
Articles
https://doi.org/10.1038/s42256-019-0123-3

1Sheffield Robotics, Department of Computing, Sheffield Hallam University, Sheffield, UK. 2Department of Psychology, Center for Mind, Brain and
Computation, Stanford University, Stanford, CA, USA. *e-mail: a.dinuovo@shu.ac.uk

The embodied cognition theory affirms that human intelligence
is formed not only by the brain, but is also shaped by the body
and the experiences acquired through it, such as manipula-

tives, gestures and movements1–4. Research in developmental psy-
chology has shown that embodied experiences help children in
learning various cognitive skills by using limbs and senses to interact
with the surrounding environment and other human beings5.

Among the human cognitive skills that can be extended through
bodily experiences, number processing is particularly valuable
because it can provide a window into the neuronal mechanisms of
high-level brain functions6. Numbers constitute the building blocks
of mathematics, a language of the human mind that can express
fundamental properties of the physical world and make the universe
intelligible7. Therefore, understanding how the artificial sensorimo-
tor system embodies numerical processes can also help to answer
the wider question of how bodily (real or artificial) systems support
and scaffold the development of abstract cognitive skills8.

Within the embodied mathematics framework, fingers are sponta-
neous tools that play a crucial role in developing number cognition until
a level of basic arithmetic is achieved (for details see recent reviews9,10).
In particular, Gunderson et al11. observed that young children can bet-
ter communicate their knowledge about numbers using hand gestures
rather than with words, particularly for numbers that they have not yet
learned in speech. In fact, one of the most evident embodied interac-
tions with cognition is the use of fingers to convey both cardinal and
ordinal aspects of numbers: finger montring12 refers to the use of fin-
ger configurations to represent cardinal number information; finger
counting and pointing gestures are used to support ordinal representa-
tion for counting quantities or doing basic arithmetic operations13,14. In
a short review15, Di Luca and Pesenti have shown that “finger-counting/
montring activities, especially if practised at an early age, can con-
tribute to a fast and deep understanding of number concepts, which
has an impact during the entire cycle of life by providing the sensory-
motor roots onto which the number concept grows”. The essential role
of motor contribution was validated by Sixtus et al16., who compared
visual images with actively produced finger postures (motor priming)
and showed that only canonical motor finger posing has a significant

positive effect on number processing. The concept of embodied cog-
nition extends the role of fingers beyond just another external mate-
rial (for example blocks, Cuisenaire rods) for learning how to process
numbers. Instead, internal finger-based representations provide a
natural numerical representation that facilitates the development of
initial mathematical cognition17. More specifically, Butterworth18 sug-
gested that “without the ability to attach number representations to
the neural representations of fingers and hands in their normal loca-
tions, the numbers themselves will never have a normal representation
in the brain”. These ideas from behavioural research were confirmed
and extended by neuroimaging research in the area of embod-
ied mathematics (a recent literature review can be found in ref. 19),
where empirical studies have suggested a neural link or even a com-
mon substrate for the representation of fingers and numbers in the
human brain20. In the neuroimaging data, neural correlates of finger
and number representations can be located in neighbouring, or even
overlapping, cortex areas21. Therefore, it is suggested that finger pro-
cessing may play a role in setting up the biological neural networks on
which more advanced mathematical computations are built22.

Numerous studies have also shown a permanent neural link
between finger configurations and their cardinal number mean-
ing in adulthood. For instance, researchers have found that adult
humans still activate the same motor cortex areas that control fingers
while processing digits and number words, even if motor actions
are inhibited23. Tschentscher et al24. hypothesized that the link is the
result of an association in the early stages of number learning, when
finger configurations are used by both teachers and children to rep-
resent numbers while explaining mathematical concepts. Indeed,
hand gestures are often observed when teaching mathematical con-
cepts as a way of scaffolding students’ understanding25, especially
when communicating new material26. Several authors27,28 show that
children who observe gesture while learning mathematics perform
better than children who do not, and that gesture during teaching
encourages children to produce gestures of their own, which, in
turn, can enhance the training and allow them to consolidate and
transfer the learning of abstract concepts. However, while children
often use fingers to support their early mathematical learning,

Developing the knowledge of number digits
in a child-like robot
Alessandro Di Nuovo   1* and James L. McClelland2

Number knowledge can be boosted initially by embodied strategies such as the use of fingers. This Article explores the per-
ceptual process of grounding number symbols in artificial agents, particularly the iCub robot—a child-like humanoid with fully
functional, five-fingered hands. It studies the application of convolutional neural network models in the context of cognitive
developmental robotics, where the training information is likely to be gradually acquired while operating, rather than being
abundant and fully available as in many machine learning scenarios. The experimental analyses show increased efficiency of
the training and similarities with studies in developmental psychology. Indeed, the proprioceptive information from the robot
hands can improve accuracy in the recognition of spoken digits by supporting a quicker creation of a uniform number line. In
conclusion, these findings reveal a novel way for the humanization of artificial training strategies, where the embodiment can
make the robot’s learning more efficient and understandable for humans.

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell594

mailto:a.dinuovo@shu.ac.uk
http://orcid.org/0000-0003-2677-2650
http://www.nature.com/natmachintell

ArticlesNATure MAChIne InTellIgenCe

and this habit correlates with better performance in initial stages,
they do not need gestures in later stages after they have successfully
learned the basic concepts29. The use of fingers while learning about
numbers has also generated a debate between researchers in neu-
rocognition and education, with the latter concerned that relying
on fingers can be detrimental for the later numerical development.
These authors recommend the use of finger representations only
at early stages, to be replaced at later stages by concrete structured
representations and, finally, mental representations of numbers to
perform numerical operations30.

An innovative approach for studying the embodied learning is
cognitive developmental robotics (CDR), which was defined as the
“interdisciplinary approach to the autonomous design of behav-
ioural and cognitive capabilities in artificial agents (robots) that
takes direct inspiration from the developmental principles and
mechanisms observed in natural cognitive systems (children)”31.
The application of embodied theory in artificial agents is among
the motivations for designing new robotic platforms for research to
resemble the shape of a human body, known as ‘humanoids’, such
as ASIMO32, and in particular that of a child, notably iCub33. One
of the postulates of CDR is that the humanization of the learning
process can help to make artificial intelligence more understand-
able for humans and may increase the acceptance of robots in social
environments34. CDR is still making its first steps, but it has already
been successfully applied in the modelling of embodied word learn-
ing, as well as in the development of perceptual, social, language and
numerical cognition35,36, and recently extended as far as the simula-
tion of embodied motor and spatial imagery37,38.

Yet, only a few attempts have been made so far to simulate
embodied number learning in robots39, mostly aimed at investigat-
ing finger counting with synthetic datasets. For example, inspired
by the earlier work by Alibali and Di Russo14, Ruciński et al40. pre-
sented a model in which pointing gestures significantly improve the
counting accuracy of iCub. De La Cruz, Di Nuovo et al41–43. investi-
gated artificial models for learning finger counting (motor), Arabic
digit recognition (visual) and spoken digits (auditory) to explore
whether finger counting and its association with spoken or Arabic
digits could serve to bootstrap number cognition. These experi-
ments show that learning number word sequences together with
finger sequencing speeds up the building of the neural network’s
internal representations, resulting in patterns that better capture the
similarities between numbers. In fact, the internal representations of
finger configurations can represent the ideal basis for the building
of an embodied number representation in the robot. Subsequently,
Di Nuovo et al44. presented a deep learning model that was validated
in a simulation of the embodied learning behaviour of bicultural
children using different finger counting habits to support their num-
ber learning. Recently, Di Nuovo45 presented a ‘shallow’ embodied
model for handwritten digit recognition that incorporates the link
hypothesized by Tschentscher et al24. Simulations showed how the
robot fingers could boost the performance and be as effective as the
cardinal numerosity magnitude that has been proposed to be the ideal
computational representation for artificial mathematical abilities46.
Moving to arithmetic, Di Nuovo47 investigated a long short-term
memory (LSTM) architecture for modelling the addition operation
of handwritten digits using an embodied strategy. The results con-
firm an improved accuracy in performing the simultaneous recog-
nition and addition of the digits with a higher frequency of split-five
errors, in line with observations in studies with humans48.

