenates a task
representation to the input before passing it through a fixed MLP, at least on the subset of our domains on which we ran a comparison. (See Fig. S29 for a similar comparison
for the language generalization baseline.)

16 of 37 Andrew K. Lampinen, James L. McClelland

(a) The polynomial domain, compare to Fig. 3. (b) The cards domain, compare to Fig. 5.

Fig. S11. The meta-classifications we trained the model with do not appear to be substantially beneficial — a model trained without them performs slightly better in the
polynomials domain, while the model trained with them performs marginally better in the cards domain. This difference may be due to the fact that the model is trained on many
more basic tasks in the polynomials domain, perhaps obviating the need for meta-classification to shape the representations.

F.2. Polynomial representations. In order to understand the model better, we analyzed its task representations.
However, we note that there are challenges to interpreting representation analyses, particularly in an architecture like ours.

Some recent work (9) shows two key challenges of representation analysis. Although that work explored different types of
analyses in simpler models, the findings may also apply to this work. First, the representations of a model that performs
multiple tasks may be biased towards the simpler tasks, because of the learning dynamics. This may relate to some phenomena
we observe below, such as the first principal components of the task representations being driven in large part by the polynomial
constant terms, since constant polynomials are the simplest tasks. Second, when the task is non-linear, linear representation
analyses can be misleading. The task representations in our model are related to the behavior in a highly non-linear way.
Thus, it is not necessary for the representations to be linearly organized for the model to generalize well — indeed, we show
below that the model representations may be organized in a more polar structure. Furthermore, our model’s mapping of task
representations to tasks may be many-to-one; just as we can write either (x+ 1)2 or x2 + 2x+ 1 to denote the same function,
the model may be able to represent the same task with multiple distinct representations. These issues make finding certainty
in the meaning of the model’s representations difficult.

Nevertheless, the representations do show interesting structure that gives some intuitions for how the model may be
performing the tasks. This structure is also relatively consistent across runs, suggesting that the underlying dynamics driving
the emergence of these representations are fundamental to the interaction of the task space and the architecture — this merits
future investigation. We first examine how the representations of the polynomials are organized, then provide some further
details on how they transform under additional meta-mappings, and finally show some relationships between the representations
of meta-mappings and basic polynomials.

PCA: First, we performed principal components analysis on the task and meta-mapping representations in the model after
training (Fig. S12). This analysis reveals strikingly similar organization of the representation space across different training
runs, with constant polynomials pushed to the outside in a semi-circle, and more complex polynomials stretching toward the
center, where meta-mappings and meta-classifications are located. This may be due to the learning dynamics — the distance
of the task representations from the center appears to be roughly inversely proportional to the complexity of the task, which
might imply that the constant polynomials have the largest-magnitude representations because they are easiest to learn, and so
their representations receive more consistent updates starting from earlier in the learning process.

To analyze this further, in Fig. S13 we plot the representations for only the constant polynomials, colored by their value
(square-root compressed for clarity). This shows that the representations of the constant polynomials are consistently arrayed
angularly from lowest to highest value.

Finally, we examined the meta-mapping representations more closely (Fig. S14). This analysis shows that the mappings
have a consistent organization across runs, with permutations and addition grouping tightly, but multiplication and squaring,
which more drastically alter the polynomials, more dispersed. In particular, multiplying by negative numbers and squaring,
which can change polynomials signs and therefore cause a more drastic adaptation, are more separated from the remaining
meta-mappings. It is also interesting to note that the addition meta-mappings appear to be organized more by absolute value
than sign in at least some runs. There is some interesting structure in higher principal components as well, for example the
addition mappings appear to be organized linearly by absolute value in principal components 3 and 4. The organization of the
permutation mappings is more chaotic — while mappings that have similar representations appear more likely to differ by only
a transposition, because the relationships among the permutations have a much higher-dimensional group structure, they do

Andrew K. Lampinen, James L. McClelland 17 of 37

not project cleanly into two-dimensional plots.
How meta-mapping transforms the representations: Next, we analyzed how meta-mapping transforms the task

representations (Fig. 4). We conducted these analyses (and some of the subsequent ones on homoiconicity and representations)
at the suggestion of a reviewer; because of this, there were conducted on a new set of runs, as we had not retained the model
parameters for the prior runs. Here, we show some more detailed results. First, in Fig. S15, we show higher-resolution versions
of the inset figures from Fig. 4, showing the alignment between the meta-mapping outputs and the nominal targets. Second, in
Fig. S16 we show the transformations induced by two additional meta-mappings, adding 3 and an input permutation.

Homoiconicity and overlap between different representations of different data types in the shared space:
We then explored how homoiconicity contributes to the success of the model, by analyzing the relationship between the
representations of basic tasks and meta-mappings. This is motivated by an observation by a reviewer that one possible
explanation for our observation (above) that homoiconic architectures yield better performance is that the result is purely due to
regularization, and that the basic tasks and meta-mapping representations reside in orthogonal subspaces of the representation
space. While it is difficult to completely rule out the possibility that regularization is playing a role, in this section we show at
least that there is more overlap between the meta-mapping and base-task subspaces than would be expected by chance, and
that at least some sensible isomorphisms between the basic tasks and meta-mappings may be shaping the representations.

First, in Fig. S17, we explore the cosine similarity between base-task and meta-task representations. We observe non-trivial
overlap, which we explore in greater detail in Fig. S18, showing that there is strong and sparse alignment between the top
principal components of the polynomials and the meta-mappings, and Fig. S19, showing that the variance of the meta-mapping
representations is mostly contained within lower (more important) principal components of the base task representations.
Finally, in Fig. S20, we show intriguinging patterns of alignment of the multiplication meta-mappings and constant polynomials
depending on whether the signs match, which suggests that the model may be at least partly uncovering the isomorphic
numerical structure between these different levels of abstraction. Exploring the alignment between base tasks and meta-mappings
further will be an interesting direction for future work.

