

 is
the desired output vector is identical with the input vector (see Fig. 1). The purpose back-propagation is that it requires a teacher to specify the desired output vectors. It
is possible to dispense with the teacher in the case of "encoder". networks ${ }^{2}$ in which

 NOILOMUOXLNI
squared reconstruction error. analysis shows that in certain restricted cases it performs gradient descent in the simple networks show that it usually converges rapidly on a good set of codes, and
 each weight by an amount proportional to the product of the "presynaptic" activity
 passed around the loop, and on the second pass an average of the original vector and reconstruction error, and the learning procedure aims to minimize this error. The

LOVYLSGV

عIZSI Vd 'u8imqsuld

-əऽК

 әч户 чэ!чм шоп

 very same group of visible units, so the input vector is the initial state of this group
and the output vector is the state after information has passed around the loop. The

 bottom layer to the output units in the top layer. On the backward pass, error-back-propagation. On the forward pass, activity flows from the input units in the Fig. 1. A diagram of a three layer encoder network that learns good codes using

 perform steepest descent in the squared reconstruction error，so it behaves differently In general，this rule for changing the visible－to－hidden connections does not

 $\left[(\varepsilon)^{\kappa} K-(D)^{\kappa} K\right](Z)^{2} \kappa 3={ }^{n} M \nabla$ ：
 $\left[(Z)^{2} \kappa-(0)^{2} \kappa\right](1)^{f} \kappa_{3}=?_{M}{ }_{M}$
SMOПој SE рәяииечэ S！

Oathematical analysis focuses on the linar sere in which the out PTno ${ }_{x_{-}} a+1$（
> $\frac{x-1}{\mathrm{I}}=\left({ }^{\prime} x\right) 0=l_{K}$
function：
 The functions relating inputs to outputs of visible and hidden units are smooth implementing thresholds will be assumed throughout the paper．

 eliminated by giving every unit an ex

$$
f_{\theta}-!_{\boldsymbol{M}} \cdot \frac{1}{Z}=f_{x}
$$

connection to every visible unit．The total input received by a unit is architecture in which there is just one group of hidden units．Each visible unit has a

$z^{\left[(0)^{x} x-(z)^{*} x\right]} \frac{3^{2}}{\frac{z}{1}}=x$

$\left((\varepsilon)^{〔} x\right) \rho(\gamma-\mathrm{I})+(I)^{\Upsilon} \kappa \chi=(\varepsilon)^{〔} \kappa$

 make the learning rule for the hidden units as similar as possible to the rule for the loop again on the second pass，it has very similar effects to the first pass．In order to

$$
(z)^{\prime} x(\gamma-1)+(0)^{7} \hat{\ell} \chi=(z)^{1 /} \kappa
$$

by Eq 1 ，we set its activity to be

For a given input vector，the squared reconstruction error，E ，is
（S）
 2．The weights are symmetrical（i．e．$w_{j i}=w_{i j}$ for all i, j ）． 1．The visible units are linear．
squared reconstruction error provided the following conditions hold：

LNGOSGG LNGIGVYЯ SGLVNIXOYddV NOLLVTODYIDGY HOIHM YGGNO SNOLIIGNOO

 propagation agree on the weight changes for the hidden-to-visible connections, even

 It is not immediately obvious why the recirculation leaming procedure works and this would also help back-propagation.

 ε are different in the two cases. Also, the fact that we ignored the term $1 /(1-\lambda)$ back-propagation, though a precise comparison is hard because the optimal values of regression was used during the learning. The learning speed is comparable with reconstruction error was measured using a regression of 0 , even though high
 weight update was performed after trying all four training cases and the change was чгея (suo!

 the network were started at small random values uniformly distributed in the range different codes to represent these four visible vectors. All the weights and biases in vectors were $1000,0100,0010$ and 0001 , so the 2 hidden units had to leam 4 leaming procedure to a network with 4 visible units and 2 hidden units. The visible units used the same non-linearity as the hidden units), we applied the recirculation To investigate what would happen if symmetry was not enforced (and if the visible

 in these difference vectors. If, for example, we moved P so as to double the length
of $A P$ we would also double the length of $B Q$ and $C R$. in these difference vectors. If, for example, we moved P so as to double the length

 the reconstructed vector, C, so the error vector is $A C$. Using high regression, the produces the appropriate changes in the visible-to-hidden weights, we introduce the To gain more insight into the conditions under which recirculation learning

NOLLVTПОมIวя女 но GצกLDId V
generally of larger magnitude. corresponding hidden-to-visible weights, though the hidden-to-visible weights are procedure and he shows that it performs principle components analysis. In our
simulations of recirculation, the visibe-to-hidden weights become aligned with the leaming rule for linear systems which he calls the "symmetric error correction"
 mathematical analysis that shows why a similar leanning procedure creates
 negative. These relationships will be reversed if $w_{j i}$ is negative, so $w_{i j}$ will grow [$\left.y_{i}(0)-y_{i}(2)\right]$ in Eq 3 is positive. It will also be lower than average when this term is

SdOOT GESOTD HO XHDYV甘GIH V ONISN

 clear picture of the conditions under which the changes in the hidden-to-visible

 applied, and the weight changes will approximate gradient descent provided the systems that conain longer loops whe have se leaning of hin

 'тәләмоч ‘suоч!

 the recirculation learning procedure so as to increase the tendency for the learning in connections has a tendency to cause this alignment. In addition, it is easy to modify

vector $A P$.

3. G. Cottrell, J. L. Elman and D. Zipser, Proc. Cognitive Science Society, Seattle,
WA (1987).

SGONFYGHTX

 әм inq ' \mathfrak{t} иәоsәр is volated, the procedure still works in the cases we have simuling. For the general
 the learning procedure still works because the changes in the hidden-to-visible gradient descent in the reconstruction error. If the symmetry assumption is violated, non-linearity is unknown. Given some strong assumptions, the procedure performs representations in non-linear hidden units whose input-output functions have We have described a simple learning procedure that is capable of forming NOISATIONOD

Fig 4. A network in which the hidden units of the bottom two modules are the
visible units of the top module.
 learned to encode a set of vectors specified over the bottom layer. After learning,