All of these studies provided valuable information about the sim-
ulation of artificial learning and demonstrated the value of the CDR
approach to studying aspects of numerical cognition. However,
even if they apply machine intelligence methods, they lack general-
ization and applicability in this field. Indeed, like many other CDR
studies, those presented above are based on simple, shallow models
trained on synthetic data, which were often created ad hoc for the

study. For instance, early models41–43 were a simple recurrent net-
work trained and tested on the same database of just 10 synthesized
spoken number words and 5 × 2 black and white pixel visual digits,
and no alternate representations were compared. Vice versa, two
recent studies45,47 made use of the popular MNIST database of real
handwritten digits, but they used an implausible setting in the con-
text of early cognitive development, where speech usually precedes
and then accompanies writing. To substantially contribute to the
progress of the state of the art in machine intelligence, research is
needed to properly contextualize the simulations of developmental
learning in deeper neural network architectures, while demonstrat-
ing applicability to real datasets and problems.

In this Article, we apply the CDR approach to the recognition
of real spoken digits by presenting a deep convolutional neural
network (CNN) architecture designed to apply the embodiment
principles by using the sensory-motor information from an artifi-
cial humanoid body, iCub, which is one of the few platforms that
has fully functional five-fingered hands49. The spoken digits are
taken from a novel open database for speech recognition, created
by Google to facilitate new applications50. Simulating the develop-
mental plasticity of the human brain, the models are trained using
a two-stage approach, known as transfer learning51, in which the
robot learns first to associate spoken digits and finger representa-
tions—that is, motor patterns specifying the state of each of the
robot’s fingers (extended or open versus closed or retracted). The
network is then extended with new layers to perform the classifica-
tion into the number classes by building on the previously learned
association. In the first scenario, the training procedure simulates
how children initially behave while learning to recognize symbolic
numerals (in the form of spoken digits), in particular when learn-
ing number words by repeating them together with the correspond-
ing finger sequence to help the transition from preverbal to verbal
counting and computation52. In the second scenario, we present a
longitudinal analysis that gives useful insights into how biologically
inspired strategies can improve deep CNN performance in the con-
text of applied robotics, where the training information is likely to
be gradually acquired while operating, rather than being abundant
and fully available, as in the majority of machine learning scenarios.

Recognizing spoken digits in a cognitive developmental
robot
Here the experimental results of the CNN architecture designed
to simulate the embodied learning to recognize spoken number
digits in comparison with a standard non-embodied baseline are
presented. Figure 1 presents the schematics of the baseline (left)
and embodied (right) networks. Three possible internal representa-
tions, two embodied and one control, are considered and compared.
(1) The cardinal numerosity using a thermometer representation.
In this representation, the first neuron in a set of nine is active for
the number 1, the first two are active for the number 2 and so on.
(2) The iCub robot encoder values of the right and left hand when
displaying the finger representations of digits (See inset in Fig. 1,
and Supplementary Fig. 1). These representations indicate the
number magnitude using the number of open fingers, although the
numbers 3 and 4 and 8 and 9 involve only partially overlapping sets
of fingers. (3) Random numbers in the range [0,1], which are used
as the control for validation. As an additional control condition, we
also applied the transfer learning approach to the baseline model by
pretraining the convolutional blocks using the same random values
as targets. The distribution of the examples for each scenario is pre-
sented in Table 1. Further details about the models, the embodied
representations and the spoken digit database are in the Methods.

In the following, we label embodied models when the architec-
ture in Fig. 1 is trained with the cardinal numerosity or the iCub
robot fingers as targets for the embodied layer. Cardinal numeros-
ity can be considered the ideal embodied representation of number

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell 595

http://www.nature.com/natmachintell

Articles NATure MAChIne InTellIgenCe

magnitude, while the fingers are its real-world implementation.
Instead, we define as a control model if the targets are the random
values. The two other conditions are the simple baseline, which is
the one that goes straight from the input to the classification layer
on the left of Fig. 1 and the pretrained baseline, which has the same
baseline architecture, but the CNN blocks are pretrained similarly
to the control model using random values as targets. The baselines
and the control model are also considered as control conditions.

Deep learning architecture for simulating embodied
learning
To explore the embodied learning of numbers in the iCub robot, we
designed a baseline and an embodied connectionist model for clas-
sifying spoken digits. These models are based on a deep CNN clas-
sifier with 19 layers, the first 13 layers of which are shared between

spoken digit recognition and embodied motor control. The CNN
is an essential part of the network for selecting the right features to
present to the actual classifier (that is, the hidden and classification
layers), but they only account for 20–25% of the trainable param-
eters of our models.

Architectures based on CNNs are naturally fit to implement
the ‘transfer learning’ approach because the convolutional lay-
ers can extract inherent properties from examples, which can be
independent of the problem and, therefore, be generalized and
used as a base for different problems. This strategy saves compu-
tational resources (time and memory) because the convolutional
blocks have 73,632 parameters, representing just 20.83% of the
full embodied model, which in total has 353,545 parameters when
trained with the iCub fingers.

The baseline is a relatively simple, but effective, deep CNN archi-
tecture that includes a sequence of 3 classical two-dimensional con-
volutional blocks, which have a combined total of 73,632 trainable
parameters, whereas the baseline network includes a total of 320,041
trainable parameters. The embodied model is created by extending
the baseline by adding a dense layer named embodied (15 in Table 2),
which serves both as an output for the embodied representations
associated with the spoken digits and provides these representations
as an input to the final classification layer (19). With the additional
layer, there are two weighted connections that increase the number
of trainable parameters to 353,545. The embodied model is trained
in two steps: first, the shared CNN blocks and the embodied layer
(red in Fig. 1, layers 1–15 in Table 2) are trained to associate digit
images with embodied representations, then the remaining layers
(blue in Fig. 1, 16–19 in Table 2) are connected and the full model is
tuned to classify the spoken digits. In the full training phase, the loss
is the weighted sum of the losses for the two outputs, both weighted
1.0. Unless otherwise stated, the layers are regular, densely con-
nected layers, where all units are connected to the others.

From the machine learning point of view, the embodied strategy
could be also seen as a bio-inspired alternative to the “auxiliary”
classifiers that were introduced in the Google Inception network to
prevent the middle part of the network from “dying out” because of
the limitations of backpropagation algorithms in propagating the
error through the many layers of deep CNN53.

The network parameters, for example number of units for each
layer, were set on the baseline via a trial-and-error procedure using
the final performance (accuracy) as a criterion for the selection.
In fact, the baseline model, when fully trained, can achieve a final
accuracy of over 97% with the test set.

Scenario 1
Scenario 1 is learning to process spoken digits while acquiring
counting principles. This section presents a simplified simulation
of the early number processing, when children initially learn the
number digits while repeating them by rote together with the fin-
ger representations52. The first phase includes the acquisition of the
one-to-one principle (that is, assigning one counting word to each
item in a set)54. In this scenario, the models are initially pretrained
using a smaller subset of uniformly distributed examples. Examples
were grouped in batches formed by four sequences of the nine digits
in their cardinal order.