We also explored the relationship between the representations of basic data inputs to the model (that is, (w, x, y, z) tuples
at which to evaluate a polynomial), and the representations of tasks and meta-mappings. The magnitude of the similarities
was overall quite small (see Fig. S21), suggesting that, unlike in the case of meta-mappings and base tasks, the model is
not substantially exploiting relationships between tasks and data points. This result is not particularly surprising for several
reasons. First, there is more structure in common between basic tasks and meta-mappings than between either category and
data points, because both basic tasks and meta-mappings are functions. Second, there are more constraints that encourage
basic task and meta-mapping representations to be similar in the homoiconic architecture — both are output by the same
example network, and both are processed by the same hyper network. By contrast, data points and basic tasks only have a
one-sided constraint, viz. that they are both processed by the same example network.

18 of 37 Andrew K. Lampinen, James L. McClelland

Number of
relevant variables

● ● ● ● ●0 1 2 3 4 Type ● Base (polynomial) Meta Class. Meta Mapping

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●●

●
●

●

●● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

−0.05

0.00

0.05

−0.03 −0.02 −0.01 0.00 0.01
PC 1

P
C

 2

Run 0

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

● ●

●
●

●

●

●

● ●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.06

−0.04

−0.02

0.00

0.02

0.04

−0.04 −0.02 0.00
PC 1

P
C

 2

Run 1

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

−0.075

−0.050

−0.025

0.000

0.025

0.050

−0.03 −0.02 −0.01 0.00 0.01
PC 1

P
C

 2

Run 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●
●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

−0.03

0.00

0.03

0.06

−0.04 −0.03 −0.02 −0.01 0.00 0.01
PC 1

P
C

 2

Run 3

Fig. S12. Principal components of task and meta-mapping representations of our model after training on the polynomials domain. The representation space is organized
relatively consistently across runs, with constant polynomials pushed to the outside, and meta-mappings and meta-classifications more centrally located.

Andrew K. Lampinen, James L. McClelland 19 of 37

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

−0.05

0.00

0.05

−0.03 −0.02 −0.01 0.00 0.01
PC 1

P
C

 2

−16

−4

0

4

16

36

Value
(sqrt)

Run 0
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

● ●

●●

●

●

●
●

●●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

−0.06

−0.04

−0.02

0.00

0.02

0.04

−0.04 −0.02 0.00
PC 1

P
C

 2
−4

0

4

16

Value
(sqrt)

Run 1

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

−0.075

−0.050

−0.025

0.000

0.025

0.050

−0.03 −0.02 −0.01 0.00 0.01
PC 1

P
C

 2

−4

0

4

16

Value
(sqrt)

Run 2

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●
● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●●●

●

●

●

●●

●
●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

−0.03

0.00

0.03

0.06

−0.04 −0.03 −0.02 −0.01 0.00
PC 1

P
C

 2

−4

0

4

Value
(sqrt)

Run 3

Fig. S13. Principal components of constant polynomial representations, showing systematic organization by value. Intriguingingly, this relationship appears to be systematically
non-linear across runs. (PCs computed across all task representations, color scale of values is compressed with a square-root transformation.)

20 of 37 Andrew K. Lampinen, James L. McClelland

square

add_−3

add_−1
add_1add_3

mult_−3

mult_−1

mult_3
perm 1320

perm 1302perm 3201

perm 2103

perm 3102

perm 0132

perm 2031

perm 3210
perm 2301

perm 1203
perm 1023

perm 2310

−0.2

0.0

0.2

0.4

0.6

−0.18 −0.17 −0.16 −0.15 −0.14
PC 1

P
C

 2

Run 0

square

add_−3
add_−1add_1

add_3

mult_−3

mult_−1

mult_3

perm 1320perm 1302
perm 3201

perm 2103

perm 3102

perm 0132
perm 2031

perm 3210

perm 2301
perm 1203perm 1023
perm 2310

0.00

0.25

0.50

−0.18 −0.16 −0.14 −0.12
PC 1

P
C

 2

Run 1

square

add_−3add_−1
add_1

add_3

mult_−3

mult_−1

mult_3

perm 1320
perm 1302
perm 3201perm 2103perm 3102
perm 0132

perm 2031

perm 3210

perm 2301perm 1203perm 1023

perm 2310

−0.2

0.0

0.2

0.4

0.6

0.24 0.25 0.26 0.27 0.28
PC 1

P
C

 2

Run 2

square

add_−3
add_−1add_1

add_3

mult_−3

mult_−1

mult_3

perm 1320

perm 1302
perm 3201

perm 2103perm 3102

perm 0132

perm 2031perm 3210
perm 2301

perm 1203

perm 1023

perm 23100.00

0.25

0.50

−0.18 −0.17 −0.16 −0.15 −0.14
PC 1

P
C

 2

Run 3

Fig. S14. Principal components of meta-mapping representations in the polynomial domain, showing systematic organization by type. Permutation mappings cluster tightly, as
do addition, while multiplication and squaring are more dispersed. The addition and multiplication mappings are partially organized by absolute value.

Andrew K. Lampinen, James L. McClelland 21 of 37

3.97

−3.55−1.60−1.64z

3.54x
0.43+0.34w^2

2.39+3.07y+0.20x^2−2.23y^2

PC 1

P
C

 2

(a) Meta-mapping: multiply by 3.

3.97

−3.55−1.60−1.64z

3.54x

1.56+1.46y

−2.18+1.10x

PC 1

P
C

 2

Mapping
Nominal
target
Actual
output

−4

0

4

16

Polynomial
constant
term

(b) Meta-mapping: square.