Next, inspired by the children using finger representations while
communicating number words, this simulated number learning
scenario continues by training the robot to classify the spoken digits
while reproducing the corresponding finger representations. This
second training phase can be associated with the acquisition of the
cardinal principle, which is defined as learning that “the last num-
ber spoken, when counting a set of items, tell how many items are in
the set”54. For a proper simulation of digit learning at this develop-
mental stage, the appropriate distribution of the training examples
should follow the Zipf ’s empirical law that the frequency of any

Input2D_Layer
short-time Fourier transforms

Conv2D_Block1

Flatten_Layer

Classification_Layer
softmax

Dropout_Layer

ReLU_Layer

Number class
likelihood

Conv2D_Block2

Conv2D_Block3

Embodied_Layer
sigmoid

Conv2D_Block

Block1_conv: Conv2D

Block1_pool: MaxPooling2D

Block1_norm: BatchNormalization

Dropout0: Dropout

Embodied
representation

BatchNormalization_Layer

Fig. 1 | Schematics of the artificial neural network architecture. The baseline
CNN architecture is on the left, whereas the detail of the Conv2D blocks is on
the top right. The embodied architecture is created including the embodied
layer (on the right). In the first stage, the layers in red are those pretrained to
reproduce the embodied representation (for example, output is the positions
for the robot’s finger motors). After the pretraining, the embodied model is
completed by linking the embodied layer to the final dropout layer; the full
embodied architecture can thus be trained both to classify the spoken digits
and to reproduce the embodied representations. Table 2 gives a summary
of the layers with details of the parameters, arguments and initialization.
The embodied representation (green text) represents the output for the
pretraining and for the full architecture. The likelihood of the number class
(blue text) represents the output for the full architecture.

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell596

http://www.nature.com/natmachintell

ArticlesNATure MAChIne InTellIgenCe

word is inversely proportional to its frequency rank55. Therefore, as
explained in the Methods, we created an ad hoc dataset to match the
Zipfian distribution. To simulate a gradual education as in the case
of children, we considered three quotas (25%, 50% and 100%) of
the Zipfian training sample from which we extracted three uniform
subsets for the pretraining.

The models’ performance during the second training phase is
presented in Fig. 2, where the graphs show the accuracy rate on
the test set at the end of each training epoch. They include the pre-
trained baseline (blue lines), the embodied models with the iCub
robot fingers (purple), the Cardinal Numerosity (red) and the
control model with random values (green). For all three training
sample sizes, we see a significant increase in the accuracy for the
models using either the cardinality numerosity or the iCub robot
representation compared with either of the other two control condi-
tions, with a stronger initial effect for the smaller sample sizes where

Cohen’s d is >1. Figure 2c shows that the accuracy on the test set
grows quickly until after around 22 epochs (median) when it starts
to oscillate, as is usual for CNNs, with little or no improvement but
without significant overfitting. For this reason, we decided to stop
the training after 25 epochs and average the accuracies of the epochs
with the lowest loss.

Table 3 gives a comparative report of results after the first and
the last epoch of the training. Accuracy rates and standard devia-
tions (s.d.) on the test set are shown for the embodied and control
conditions along with the Cohen’s d for comparison with the pre-
trained baseline. After the first epoch, the performance of the con-
trol model with random values was always significantly inferior to
the other two representations; even if its average accuracy was typi-
cally higher, the control model was not significantly better than the
pretrained baseline and Cohen’s d always indicated a small effect
size (d < 0.5).

Table 1 | Dataset distributions

Digit 1 2 3 4 5 6 7 8 9 Total

Test 788 708 763 733 811 821 794 742 812 6,972

Scenario 1: Initial learning (reduced dataset)

Pretraining (uniform) 344 344 344 344 344 344 344 344 344 3,096

Training (Zipfian) 3,102 1,551 1,034 775 620 517 443 387 344 8,773

Scenario 2: Original semi-uniform distribution (full dataset)

Training (100%) 3,102 3,172 2,964 2,995 3,241 3,039 3,204 3,045 3,122 27,884

The numbers of spoken digits from 1 to 9 in the test set and training sets for each scenario are shown. In Scenario 1, the training set is created by extracting examples from the original dataset in such a way
that the distribution was Zipfian, then the pretraining set was derived from the training set using the same number of examples for each digit. In Scenario 2, from the full training dataset, we derived various
subsets with the same distribution as the original.

Table 2 | Summary of the CNN architecture

Layer Type Output shape Input layer(s) Output
layer(s)

Number of
parameters

Arguments Initialization

1 Inputs 90 × 63 – 2 Range = [0,1]

2 Conv2D 90 × 63 1 3 640 filters = 64, size = 3 × 3; He uniform

3 Pooling 32 × 32 2 4 size = 3 × 3; stride = 3 × 2

4 BatchNorm 30 × 32 3 5 256

5 Dropout 30 × 32 4 6 probability = 0.25

6 Conv2D 15 × 16 5 7 36,928 filters = 64, size = 3 × 3; He uniform

7 Pooling 15 × 16 6 8 size = 3 × 3; stride = 2 × 2

8 BatchNorm 15 × 16 7 9 256

9 Dropout 15 × 16 8 10 probability = 0.25

10 Conv2D 8 × 8 9 11 18,464 filters = 32, size = 3 × 3; He uniform

11 Pooling 8 × 8 10 12 size = 3 × 3; stride = 2 × 2

12 BatchNorm 8 × 8 11 13 128

13 Dropout 8 × 8 12 14 probability = 0.25

14 Flatten 2,048 13 15 and 16

15 Embodied 9 or 16 14 18 function = Sigmoid Glorot uniform

16 Dense 128 14 17 262,272 function = ReLU Glorot uniform

17 BatchNorm 128 16 18 512

18 Dropout 128 15 and 17 19 probability = 0.5

19 Dense 9 19 – 1,161–1,305 function = Softmax Glorot uniform

The rows report the type, the size of the output, input and output links, the number of trainable parameters, the arguments and the initialization function for each layer. The baseline includes all of the layers,
except 15 (embodied), which is part of the embodied network only. The input of the first layer is the short-time Fourier transform of a number digit, where as the output of layer 19 is the likelihood of each
number class.

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell 597

http://www.nature.com/natmachintell

Articles NATure MAChIne InTellIgenCe

The cardinal numerosity and the iCub fingers represent the
magnitude of the digits, which can explain the better performance
because they contribute to the acquisition of a more linear num-
ber line. They are faster at improving the accuracy for bigger dig-
its, which are more difficult because they are less represented in

the Zipfian distribution of the training set. The correlation among
improved numerical categorization, increasingly linear number line
estimation and numerical magnitude in children was shown by
Laski and Siegler56. To exemplify the advantage, Table 4 summarizes
the development of average accuracy rates for the groups of smaller

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.59

0.64

0.69

0.74

0.79

0.84

0.89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Epoch

0.39

0.44

0.49

0.54

0.59

0.64

0.69

0.74

0.79

0.84

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
cc

ur
ac

y
A

cc
ur

ac
y

A
cc

ur
ac

y

Epoch

Epoch

Pretrained baseline Random Cardinal numerosity Robot
a

b

c

Fig. 2 | Accuracy rate on the test set over epochs. a–c, The accuracy rates of the embodied models and pretrained control conditions are shown for the
small (pretraining = 774 uniformly distributed examples, full training = 2,193 examples; a), medium (pretraining = 1,548 uniformly distributed examples, full
training = 4,386 examples; b) and large (pretraining = 3,096 uniformly distributed examples, full training = 8,773; c) groups. All full training examples have
a Zipfian distribution.

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell598

http://www.nature.com/natmachintell

ArticlesNATure MAChIne InTellIgenCe

(1–4) and bigger (5–9) digits. This analysis permits a comparison
with experimental data for children, who can label small set sizes
exactly (1–4) and larger set sizes approximately (5–9) while learning
the cardinal principle57. Without pretending to replicate the study,
we note that all of our models show a progression similar to that
observed in children, who progress their knowledge starting from
the smaller numbers, then gradually improving the others along the
number line.

It is interesting to note that we did not find relevant differences
between the cardinal numerosity representation and the iCub fin-
ger configurations, except for the final performance with a medium
training size, in which there is a medium effect (d = 0.6312) in
favour of cardinal numerosity. However, they both contributed
equally to modelling a more uniform number line, even if, in the
case of the robot, there are the same numbers of simulated motor
activations for 3 and 4 or 8 and 9. Besides, pertaining to any of the
four kinds considered provides a jump start for subsequent learning
compared to the baseline with no pretraining (results not shown for
conciseness), as expected. A comparison with the simple baseline is
discussed in detail in the next subsection.

Scenario 2
Scenario 2 is a longitudinal study of spoken digit recognition in
embodied artificial agents. We present the results that show how
performance evolves with the training and the number of examples
available for it. To analyse the gradual development of spoken digit
recognition, we split the training examples and investigated the mod-
els’ performance with varying numbers of examples. For simplicity,
we will refer to the groups as small (128, 512 and 1,024), medium
(2,788 and 5,576) and large (13,942 and 27,884). The training

and testing sets have a pseudo-uniform distribution, as specified in
Table 1. In this experimental scenario, the artificial learner used a
portion (25%) of the training dataset for a quick pretraining of the
CNN blocks.

Figure 3a–c presents the history of the average accuracy rate
on the test set at the end of each epoch for the small, medium and
large groups, respectively. As seen in the previous experiment, we
avoided significant overfitting by using common strategies such as
mini-batches, batch normalization layers and dropout layers.

The results of the longitudinal experiment are summarized in
Table 5, which presents the embodied models in a comparison with
two control conditions: control model with the random values (first
columns), and the simple baseline (last columns). Accuracies on the
test set are calculated by averaging the results of the epochs with
lowest training loss at half way (25 epochs) and at the end of the
training (50 epochs). The last section of Table 5 reports the first
epoch when average accuracy was greater than 99% of the base-
line’s final accuracy. This is a measure of how fast the training con-
verges. We see that control conditions reached the same accuracy
of the embodied models after more training repetitions (epochs).
Exceptions were found in the medium group (Fig. 3b), where the
control model was as accurate as the embodied models earlier in
the training (after 10 epochs; 2,788) and was almost as good as the
embodied models since the beginning (5,576).

In summary, the longitudinal experiments confirmed that the
embodied models were more effective learners than the control con-
ditions: they achieved higher recognition accuracies in fewer epochs,
especially with the smaller training sets. The embodied models were
significantly more successful than the baseline, with exceptions in the
larger group, when they achieved a higher accuracy but there was no

Table 3 | Accuracy rates for varying training example sizes and different representations

Training
examples

Baseline (pretrained) Random values Cardinal numerosity iCub robot fingers

Accuracy s.d. Accuracy s.d. d Accuracy s.d. d Accuracy s.d. d

Average after Epoch 1

774/2,193 0.3950 0.0867 0.4009 0.0680 0.08 0.5386a 0.0539 1.99 0.5396a 0.0459 2.08

1,548/4,386 0.5811 0.0526 0.5926 0.0623 0.20 0.6766a 0.0394 2.05 0.6798a 0.0411 2.09

3,096/8,773 0.7592 0.0683 0.7692 0.0844 0.13 0.7946a 0.0309 0.67 0.7940a 0.0321 0.65

Final (average of epochs with lowest training loss)

774/2,193 0.8535 0.0191 0.8508 0.0180 -0.14 0.8638a 0.0147 0.60 0.8665a 0.0176 0.71

1,548/4,386 0.8990 0.0170 0.9055 0.0120 0.44 0.9126a 0.0076 1.03 0.9071 0.0097 0.58

3,096/8,773 0.9279 0.0098 0.9299 0.0098 0.20 0.9347a 0.0110 0.65 0.9361a 0.0053 1.04

Values in bold are significantly (P < 0.05) better than the baseline. aThe best overall accuracy rate for each row (multiple in the case of no statistical difference).

Table 4 | Accuracy progression for smaller and bigger digits

Pre/full train sizes Baseline (pretrained) Random values Cardinal numerosity iCub fingers

1–4 5–9 1–4 5–9 1–4 5–9 1–4 5–9

Average after epoch 1

774/2,193 0.578 0.172 0.601 0.181 0.707 0.360 0.723 0.350

1,548/4,386 0.776 0.388 0.758 0.424 0.806 0.540 0.815 0.537

3,096/8,773 0.865 0.638 0.868 0.664 0.879 0.713 0.879 0.704

Average after epoch 25

774/2,193 0.904 0.799 0.902 0.793 0.905 0.810 0.903 0.813

1,548/4,386 0.934 0.862 0.935 0.871 0.941 0.890 0.928 0.878

3,096/8,773 0.950 0.905 0.952 0.910 0.955 0.919 0.952 0.917

Table 3 reports the average accuracy rates for smaller digits (1–4) and bigger digits (5–9) after epochs 1 and 25. Higher accuracies are highlighted in bold.

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell 599

http://www.nature.com/natmachintell

Articles NATure MAChIne InTellIgenCe

statistical difference. The embodied models were often more accurate
than the control model, with some exceptions—when training with
1,024 and 2,788 examples after 50 epochs, for example. However, while

embodied models performed better until around 25 epochs, their
advantage usually decreased with continued training, often lacking
statistically significant differences if compared with the control model

5 10 15 20 25 30 35 40 45 50

Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

5,576

2,788

5 10 15 20 25 30 35 40 45 50

Epoch

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

27,788

13,942

a

c

Base
128,512

Base
1,024

Cardinal numerosity Random Robot

Base Cardinal numerosity Random Robot

5 10 15 20 25 30 35 40 45 50

Epoch

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y
A

cc
ur

ac
y

A
cc

ur
ac

y

0.7

0.8

b

Fig. 3 | Accuracy rate on the test set over epochs. a–c, The accuracy rates of the embodied models and control conditions are shown for the small
(pretraining = 32, 128, 256, training = 128, 512, 1,024 examples; a), medium (pretraining = 697, 1,394, full training = 2,788, 5,576; b) and large
(pretraining = 3,485, 6,971, full training = 13,942, 27,884; c) groups. In the groups, training with larger sets always achieved higher accuracy and there is no
overlap among the lines of different groups. The only exception is the simple baseline (light blue) in a because the line for 1,024 starts below the previous
case (512). For clarity, in b and c it is specified the training set size for the baselines (the legend in b also applies to c). The black horizontal lines in c mark
the best overall results.

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell600

http://www.nature.com/natmachintell

ArticlesNATure MAChIne InTellIgenCe

final accuracy. These results can be linked to the transition from early
to mature mathematical cognition in children, who initially perform
better when they can use finger representations, then gradually aban-
don them for other strategies29.

Comparing the embodied models’ representations, the two were
statistically equivalent in terms of performance (see Supplementary
Table 2). This confirmed that the physically embodied representation
is as good as the pure cardinality representation, while it captures the
real motor activation data of the robot. Supplementary Table 3 shows a
comparison of the control conditions. As seen in Scenario 1, the com-
parison showed that the control model often has a higher final accu-
racy, but it was not significantly different from the pretrained baseline.
However, the pretrained baseline was slower than the control model,
that is, it often reached the peak accuracy later.