Fig. S15. The match between the meta-mapping outputs and the nominal targets (higher-resolution versions of the inset figures from Fig. 4). (a) The multiply by 3 meta-mapping.
(b) The square meta-mapping. The meta-mapping outputs are generally close to the nominal targets (and note that mismatch does not necessarily indicate a mistake, see main
text).

−0.01

0.00

0.01

−0.010 −0.005 0.000 0.005
PC 1

P
C

 2

(a) Meta-mapping: add 3.

−0.01

0.00

0.01

−0.010 −0.005 0.000 0.005
PC 1

P
C

 2 −16

−4

0

4

16

Polynomial
constant
term

(b) Meta-mapping: permute (z, y, x, w).

Fig. S16. Visualizing how other meta-mappings transform the polynomial model representations (compare to Fig. 4). (a) The add 3 meta-mapping. Adding a constant results in
rotation of the polynomial representations, and a slight outward expansion (as the polynomials become relatively more dominated by their constant terms). (b) A permutation
meta-mapping which affects all variables (note: only non-constant polynomials are included in this panel). The reorganization of the space under the permutation is difficult to
interpret, likely because the structure of the polynomial variables is higher dimensional, and involves many more principal components.

22 of 37 Andrew K. Lampinen, James L. McClelland

Run 4 Run 5

Run 1 Run 2 Run 3

−0.5 0.0 0.5 1.0 −0.5 0.0 0.5 1.0

−0.5 0.0 0.5 1.0
0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

Cosine between representations

D
en

si
ty

Task pairing

Scrambled control

Base vs. base

Meta vs. meta

Base vs. meta

Fig. S17. There is non-trivial overlap between the representations of meta-mappings and base tasks in the polynomials domain. This figure plots the cosine similarity between
different groups of representations, base tasks vs. base tasks. meta tasks vs. meta tasks, base tasks vs. meta tasks, and a control similarity distribution from a scrambled
representation matrix. Although base tasks are more similar to other base tasks than to meta tasks, there is more similarity between the base and meta representations than
would be expected by chance, though the absolute amount varies from run to run.

Run 1 Run 2 Run 3 Run 4

O
riginal

S
cram

bled control

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0

5

10

15

20

0

5

10

15

20

Base P.C. index

M
et

a
P

.C
. i

nd
ex

0.

0.16 − max.
in scrambled

0.52 − max.
in original

Alignment
(Abs. cosine)

Fig. S18. There is nontrivial overlap between the top 20 principal components of the base task representations, and the top 20 principal components of the meta task
representations, in the polynomials domain. For each run (columns), the top panel shows the alignment (abs. cosine similarity) between base task PCs (x-axis) and meta task
PCs (y-axis). The bottom panels show the same results for a matched control (a scrambled representation matrix). The color scale is set so that cells are colored green only if
the alignment is larger than any alignment observed in any control matrix. There are strong and relatively sparse alignments between the principal components of the basic-
and meta-tasks, showing that the representations are not residing in orthogonal subspaces, and suggesting that homoiconicity is contributing non-trivially to the representation
structure.

Andrew K. Lampinen, James L. McClelland 23 of 37

Run 3 Run 4

Run 1 Run 2

0 100 200 300 400 500 0 100 200 300 400 500

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Base PC index

C
um

ul
at

iv
e

m
et

a
re

pr
es

en
ta

tio
n

va
ria

nc
e

ex
pl

ai
ne

d

condition

Original
Scrambled
control

Fig. S19. The meta-task representation variance is preferentially distributed in the top principal components of the base task representations. For each run (panels), this plot
shows the cumulative meta-task representation variance (vertical axis) explained by the base task representation principal components (horizontal axis). The dark green line
shows the actual results, while the yellow line shows the results for a matched control (scrambled representation matrix). The meta-task representation variance is mostly
contained in the earlier (more important) base principal components, again suggesting that homoiconicity is contributing non-trivially to the representation structure.

0.00

0.05

0.10

0.15

1 2 3 4 5
Run

C
os

in
e

be
tw

ee
n

re
pr

es
en

ta
tio

ns

Base + meta
signs

Different sign

Same sign

Fig. S20. There is significant organization of the multiplication meta-mappings by sign, in alignment (or anti-alignment) with the signs of the constant polynomials. This plot
shows cosine similarity between representations of meta-mappings for the trained multiplication tasks (multiply by -3, -1, and 3) and the constant polynomials, depending on
whether the multiplication value (for the meta-mappings) and the constant value (for the basic tasks) have the same sign or different signs. The difference is significant in
each run (all ts > 5.3, all ps < 1 · 10−6), with greater similarity when the signs are aligned in all runs except run 4, where the effect goes in the opposite direction. These
results suggest that the homoiconic model may be exploiting homomorphisms between scalar values that appear in a constant polynomial, and scalar values that appear in a
meta-mapping (note that the non-canonical sign-switching alignment in run 4 may nevertheless capture useful structure).

24 of 37 Andrew K. Lampinen, James L. McClelland

3 4

1 2

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

0

5

10

0

5

10

Cosine between input point and task representations

D
en

si
ty

Task type

Base

Meta

Fig. S21. The cosine similarity between basic input representations and basic task or meta-mapping representations is fairly small, likely reflecting the smaller amount of
shared structure between these different entities, and the weaker constraints on alignment (see text for further discussion).

F.3. Cards. Further analyses of human performance: In Fig. S22 we show details of human participants performance on
the card game tasks, including bet densities and subject-level fits of betting probability by hand value. As noted in the main
text, the human subjects are performing far from optimally even in the trained task, and these figures show details on why this
is true: subjects are both sub-optimal in finding the threshold at which to switch from betting to not betting, and are betting
intermediate values, which an optimal better would not.