Conclusions
Recent studies in developmental psychology and cognitive neuro-
science demonstrated a pivotal role of fingers in developing num-
ber cognition. Inspired by these studies, this Article investigated
the perceptual process of recognizing spoken digits in deep CNNs
by embodying them in iCub’s fingers during the training. In par-
ticular, finger representations replicated activations in motor cortex
when processing numbers that reflect the hand used for counting as
seen in humans24.

Simulation results showed that the robot’s fingers boost the per-
formance by setting up the network and augmenting the training

examples when these were numerically limited. This is a common
scenario in robotics, where robots can learn from a small amount
of data. Results can be related to some behaviours that were also
observed in several human studies in developmental psychology
and neuroimaging. Overall, the hand-based representation pro-
vided our artificial system with information about magnitude rep-
resentations that improved the creation of a more uniform number
line, as seen in children56,57. Interestingly, our results also indicate
that accuracy can be increased by pretraining convolutional blocks
with a uniform subset taken from a non-uniform training set.
Furthermore, longitudinal experimentation showed that the perfor-
mance improvement from the representation of the robot’s fingers
was reduced with experience, in a similar manner to the transition
from early to mature mathematical cognition in children, who ini-
tially perform better when they can use fingers, but, after they grow
in experience, gradually abandon finger representations without
affecting accuracy29.

Comparative analyses showed that the embodied strategy can
represent an approach to increase efficiency in training deep neu-
ral networks outside the context of robotics. Importantly, cogni-
tive developmental robotics were demonstrated to be effective
using the standard approach in a benchmark machine learning
problem. We saw performance improvements with other synthetic
representations too, such as cardinal numerosity or, in some condi-
tions, even vectors of randomly generated values. Although cardinal
numerosity showed a similar performance to the iCub fingers, the

Table 5 | Summary of the results on the test set

Training
examples
(pre/full)

Random values Cardinal numerosity iCub robot fingers Baseline

Accuracy s.d. Accuracy s.d. d Accuracy s.d. d Accuracy s.d. d

After epoch 25 (average of testing after epochs with lowest training loss)

32/128 0.3602 0.035 0.3800a 0.028 0.625 0.3828a 0.024 0.748 0.3558 0.027 −0.140

128/512 0.6462 0.030 0.6816a 0.026 1.252 0.6847a 0.017 1.571 0.6148b 0.034 −0.985

256/1,024 0.8095 0.017 0.8243a 0.010 1.039 0.8255a 0.016 0.975 0.7663b 0.016 −2.604

697/2,788 0.9143a 0.007 0.9126a 0.008 −0.234 0.9139a 0.006 −0.056 0.9003b 0.008 −1.796

1,394/5,576 0.9384 0.006 0.9426a 0.005 0.745 0.9424a 0.005 0.723 0.9317b 0.006 −1.125

3,485/13,942 0.9584 0.004 0.9607a 0.002 0.727 0.9613a 0.003 0.872 0.9587 0.003 0.084

6,971/27,884 0.9677 0.002 0.9698 0.002 0.861 0.9694 0.002 0.690 0.9688 0.002 0.483

Final (average of testing after epochs with lowest training loss)

32/128 0.4093 0.027 0.4186a 0.019 0.402 0.4203a 0.029 0.394 0.4000 0.028 −0.341

128/512 0.7213 0.018 0.7308a 0.018 0.525 0.7327a 0.025 0.524 0.6960b 0.025 −1.172

256/1,024 0.8487a 0.011 0.8484a 0.010 −0.024 0.8472a 0.014 −0.119 0.8340b 0.013 −1.263

697/2,788 0.9230a 0.006 0.9222a 0.005 −0.133 0.9230a 0.005 −0.007 0.9166b 0.006 −1.060

1,394/5,576 0.9463a 0.004 0.9470a 0.004 0.195 0.9474a 0.004 0.285 0.9419b 0.005 −0.977

3,485/13,942 0.9630 0.003 0.9648a 0.002 0.676 0.9639 0.002 0.339 0.9625 0.003 −0.150

6,971/27,884 0.9714 0.002 0.9721 0.001 0.455 0.9716 0.002 0.125 0.9716 0.002 0.120

Epoch when testing accuracy was greater than 99% of the baseline’s final average accuracy

32/128 44 36 35 43

128/512 36 29 27 45

256/1,024 31 27 29 46

697/2,788 17 19 19 34

13,94/5,576 16 15 16 22

3,485/13,942 13 11 10 14

6,971/27,884 12 6 9 14

Accuracy rates are in bold when significantly (P < 0.05) better than the control model with random values. aSignificantly (P < 0.05) better than the baseline. bSignificantly worse (P < 0.5) than the control
model with random values. The final rows of this table show the median epochs when test accuracy was greater than 99% of the baseline’s final average accuracy. Supplementary Table 2 reports the
P values for all the pairs considered.

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell 601

http://www.nature.com/natmachintell

Articles NATure MAChIne InTellIgenCe

control model with random values often underperformed and was
not significantly different from the other control conditions.

Like their biological counterparts, the robot’s fingers seem bet-
ter suited than other synthetic representations for simulating early
mathematical education in interactive scenarios with a child-like
robot. Indeed, they are more likely to be presented and intuitively
understood by humans without requiring advanced communica-
tion with the robot. For instance, examples of spoken digits can be
proactively acquired by the robot by showing finger representations
and asking: “what number is this?” Human teachers may also sim-
ply open and close the robot’s fingers to instruct the robot or correct
the representation in the case of errors.

In conclusion, we believe that these findings validate the cog-
nitive developmental robotics approach as a tool for implementing
embodied cognition ideas, and for developing machine intelligence
while making artificial learning more intuitive for humans.

Methods
The Google Tensorflow Speech commands dataset. To provide a realistic
numerical challenge to our models, we used a new publicly available benchmark
in machine learning: the Google Tensorflow Speech commands dataset50. The
accompanying paper50 reports a basic benchmark of 88.2% (on the whole database
of spoken commands) and the best result reported in the Leaderboard of the 2017
TensorFlow Speech Recognition Challenge58 was 91.06% on the first version of
the database.

Here, we used the second version of the database, which contains 105,829
1-s-long utterances of 35 short words, by thousands of different people. The
digits are around one-third of the database, which includes 34,856 spoken digits
from 1 to 9 that we randomly split into an 80% (27,884) training set and a 20%
(6,972) testing set. For Scenario 1, we aimed for a standard child development
scenario, where the analysis of number word frequencies in natural corpora55,59
suggests that smaller numbers are more frequent than larger numbers. This
implied that frequencies of digits should decrease proportionally to their
numerical magnitude. For this reason, we created an ad hoc training dataset
with a Zipfian distribution by extracting examples with frequency 1/N, where
N is the numerical value of the digit. The distribution of the examples for each
scenario is presented in Table 1.

The original files are 16-bit little-endian PCM-encoded in the WAVE format
at a 16 KHz sample rate. For our experiments, these were preprocessed using a
standard approach that makes use of the short-time Fourier transform (STFT). The
resulting samples are 90 × 63 STFT spectrograms; these were rescaled to be in the
range [0,1], which is optimal for training artificial neural networks.

Note that in this study, we did not include the zeros because there is no finger
representation that can be associated with them. This is coherent with all empirical
studies about embodied arithmetic in the literature, where tasks usually do not include
the zero (for example, see refs. 11,24) because of its special status among numbers.

In our experiments, the database is split into smaller sets to simulate a
gradual course of education typical for the children, by investigating the models’
performance of varying size of training examples. This also allows us to gather
information on the efficacy and efficiency of the proposed embodied strategy in
scenarios where examples are scarce. The division is obtained simply by taking
a sequence of consecutive examples from the main database. The sequences are
varied among the 32 runs, Algorithm 1 describes the procedure. For Scenario 1, the
sizes considered were 25%, 50% and 100% of the Zipfian dataset. For Scenario 2,
we aimed for a more fine-grained analysis, with seven set sizes. The 3 smallest
sizes were selected as multipliers of the mini-batch size (32), while the others were
respectively 10%, 20%, 50% and 100% of the training dataset.

The source code for the implementation can be found in the GitHub repository
(files: generator.py; dataset.py; zipfian.py; see the data availability). Supplementary
Figure 2 shows examples of the spectrograms.

Simulated internal representations. Three fixed codes are used to simulate the
embodied representations of the digits from one to nine:
•	 The cardinal numerosity, which represents a cardinal number N with the

same quantity of ones. If the number of available digits for the representation
is greater than N, then zeros are included to fill. In our case, we used nine
digits to represent the numbers, with 1 represented as 100000000 and 9 as
111111111 and, for instance, the representation of N = 4 is 111100000. The
cardinal numerosity has cognitive plausibility and it has been shown to facili-
tate learning for symbolic and ordinal representations60. Indeed, neural net-
work models based on the numerosity representation can account for a wide
range of empirical data46. In the context of this article, the cardinal numerosity
is an abstract representation; however, it could synthetically represent a set of
objects that the robot can produce, providing an alternate method to the use of
fingers while learning about numbers.

•	 The iCub robot encoder values for the finger representations. The iCub is
an open-source humanoid robot platform designed to facilitate embodied
artificial intelligence research33. The iCub provides motor proprioception
(joint angles) of the fingers’ motors, for a total of seven degrees of freedom for
each hand as follows: two degrees of freedom for each of the thumb, index and
middle fingers, and one for controlling both ring and pinky fingers, which are
coupled together61. However, this limitation is also common in human beings,
who often cannot freely move these two fingers independently62. To overcome
the possible distortion by unbalanced representations, the contribution of the
motors controlling two fingers is double; we therefore have 16 inputs that we
normalized in the [0,1] range. Pictures of the iCub finger representations are
shown in Supplementary Fig. 1, which shows the right hand. Note that the
finger configurations of each hand are replicating American Sign Language
number representation from one to five. Indeed, the representations with the
left hand are specular, and they are used in addition to the fully open right
hand to represent numbers from 6 (5+1) to 9 (5+4). The finger representa-
tions of American Sign Language were selected to represent the embodied
internal representation as an appropriate solution to a limitation of the iCub
hand. Also, some physical limitation prevents some fingers from being fully
opened or closed, for example the thumb (see Supplementary Video 1 of the
iCub counting from 1 to 10). The numerical values of the encoders can be
found in the file named robot.cvs in the database folder of the GitHub reposi-
tory (see data availability).

•	 Random numbers in the range [0,1] as ‘control’ representations. In this case, 9
vectors of 16 random numbers are created and associated with the numbers.
These representations are generated for each run and remain stable for the
entire training. Random representations are included as a control group to
confirm the performance contribution is due to the embodied signals rather
than other factors.

It should be noted that while arbitrary random gestures are suitable in
computer simulations for control conditions, it is unlikely that they would be
successful in realistic scenarios because they will require preliminary training to be
executed and it is unlikely that human teachers can be precise in repeating them;
that is, there will be significant noise and systematic errors to disrupt the training.

Neural network implementation details. To improve understanding of the
Article, we give an overview of the layers that comprise the architectures and
the methods used for learning in the following subsections. The overview is not
intended to be exhaustive; the aim is to facilitate a general understanding of the
methods used in this work and to point the inexperienced reader towards the
relevant sources. The models were implemented, trained and tested using Python
and Keras 2.2.463 high-level application program interfaces (APIs) running on top
of TensorFlow 1.8.064. Greater detail can be found in the documentation of these
tools available from the respective websites.

The rectified linear unit layer. The label ReLU is commonly used to identify a
layer with rectified linear units, which apply a non-saturating activation function:

=x xReLU() max(0,)

This layer increases the nonlinear properties of the decision function and of the
overall network. In our models, the ReLU layers proved to be more effective than
the classical sigmoid.

The sigmoid layer. A sigmoid layer is formed of units with the most common
transfer function for artificial neural networks, the sigmoid:

=
+

xsigmoid() e
e 1

x

x

The convolutional layer. Convolutional layers characterize the convolutional
blocks; they are one of the most successful instruments for building deep learning
architectures65,66, which represent the current state of the art in computer vision,
and are inspired by biological organization and visual cortex processes in animals
and humans67. The convolutional layers enable artificial neural networks to extract
the main features from an image and recognize patterns by learning about the
shapes of objects.

In a convolutional layer, each unit is repeatedly activated by a receptive field
(typically rectangular), which is connected via a weight vector (a filter) to single-
input sensory neurons. The receptive field is shifted step by step across a two-
dimensional array of input values, such as the frequency for a time step.

The max pooling layer. Another important concept of CNNs is pooling, which
is a form of nonlinear downsampling. There are several nonlinear functions for
implementing pooling, amongst which max pooling is the most common because
it has been shown that max pooling can give a better performance than other
pooling operations68. The pooling layer partitions the input image into a set of
non-overlapping rectangles and, for each such subregion, outputs the maximum.
The pooling layer serves to progressively reduce the spatial size of the

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell602

http://www.nature.com/natmachintell

ArticlesNATure MAChIne InTellIgenCe

representation, to reduce the number of parameters and amount of computation
in the network, and also to control overfitting. The pooling operation provides
another form of translation invariance.

The classification layer. The final layer of the models (Classification_Layer) uses
the softmax transfer function that naturally ensures all output values are between
0 and 1, and that their sum is 1. The output of a softmax classifier is a probability/
likelihood; a classification output layer is also trained to transform the probabilities
into one of the classes. The total number of classes considered in our experiment is 9,
which corresponds to the digits from 1 to 9.

The softmax function used is as follows:

=
∑ =

ixsoftmax (,) e
e

x

j
n x

1

i

j

where the vector x is the net input to a softmax node and n is the number of nodes
in the softmax layer.

The other layers. The other layers included in our models are:
•	 The Dropout layer, which operates by randomly dropping a fraction of input at

each update at training time. Dropout layers help to prevent overfitting69. The
drop rate of the dropout layers in the three convolutional blocks is 0.25, while
the last drop rate is 0.5.

•	 The Flatten layer, which reshapes multidimensional inputs into a one-
dimensional output vector. This layer does not apply a transfer function and
it is transparent to the learning, but it is needed to enable the transition from
convolutional layers to standard layers.

•	 The batch normalization (BatchNorm) layer, which scales the output of the
previous layer by standardizing the activations of each input variable per mini-
batch. This has the effect of inducing a more predictive and stable behaviour of
the gradients, which allows faster training70.

The dropout and batch normalization layers are inserted to reduce overfitting
and improve the generalization performance.

Initializers. The layer initializers used were:
•	 He Uniform71, which uses a uniform distribution within

− ∕ ∕Nw Nw[6 , 6]in in where Nwin is the number of inputs of the layer.
•	 Glorot Uniform72, which draws samples from a uniform distribution within

− ∕ + + ∕ +Nw Nw Nw Nw[6 () , 6 ()]in out in out where Nwout is the number of
outputs.