Basic meta-learning: In Fig. S23, we show that the basic meta-learning is working well in the cards domain. That is, we
show that after the example network is presented with a set of example (hand, bet, reward) tuples, the system is generalizing
well to other hands of that game. At the end of training, the mean reward on trained games is 99.20% of optimal (bootstrap
95%-CI [98.90, 99.40]), and for held-out games it is 83.82% (bootstrap 95%-CI [80.50, 86.00]).

Architectural comparisons: In Figure S9b we show that non-homoiconic architectures may perform slightly worse in the
cards domain, but the difference is not significant. Specifically, the homiconic model is achieving an average expected reward of
85.38% (bootstrap 95%-CI [79.49, 90.32]), while the non-homoiconic model is achieving an average expected reward of 79.49%
(bootstrap 95%-CI [69.50, 87.34]).

Meta-classification task lesion: In Figure S11b we show that meta-classification may be slightly beneficial in the cards
domain, but the difference is small. Specifically, the model is achieving an average expected reward of 85.38% (bootstrap
95%-CI [79.49, 90.32]), while without meta-classification it is achieving an average expected reward of 78.68% (bootstrap
95%-CI [71.01, 85.97]). Because the meta-classifications appear to be more useful in this domain than in the polynomials
domain, it is possible that they are particularly useful for understanding the structure of the task distribution when there are
fewer basic training tasks. However, further work would be needed to verify this.

Andrew K. Lampinen, James L. McClelland 25 of 37

(a) Basic game: Bet density by expected value. (b) Basic game: Probability of non-zero bet by expected value. The red dashed line is
the optimal threshold, the grey curves are the individual subject fits.

(c) Losing variation: Bet density by expected value. (d) Losing variation: Probability of non-zero bet by expected value. The red dashed line
is the optimal threshold, the grey curves are the individual subject fits.

Fig. S22. Human performance on the card game task. Top row is basic game evaluation (before being told to lose), bottom is after being told to lose. While participants are
performing well above chance, they are far from optimal. They make intermediate value bets, and do not switch optimally between betting and not betting depending on hand
value. There is also substantial inter-subject variability.

26 of 37 Andrew K. Lampinen, James L. McClelland

Fig. S23. Basic meta-learning performance in the cards domain over learning. The system is generalizing at the meta-learning level. That is, this graph shows that, after the
example network receives a set of (hand, bet, reward) example tuples from a game, it is generating a sufficiently good representation of that game to play held-out hands. This
is true both for gamess it was trained with (green), and for games that are held-out and never encountered during training (pink). (Thick dark curves are averages over 5 runs,
shown as light curves.)

F.4. Visual concepts. In Fig. S24 we show the proportion of runs in which the model achieved > 99% performance; systematic
generalization is increasingly likely as the number of training meta-mappings increases. In Fig. S25 we show learning curves for
all runs of the meta-mapping model on these tasks.

Fig. S24. In the visual concepts domain, the proportion of runs in which the model attained > 99% accuracy across all transformed concepts. The model shows extremely
systematic generalization on trained meta-mappings at moderate sample sizes. At the largest sample sizes we considered, the model is able to adapt near-perfectly to new
meta-mappings on many runs. Note that even at this largest sample size, the system is generalizing from only 32 trained meta-mappings.

Andrew K. Lampinen, James L. McClelland 27 of 37

0 1 2 3 4 5 6 7 8 9

4
8

12
16

20
24

32

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

Epoch (thousands)

A
ve

ra
ge

 e
va

lu
at

io
n

ac
cu

ra
cy

Trained
target
Held−out
target

(a) Trained meta-mappings.

0 1 2 3 4 5 6 7 8 9

4
8

12
16

20
24

32

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

50%

75%

100%

Epoch (thousands)

A
ve

ra
ge

 e
va

lu
at

io
n

ac
cu

ra
cy

Trained
target
Held−out
target

(b) Held-out meta-mappings.

Fig. S25. Meta-mapping performance (evaluated as average accuracy on the transformed task) in the visual concepts domain broken down by number of training meta-mappings
(rows), and by run (columns). The green lines are performance when the transformed task was encountered during training, the pink lines are performance on transformed
tasks that were never encountered during training. Panel (a) shows the results for trained meta-mappings, and panel (b) shows the results for held-out meta-mappings. With
more training meta-mappings, generalization is better both when applying the trained meta-mappings to held-out examples (a), and when applying held-out meta-mappings
(b). However, even with smaller sample sizes, the model is achieving perfect generalization on the trained meta-mappings on many runs. (The dotted line denotes chance
performance, the dashed line optimal.)

28 of 37 Andrew K. Lampinen, James L. McClelland

F.5. RL. In Fig. S10b we also show that the HyperNetwork-based architecture performs better in this domain.
Behavioral uncertainty in generalization: In Fig. S26 we show intriguing behavioral uncertainty in generalization,

where the model exhibits more uncertainty (takes longer to solve the task) even when it performs well. Selected recordings of
behavior can be found at: https://github.com/lampinen/homm_grids/tree/master/recordings.

●

●

●

●

25

50

75

100

125

Pick−up Push−off
Task

M
ea

n
st

ep
s

(m
et

a−
m

ap
pe

d)

●

●

Trained tasks

Held−out tasks

(a) Mean step counts.

●●

●●

●

●

●

●

●
●

0

25

50

75

100

−4 −2 0
Mean reward delta (MM train − eval)

M
ea

n
st

ep
 d

el
ta

 (
M

M
 tr

ai
n

−
 e

va
l)

●

●

Pick−up

Push−off

(b) Differences in steps vs. differences in rewards.