Algorithms for training the networks. After some preliminary tests with the
optimization algorithms included in the Keras framework, we selected two
adaptive learning methods, based on stochastic gradient descent, for training
the models: RMSprop and the adaptive moment estimation algorithm (Adam).
As recommended, we left the parameters of this optimizer at their default
values, which follow those provided in the original publications cited below. The
training was executed in mini-batches of 16 or 32 examples, full and pretraining
respectively. The use of mini-batches proved to improve the generalization of the
network, that is the accuracy in the test set.

The root mean square propagation (RMSprop) method73 is a gradient-based
method that maintains per-parameter learning rates, which are divided by a
moving average θ̂v t(,) of the squared gradient for each model parameter θ:

θ θ η
θ θ

+ = −
̂

∂
∂

t t
v t

L t(1) ()
(,)

()

Where
θ

∂
∂

t()L is the gradient of the loss function L(t) at epoch t, η is the learning rate,
which, in our experiments, has been set as 0.001. θ̂v t(,) is calculated as:







θ γ θ γ

θ
̂ = ⋅ ̂ − + − ∂

∂
v t v t L t(,) (, 1) (1) ()

2

where γ is 0.9, as suggested in ref. 74. RMSprop can be seen as a mini-batch version
of Rprop73.

Adam75 combines the advantages of RMSprop and Adagrad. In fact, Adam is
widely used in the field of deep learning because it is fast and achieves good results.
Like RMSprop, Adam also makes use of a moving average of the squared gradient

θ̂v t(,), but it keeps an exponentially decaying average of past gradients θm̂ t(,),
similar to the momentum. The parameter update in Adam is given by:

θ θ η θ
θ

+ = − ̂
̂

t t m t
v t

(1) () (,)
(,)

Specifically, θ̂v t(,) and θm̂ t(,) are calculated using the parameters β1 and β2 to
control the decay rates of past and past squared gradients θm̂ t(,) and θ̂v t(,)
respectively as follows:







θ θ

β
θ β θ β

θ
̂ + = ̂

−
̂ = − + − ∂

∂
v t v t v t v t L t(, 1) (,)

1
where (,) (, 1) (1) ()t

2
2 2

2

Note that β t
1 and β t

2 denote the parameters β1 and β2 to the power of t; m(θ,0) = 0
and ν(θ,0) = 0.

Good default settings are η = 0.001, β1 = 0.9 and β2 = 0.999. These values are
used in our experiments.

In our experiments, Adam was used to train the final classifiers, while
RMSprop was used in the regression tasks, where it showed the best performance
(that is, when the learning target was the embodied representations used to
pretrain the CNN layers).
Loss function. The loss function L(t) was the cross-entropy function, which
computes the performance given by network outputs and targets in such a way that
extremely inaccurate outputs are heavily penalized, while a very small penalty is
given to almost-correct classifications.

The calculation of the cross-entropy H depends on the task: categorical HC
when classifying into the number classes; binary HB when predicting the embodied
representations.

In the case of classification, the output p is a categorical vector of N probabilities
that represent the likelihood of each of the N classes with ∑ =p 1, while ∼y is a one-
hot encoded vector (1 for the target class, 0 for the rest). HC is calculated as the average
of the cross-entropy of each pair of output-target elements (classes):

∼∑= − ⋅
=

H
N

py1 log()
i

N

i iC
1

When the target is the embodied representation, the output is a vector z of K
independent elements. The cross-entropy can be calculated by considering two
binary classes: one corresponds to the target value, the other is zero. In this case,
the loss function is calculated using the HB expression:

∼ ∼∑= − ⋅ − − ⋅ −
=

H
K

z z1 y log() (1 y) log(1)
i

K

i i i iB
1

Training and testing procedures. We ran the training 32 times with random
parameter initializations. The stopping criterion was a fixed number of epochs
(25 for the first experiment and all of the pretraining, 50 for the second). The final
performance was calculated as the average of the accuracies on the test set after the
epoch with the lowest loss for each run. The following pseudocode summarizes the
training and testing procedure for our experiments.

For clarity, details on the statistical analysis used are given in the
Supplementary Information.

Algorithm 1. Pseudo-algorithm of the training procedure.
N = 27884 #number of training examples

  For ∈i [1, 32] #number of runs for each model was 32
 � Random = generate_random_normal_distribution(9;[0,1])

#generates 9 representations; each has 16 random values in [0,1]
    For each ∈K {{2193, 4386, 8773} #Scenario 1: Zipfian distribution
  |{128,512,1024,2788,5576,13942,27884}}�#Scenario 2: standard semi-

uniform distribution
   � train_interval = [(K*((i−1)%(int(N/K))),K*(i%int(N/K))}]

#the train interval covers as much of the training dataset as possible.
     train(convolutional_blocks,

      optimizer=rmsprop,
      epochs=25,
      mini-batches_size=32
      input=MNIST_TRAIN[pre-train_interval],
     � output=(random|num_mag|robot))

#embodied architecture only

     train(full_model, optimizer=adam,
      epochs=(25|50) #25 for experiment 1; 50 for experiment 2
      mini-batches_size=16
      input= SPOKEN_DIGITS_TRAIN[train_interval],
     � main_output=(classes),embodied_output=(random|num_

mag|robot),
      loss=1.0*classifier_loss+1.0*embodied_loss) #full training

    � =kaccuracy(, epoch)i
�evaluate(full_model, input= SPOKEN_
DIGITS_TEST)

Note that, in the case of 128,512 and 1,024 examples, all runs had a different
portion of the training set, while in the other cases they cycle among 10, 5 and 2
folds of the training set.

θ θ
β

θ β θ β
θ

̂ + = ̂
−

̂ = − + − ∂
∂

m t m t m t m t L t(, 1) (,)
1

where (,) (, 1) (1) ()t
1

1 1

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell 603

http://www.nature.com/natmachintell

Articles NATure MAChIne InTellIgenCe

Data availability
The data for the models presented in this paper can be found in the GitHub
repository: https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech.
A Supplementary Video of the iCub counting from 1 to 10 is also provided.
The Google Tensorflow Speech Command database can be downloaded from
http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz.

Code availability
The source code for the models presented in this paper can be found in the GitHub
repository: https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech.

Received: 1 March 2019; Accepted: 27 October 2019;
Published online: 10 December 2019

References
	1.	 Glenberg, A. M. Embodiment as a unifying perspective for psychology.

WIREs Cogn. Sci. 1, 586–596 (2010).
	2.	 Wilson, M. Six views of embodied cognition. Psychon. Bull. Rev. 9,

625–636 (2002).
	3.	 Pfeifer, R., Bongard, J. & Grand, S. How the Body Shapes the Way We Think:

A New View of Intelligence (MIT Press, 2007).
	4.	 Shapiro, L. The Routledge Handbook of Embodied Cognition (Routledge, 2014).
	5.	 Dackermann, T., Fischer, U., Nuerk, H. C., Cress, U. & Moeller, K. Applying

embodied cognition: from useful interventions and their theoretical
underpinnings to practical applications. ZDM Math. Educ. 49,
545–557 (2017).

	6.	 Nieder, A. The neuronal code for number. Nat. Rev. Neurosci. 17,
366–382 (2016).

	7.	 Barrow, J. D. New Theories of Everything: The Quest for Ultimate Explanation
(Oxford Univ. Press, 2008).

	8.	 Lakoff, G. & Nuñez, R. Where Mathematics Comes From: How the Embodied
Mind Brings Mathematics into Being (Basic Books, 2000).

	9.	 Soylu, F., Lester, F. K. Jr. & Newman, S. D. You can count on your fingers:
the role of fingers in early mathematical development. J. Numer. Cogn. 4,
107–135 (2018).