Fig. S26. The model exhibits behavioral uncertainty in meta-mapping generalization on the RL tasks, measured by the steps taken to complete each episode. (a) The model
takes more steps to complete episodes from the held-out tasks via a meta-mapping than to complete episodes from tasks used as training targets for the meta-mapping. That
is, it appears to be more uncertain about its behavior on the generalization tasks. (b) The behavioral uncertainty effect is not solely driven by the model performing more poorly
overall; even on the runs where it performs well, it is almost always taking longer to complete the episodes from the tasks it has never seen before. To show this, we plot the
difference in average steps vs. difference in average rewards between train and eval. Note that the step difference is almost always positive (evaluation tasks are slower), even
where rewards are comparable. (Panel a: means and bootstrap 95%-CIs across 5 runs. Panel b: each point is one game type within one run.)

F.6. Meta-mapping and language. In this section we show further figures and statistics corresponding for the language comparisons
mentioned in the main text, and some supplemental analyses and discussion of the performance of these models.

RL: The language-alone model performs the trained tasks well, but adapts poorly, with generalization performance of
-92.8% (mean, bootstrap 95%-CI [-96.3, -88.4]) on the pick-up task and -79.7% (mean, bootstrap 95%-CI [-92.8, -59.1]) on the
pusher task. The difference between the models is significant (t(20.6) = −19.515, p < 1 · 10−14) in a mixed linear regression
controlling for task type and a random effect of run.∗ Intriguingly, the language model does transiently exhibit slightly positive
generalization very early in learning (see Fig. S27), but decays to below chance as the model masters the training tasks. This
early generalization is not included in the main results since the train accuracy at this time is below the threshold of having
adequately learned the tasks.

By contrast, meta-mapping with task representations constructed from language performs well, with generalization
performance of 69.2% (mean, bootstrap 95%-CI [49.5, 84.5]) on the pick-up task and 74.9% (mean, bootstrap 95%-CI [60.9,
85.5]) on the push-off task. These models were trained separately from the language models whose results are reported
below, but the language-alone generalization performance of even the models trained with meta-mapping is poor (respectively
-79.6% [-95.0, -53.8] and -61.0% [-89.0, -0.195] on the two tasks). That is, meta-mapping at test time is key to generalization.
Meta-mapping is not restructuring the basic task representations to allow better generalization from language alone. This
is likely due in part to a memory limitation of the models, noted above — due to GPU memory constraints, meta-mapping
training was not able to alter the construction of the basic task representations. If a future implementation of the model
allowed this, meta-mapping training might be able to more directly improve basic-task generalization.

Cards: The language-alone model performed near-optimally at the trained tasks, but was not able to generalize well to the
losing variation from the given dataset (mean performance on losing variation 2%, bootstrap 95%-CI [−12, 16]), see Fig. S28.
Intriguingly, this corresponds to behaving approximately randomly; performance would be worse if the model did not adapt
at all. In Fig. S29 we show that the poor language generalization is not simply due to the HyperNetwork architecture, by
comparing to a task-concatenated architecture, as we did for meta-mapping in Fig. S10.

Visual concepts: In this setting the meta-mapping model and the language-alone model perform comparably (Fig. S30).
In Fig. S31 we show that the language generalization is better with a more complex architecture (deeper & nonlinear) than we
used for the meta-mapping approach. The comparisons in Fig.S30 use the better-performing architecture for each model.

The comparable performance in this domain may be due in part to the fact that our task sampling guaranteed a training
task close to each evaluation task in this setting. This may be because of the structure of the task spaces; there are many more
training visual concepts than training tasks in the other domains. Thus, while language-based generalization can be effective,

∗Degrees of freedom calculated by the Satterthwaite approximation.

Andrew K. Lampinen, James L. McClelland 29 of 37

https://github.com/lampinen/homm_grids/tree/master/recordings

meta-mapping may be especially useful when there are relatively few training tasks — that is, it may be more sample efficient.
However, another factor may be even more critical. The RL and Cards training tasks more directly contradict the evaluation
tasks. By contrast, in the visual concepts domain our task sampling guarantees that each held-out concept will have a “nearby”
training concept, one with the same relation type and same other attribute (see above). With less structured visual concept
sampling, meta-mapping’s advantage is slightly more clear (Fig. S32), even though the meta-mappings have less extensive
support sets in that case.

−100%

−50%

0%

50%

100%

0e+00 1e+05 2e+05 3e+05
Epoch

N
or

m
al

iz
ed

 r
et

ur
ns

 (
ev

al
ua

tio
n

ta
sk

s)

Trained

Held−out

Pick−up

Push−off

Fig. S27. Average performance of the language generalization model over training on the RL tasks. The model exhibits intriguing but transient generalization early in learning,
before it has understood the full structure of the tasks (especially the more difficult and sequential push-off task), but delays to below-chance generalization as it masters the
training tasks.

Chance

Optimal

0%

50%

100%

Winning
(trained)

Losing
(zero−shot adaptation)

Experiment phase

N
or

m
al

iz
ed

 e
xp

ec
te

d
ea

rn
in

gs

Meta−
mapping

Human

Language
alone

Fig. S28. Comparing language generalization to meta-mapping and human adaptation in the card games domain. The language-based model performs the trained tasks
optimally, but degrades to chance performance on the losing variation. (We plot performance as expected earnings of the actions taken, as a percentage of the earnings of an
optimal policy. Thick lines are averages, thin lines are 5 runs of each model, and 19 individual participants who passed attention checks.)

30 of 37 Andrew K. Lampinen, James L. McClelland

Fig. S29. Language generalization is similar in the cards domain with either the HyperNetwork architecture used by the meta-mapping model, or a simpler task-concatenated
architecture. See Fig. S10 above for a similar comparison for meta-mapping itself.

Fig. S30. Language generalization performs comparably to meta-mapping in the visual concepts domain, across training set sizes. (Results are from 10 runs for each model
with each training set size. Errorbars are bootstrap 95%-CIs across runs.)

Andrew K. Lampinen, James L. McClelland 31 of 37

Fig. S31. Comparing language generalization on the visual concepts tasks between a linear task network architecture and a deep, nonlinear one. The nonlinear task network
generalized better to new language instructions (comparisons shown are from the better version).

Fig. S32. Trained meta-mapping results in the visual concepts domain with 150 randomly sampled training concepts, rather than the structured sampling used in the main text.
This task sampling scheme means that some evaluation tasks will be farther from the trained tasks. Meta-mapping has a correspondingly larger advantage here. However, the
tasks are still likely to be closer to a trained task than in e.g. the RL setting where the evaluation tasks directly contradict the trained ones, and the language model is performing
correspondingly better here than on the RL tasks.

F.7. Generalizing from color to shape in RL. We next evaluated the generalization capabilities of meta-mapping in a more challenging
RL experiment. In this experiment, we trained the model on tasks similar to those in the main text experiments, but where the
good and bad objects could be discriminated by either color (with shape matched) or shape (with color matched). We trained
good-and-bad-switched variations of all color tasks, but did not train any switched variations of the shape-discrimination tasks.
Specifically, we used 8 colors, of which we used 4 for the pick-up tasks and 4 for the push-off tasks (so the task type would still
be superficially distinguishable. We trained color-discrimination between two pairs of colors in each type, when presented with
either both colors appearing on square shapes, or both appearing on diamond shapes. We also trained switched-good-and-bad
variations of all those color discrimination tasks. We then trained four shape discrimination tasks for each game type, one in
each of that game type’s four associated colors. In the shape discrimination tasks, the tee-shaped objects were always good,
and triangular objects were always bad. (This results in a total of 24 training tasks, a larger number than were included in the
main text experiments.)

We trained the “switch-good-and-bad” meta-mapping on the color discrimination tasks, and evaluated whether meta-mapping
was able to correctly generalize this meta-mapping from switching colors to switching shapes, in order to infer that the triangular

32 of 37 Andrew K. Lampinen, James L. McClelland

objects, which had always been negatively rewarded before, were now beneficial. We found it was useful to increase the initial
meta-mapping learning rate to 3 · 10−4, but otherwise used the same hyperparameters as the main text experiments. See
Fig. S33 for the results. We found that meta-mapping indeed allowed generalization well above chance. As in the main-text
experiments, this is true whether meta-mapping is performed using task and meta-mapping representations constructed from
examples (average returns across pick-up and pusher 64.3% percent of optimal, 95%-CI [55.1, 72.8]), or task and meta-mapping
representations constructed from language (average returns across pick-up and pusher 68.3% percent of optimal, 95%-CI [56.6,
78.3]). These experiments show that meta-mapping is able to successfully extrapolate well beyond the training examples of the
mapping, to transform behavior along new dimensions.

Intriguingly, the language-alone baseline model performed less poorly at these experiments than at the main text experiments,
although its generalization was not statistically different from chance (average returns 17.8% of optimal, 95%-CI [-4.0, 37.4]).
Note, however, that there are also 25% more training tasks in this setting than in the main text experiments. Furthermore, the
performance of language alone was still substantially worse than either meta-mapping approach. In a mixed model controlling
for game type and its interaction with model and the random effect of run, the difference in performance between meta-mapping
from either examples or language and the language-alone performance were both significant (from examples t(119.01) = 4.64,
p = 8.9 · 10−6, from language t(119.04) = 3.79, p = 2.4 · 10−4). The effect of game type on generalization in the language model
was not significant (t(119.02) = 1.18, p = 0.24), nor were the interactions of game-type with either model type (respectively,
the interaction of meta-mapping from example by game-type t(119.01) = −1.522, p = 0.13 and from language by game-type
t(119.03) = −0.08, p = 0.94).

Fig. S33. Meta-mapping can generalize switching good and bad objects from the color dimension to the shape dimension. In this experiment, we trained meta-mapping on
tasks similar to those in the main text experiments, but where the good and bad objects could be discriminated by either color (with shape matched) or shape (with color)
matched. We trained good-and-bad-switched variations of all color tasks, but did not train any switched variations of the shape-discrimination tasks, to evaluate whether
meta-mapping was able to infer how to transfer a mapping from switching colors to switching shapes. Indeed, meta-mapping performs well above chance at this task, though
not quite as well as on the simpler generalization in the main text. Intriguingly, the language model also appears to be perfoming somewhat better in this setting, though it is not
statistically above chance. (Results from 5 runs, see the text for further details of the experimental setup.)

F.8. Meta-mapping as a starting point. Visual concepts: In Fig. S34 we show that meta-mapping provides a good starting-point
for learning in the visual concepts domain as well. In this setting the small random initialization is more competitive, but
meta-mapping still yields lower cumulative error over learning than random initialization, and much lower than the centroid
(which was better in the polynomials domain). Specifically, initializing with a meta-mapping output results in a mean cumulative
error of 0.33 (bootstrap 95%-CI [0.10, 0.57]), while a small random initalization results in a mean cumulative error of 9.62
(bootstrap 95%-CI [6.63, 13.59]). This difference is significant in a mixed linear model (t(4) = 4.628, p = 0.01).

The non-hyper-network architecture makes optimization more difficult: We have compared our hyper-network-
based meta-mapping architecture to the simpler alternative of concatenating a task representation to an input embedding
before passing it through a fixed network, in various supplemental analyses (Figs. S10 and S29). The hyper network approach
generally performs at least as well as, and sometimes substantially better than, the simpler approach. Hyper networks may
also be particularly beneficial for continual learning (10). Furthermore, they may also make it easier to optimize the task
representation, by giving it more direct control over the computations of the network. Thus, it seems useful to compare these
two architectures in this setting.

We therefore performed the polynomial domain experiments, reported in the main text in the meta-mapping as a starting
point section, with the simpler task-network architecture as well. In Fig. S35, we show the learning curves for both architectures
for the two best initializations (meta-mapping output, and centroid of the trained task representations). The hyper-network
architecture learns much more rapidly than the simpler architecture. The initial meta-mapping outputs do not differ so
substantially — most of this effect is due to the slower improvement of the loss when optimizing the task representation in the

Andrew K. Lampinen, James L. McClelland 33 of 37

Fig. S34. Meta-mapping provides a good starting point for later learning in the visual concepts domain. This figure is the visual concepts analog of Fig. 10 in the main text, with
16 training meta-mappings. Using meta-mapping as a starting point offers much lower initial loss, and faster learning than other initializations. (Thick curves are averages over 5
individual runs, shown as light curves.)

non-hyper architecture. Indeed, optimization in the non-hyper network architecture appears to be plateauing at a much higher
loss value than in the hyper-network architecture.

As before, we quantify this by plotting the cumulative loss on the novel tasks in Fig. S36. The simpler non-hyper architecture
resulted in about five times greater cumulative loss than the hyper network architecture when starting from the meta-mapping
output (mean = 133.81, bootstrap 95%-CI [102.65, 171.10]), and similarly from the centroid of the trained task representations
(mean = 1139.35, bootstrap 95%-CI [943.60, 1344.52]). We therefore conclude that hyper-network-based architectures may be
particularly conducive to this perspective on continual learning.

Fig. S35. Comparing the learning curves of the hyper network architecture and a simpler architecture when optimizing the task representations for new polynomials. The
simpler architecture improves much more slowly, and appears to plateau at a higher loss. (Note that the y-axis is log-scale. Results are from 5 runs, individual runs are shown
as light curves.)

34 of 37 Andrew K. Lampinen, James L. McClelland

Fig. S36. Comparing the cumulative losses of the hyper-network architecture and a simpler architecture when optimizing the task representations for new polynomials, starting
from either the result of a meta-mapping or the centroid of the trained tasks. The simpler architecture results in substantially more cumulative loss. (Results from 5 runs,
errorbars are bootstrap 95%-CIs.)

Fig. S37. Measuring the default behavior of our architecture on a Stroop-like task. We plot the bias of the model towards word or color responses, when given an all-zeros task
representation, at different proportions of training on words or colors, and different stages of training. When the model has just mastered the less frequent task, it exhibits a
default bias towards the more frequent task. However, later in training, when it has mastered both tasks, it exhibits a paradoxical bias towards the less frequent task.

F.9. Default processing & cognitive control. Our architecture could be of interest to researchers in cognitive control, even beyond
the idea of meta-mapping as adaptation. The system can perform different tasks based on task examples or language inputs,
which is fundamentally the same problems human face when we must adapt our behavior. There are a number of features
of the model that offer the opportunity for intriguing investigations based on this idea. For example, the task network in
our architecture has a default set of bias weights that are modulated by the HyperNetwork. These can be thought of as the
“automatic” or “default” processing habits of the system, whereas the weight alterations the HyperNetwork imposes can be
thought of as the exertion of cognitive control to modulate behavior.

To explore this, we trained our architecture on a very simple stroop task taken from Cohen et al. (11). The model receives
two sets of two inputs, that can be thought of as corresponding to “word” and “color” domains. One input in each domain is
turned on, representing a color word written in a color. The model’s task is to report either the color or the word, depending
on context.

The context we give the model is in the form of examples of the task as (input, output) pairs. These are used to construct a
task representation, which is then used to modulate the parameters in the task network, via the HyperNetwork. We trained
the model repeatedly with different proportions of training on the word task vs. the color task, in order to investigate the
default vs. controlled behavior in different training regimes. Specifically, we compared training the model to the point that it
barely mastered the less frequent task (when it first achieves 100% performance and cross-entropy loss < 0.3 on both tasks) to
the point that it had mastered both tasks (100% performance and cross-entropy loss < 0.01 on both). We then tested the

Andrew K. Lampinen, James L. McClelland 35 of 37

model’s default behavior by giving it an all-zeros task representation, and seeing whether its performance was more aligned
with the “word” or “color” task.

In Fig. S37, we show the results. We plot the bias as 2 × (word accuracy − color accuracy), which is −1 if the model is
responding only to color, 1 if the model is responding perfectly to word, and 0 if it is responding equally to each (or otherwise
responding randomly). When the model has just barely mastered the less-frequent task, it exhibits a default bias towards the
more frequent task. However, once we train it to full master of both tasks, it exhibits a surprising paradoxical bias towards the
task that was mastered more recently. This may relate to observations that switching from a less-practiced task back to a more
practiced one is difficult (12), possibly because performing the less-practiced task requires strong suppression of the default
behavior. It’s possible that in the course of achieving full mastery on the less-practiced task, the more practiced task must be
so suppressed that it fades away from being the default. These phenomena provide possible inspiration for future investigations
in cognitive control.

For this experiment, we used similar hyperparameters to the polynomials experiments, except we used a much smaller model
— a single-layer task network, a Z-dimensionality of 8, and H, E had 64 hidden units per layer. We optimized the model via
stochastic gradient descent with a learning rate of 0.01 to follow more closely the approach taken by Cohen et al., although
results are similar with other optimizers.

G. Proofs.

G.1. Inadequacy of vector analogies for meta-mapping polynomials. One possible implementation of meta-mapping would be to just
construct an analogy vector and use that for the mapping. This is motivated by work showing that word vector representations
often support vector analogical reasoning, for example if we denote the vector for the word king as ~vking, relationships like
~vqueen ≈ ~vking + (~vman − ~vwoman) often hold (13). Thus, a plausible approach to meta-mapping would be to take a similar
approach, for example in the polynomials domain, the meta-mapping “Permute (w, z, x, y)” could be estimated by taking the
vector differences between the representations of inputs and targets, computing an average difference vector, and adding that
to the held-out examples to produce an output for each one. In this section, we prove that such an approach cannot accurately
represent all the meta-mappings in the polynomials domain. Furthermore, we sketch a proof by construction that the linear
task network (i.e. an affine transformation, matrix multiplication plus a bias vector) we used in this domain suffices, if it is
parameterized separately for each meta-mapping.

Proof that vector analogies are inadequate: In essence, the proof is simply that many of our meta-mappings are
non-commutative, while vector addition is commutative. Consider the mappings for adding 1 to a polynomial, and multiplying
by 2. Assume there were vector representations for these mappings, respectively ~m+1 and ~m×2. Let ~fx be the representation
for the polynomial f(w, x, y, z) = x. Then ~fx + ~m+1 = ~fx+1, ~fx + ~m×2 = ~f2x. But then:

~f2(x+1) =
(
~fx + ~m+1

)
+ ~m×2 = ~fx + ~m+1 + ~m×2 =

(
~fx + ~m×2

)
+ ~m+1 = ~f2x+1

Thus such a representation would result in contradictions, such as 2x+ 1 = 2x+ 2. Similar issues occur for input permutation
and other non-commutative mappings.

Proof sketch that affine transformations in an appropriate vector space suffice: Suppose that we have a vector
representation for the polynomials, where there is a basis dimension corresponding to each monomial, so that the polynomial
can be represented as a vector of its coefficients. (This is the standard vector-space representation for polynomials.) Then
permutation corresponds to permuting these monomials, i.e. a permutation of the basis dimensions, which is a linear
transformation. Adding a constant corresponds to adding to one dimension, which requires only the vector addition part
of the affine transformation. Multiplying by a constant requires multiplying each dimension, i.e. a block-diagonal linear
transformation.

Squaring polynomials is slightly more complex, and requires augmenting the vector space with components whose values are
the product of the coefficients of each pair of monomials. In this case, squaring corresponds to a simple linear transformation.
However, this augmentation makes the other meta-mappings more complex. Surprisingly, the most complex case in this
representational scheme is adding a constant, which requires shifting each pair term containing a constant by the product of
the constant and the coefficient of the other monomial, but this again reduces to simply an appropriately parameterized affine
transformation — each pair term containing a constant term simply needs the added constant (from the meta-mapping) as a
weight times the component for the other monomial. Thus affine transformations suffice in this setting.

Of course, with a sufficiently complex, deep, recurrent, and non-linear task network, any meta-mapping could be computed
in principle, since a sufficiently large such network is Turing-complete (14). Thus, our approach to meta-mapping is fully
general, conditioned on a sufficiently complex task network, while simpler approaches may not be.

References

1. T Salimans, DP Kingma, Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural
Networks. Adv. Neural Inf. Process. Syst. (2016).

2. B Xu, N Wang, T Chen, Empirical evaluation of rectified activations in convolution network. arXiv preprint
arXiv:1505.00853 (2015).

3. X Glorot, Y Bengio, Understanding the difficulty of training deep feedforward neural networks. Proc. 13th Int. Conf. on
Artif. Intell. Stat. (AISTATS) 9, 249–256 (2010).

36 of 37 Andrew K. Lampinen, James L. McClelland

4. AM Saxe, JL McClelland, S Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.
Adv. Neural Inf. Process. Syst., 1–9 (2013).

5. Y Li, C Wei, T Ma, Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural
Networks. Adv. Neural Inf. Process. Syst., 1–49 (2019).

6. V Mnih, et al., Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
7. AK Lampinen, A Computational Framework for Learning and Transforming Task Representations. (PhD Dissertation,

Stanford University, https://stacks.stanford.edu/file/druid:xj689nb3522/dissertation-augmented.pdf), (2020).
8. M Harrower, CA Brewer, ColorBrewer. org: an online tool for selecting colour schemes for maps. The Cartogr. J. 40,

27–37 (2003).
9. KL Hermann, AK Lampinen, What shapes feature representations? Exploring datasets, architectures, and training. arXiv

preprint (2020).
10. JV Oswald, C Henning, J Sacramento, BF Grewe, Continual learning with hypernetworks. Int. Conf. on Learn. Represent.,

1–25 (2020).
11. JD Cohen, K Dunbar, JL McClelland, On the control of automatic processes: A parallel distributed processing account of

the stroop effect. Psychol. Rev. 97, 332–361 (1990).
12. S Monsell, Task switching. Trends Cogn. Sci. 7, 134–140 (2003).
13. T Mikolov, Wt Yih, G Zweig, Linguistic regularities in continuous space word representations. Proc. NAACL-HLT,

746–751 (2013).
14. HT Siegelman, ED Sontag, On the computational power of neural nets. Proc. fifth annual workshop on computational

learning theory (1992).

Andrew K. Lampinen, James L. McClelland 37 of 37

	32970.full
	pnas.2008852117.sapp
	Model details, training, and methods
	Mathematical formulation of the model
	Model architecture & hyperparameters
	Model training details
	Model & training modifications for Cards & RL
	Optimizing task representations

	Task and dataset details and methods
	Polynomials
	Card games
	Visual concepts
	RL

	Cards behavioral experiment
	Source repositories
	Other acknowledgements
	Supplemental analyses & figures
	Polynomials
	Polynomial representations
	Cards
	Visual concepts
	RL
	Meta-mapping and language
	Generalizing from color to shape in RL
	Meta-mapping as a starting point
	Default processing & cognitive control

	Proofs
	Inadequacy of vector analogies for meta-mapping polynomials