	10.	Goldin-Meadow, S., Levine, S. C. & Jacobs, S. in Emerging Perspectives
on Gesture and Embodiment in Mathematics (eds Edwards, L. D. et al.)
50–64 (Information Age, 2014).

	11.	Gunderson, E. A., Spaepen, E., Gibson, D., Goldin-Meadow, S. & Levine, S.
C. Gesture as a window onto children’s number knowledge. Cognition 144,
14–28 (2015).

	12.	Di Luca, S. & Pesenti, M. Masked priming effect with canonical finger
numeral configurations. Exp. Brain Res. 185, 27–39 (2008).

	13.	Domahs, F., Kaufmann, L. & Fischer, M. H. Handy Numbers: Finger Counting
and Numerical Cognition (Frontiers, 2014).

	14.	Alibali, M. W. & DiRusso, A. A. The function of gesture in learning to count:
more than keeping track. Cogn. Dev. 14, 37–56 (1999).

	15.	Di Luca, S. & Pesenti, M. Finger numeral representations: more than just
another symbolic code. Front. Psychol. 2, 272 (2011).

	16.	Sixtus, E., Fischer, M. H. & Lindemann, O. Finger posing primes number
comprehension. Cogn. Process. 18, 237–248 (2017).

	17.	Klein, E., Moeller, K., Willmes, K., Nuerk, H.-C. & Domahs, F. The Influence
of implicit hand-based representations on mental arithmetic. Front. Psychol.
2, 197 (2011).

	18.	Butterworth, B. The Mathematical Brain (Macmillan, 1999).
	19.	Peters, L. & De Smedt, B. Arithmetic in the developing brain: a review of

brain imaging studies. Dev. Cogn. Neurosci. 30, 265–279 (2018).
	20.	Andres, M., Michaux, N. & Pesenti, M. Common substrate for mental

arithmetic and finger representation in the parietal cortex. Neuroimage 62,
1520–1528 (2012).

	21.	Kaufmann, L. et al. A developmental fMRI study of nonsymbolic numerical
and spatial processing. Cortex 44, 376–385 (2008).

	22.	Gracia-Bafalluy, M. & Noël, M.-P. Does finger training increase young
children’s numerical performance? Cortex 44, 368–375 (2008).

	23.	Sato, M., Cattaneo, L., Rizzolatti, G. & Gallese, V. Numbers within our hands:
modulation of corticospinal excitability of hand muscles during numerical
judgment. J. Cogn. Neurosci. 19, 684–693 (2007).

	24.	Tschentscher, N., Hauk, O., Fischer, M. H. & Pulvermüller, F. You can count
on the motor cortex: finger counting habits modulate motor cortex activation
evoked by numbers. Neuroimage 59, 3139–3148 (2012).

	25.	Alibali, M. W. & Nathan, M. J. Embodiment in mathematics teaching and
learning: evidence from learners’ and teachers’ gestures. J. Learn. Sci. 21,
247–286 (2012).

	26.	Alibali, M. W. et al. How teachers link ideas in mathematics instruction using
speech and gesture: a corpus. Anal. Cogn. Instr. 32, 65–100 (2014).

	27.	Cook, S. W. & Goldin-Meadow, S. The role of gesture in learning:
do children use their hands to change their minds? J. Cogn. Dev. 7,
211–232 (2006).

	28.	Cook, S. W., Duffy, R. G. & Fenn, K. M. Consolidation and
transfer of learning after observing hand gesture. Child Dev. 84,
1863–1871 (2013).

	29.	Jordan, N. C., Kaplan, D., Ramineni, C. & Locuniak, M. N. Development of
number combination skill in the early school years: when do fingers help?
Dev. Sci. 11, 662–668 (2008).

	30.	Moeller, K., Martignon, L., Wessolowski, S., Engel, J. & Nuerk, H.-C. Effects
of finger counting on numerical development—the opposing views of
neurocognition and mathematics education. Front. Psychol. 2, 328 (2011).

	31.	Cangelosi, A. & Schlesinger, M. Developmental Robotics: From Babies to
Robots (MIT Press, 2015).

	32.	Sakagami, Y. et al. The intelligent ASIMO: system overview and integration.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
Vol. 3 (ed. Dodds, G.) 2478–2483 (IEEE, 2002).

	33.	Sandini, G., Metta, G. & Vernon, D. in 50 Years of Artificial Intelligence
(eds Lungarella, M. et al.) 358–369 (Springer, 2007).

	34.	Theodorou, A., Wortham, R. H. & Bryson, J. J. Designing and implementing
transparency for real time inspection of autonomous robots. Conn. Sci. 29,
230–241 (2017).

	35.	Asada, M. et al. Cognitive developmental robotics: a survey. IEEE Trans.
Auton. Ment. Dev. 1, 12–34 (2009).

	36.	Cangelosi, A. et al. in Conceptual and Interactive Embodiment: Foundations
of Embodied Cognition Vol. 2 (eds Fischer, M. H. & Coello, Y.) 275–293
(Routledge, 2016).

	37.	Di Nuovo, A., Marocco, D., Di Nuovo, S. & Cangelosi, A. Autonomous
learning in humanoid robotics through mental imagery. Neural Netw. 41,
147–155 (2013).

	38.	Di Nuovo, A., Marocco, D., Di Nuovo, S. & Cangelosi, A. in Springer
Handbook of Model-Based Science (eds Magnani, L. & Bertolotti, T.)
619–637 (Springer, 2017).

	39.	Di Nuovo, A. & Jay, T. The development of numerical cognition
in children and artificial systems: a review of the current knowledge
and proposals for multi-disciplinary research. IET Cogn. Comput. Syst. 1,
2–11 (2019).

	40.	Rucinski, M., Cangelosi, A. & Belpaeme, T. Robotic model of the contribution
of gesture to learning to count. In IEEE International Conference on
Development and Learning and Epigenetic Robotics (eds Morrison, C. & Nagai,
Y.) 1–6 (IEEE, 2012).

	41.	De La Cruz, V. M., Di Nuovo, A., Di Nuovo, S. & Cangelosi, A. Making
fingers and words count in a cognitive robot. Front. Behav. Neurosci. 8,
13 (2014).

	42.	Di Nuovo, A., De La Cruz, V. M. & Cangelosi, A. Grounding fingers,
words and numbers in a cognitive developmental robot. In IEEE Symposium
on Computational Intelligence, Cognitive Algorithms, Mind, and Brain
(eds Perlovsky, L. et al.) 9–15 (IEEE, 2014).

	43.	Di Nuovo, A., De La Cruz, V. M., Cangelosi, A. & Di Nuovo, S. The iCub
learns numbers: an embodied cognition study. In International Joint
Conference on Neural Networks (ed. Alippi, C.) 692–699 (IEEE, 2014).

	44.	Di Nuovo, A., De La Cruz, V. M. & Cangelosi, A. A deep learning
neural network for number cognition: a bi-cultural study with the iCub.
In IEEE International Conference on Development and Learning and
Epigenetic Robotics (ed Meeden, L.) 320–325 (2015).

	45.	Di Nuovo, A. An embodied model for handwritten digits recognition
in a cognitive robot. In IEEE Symposium on Computational Intelligence,
Cognitive Algorithms, Mind, and Brain (eds Perlovsky, L. et al.) 1–6
(IEEE, 2017).

	46.	Zorzi, M., Stoianov, I. & Umiltà, C. in The Handbook of Mathematical
Cognition (ed. Campbell, J.) 67–84 (Psychology, 2005).

	47.	Di Nuovo, A. Long-short term memory networks for modelling embodied
mathematical cognition in robots. In International Joint Conference on Neural
Networks (ed. Ludermir, T.) 1–7 (IEEE, 2018).

	48.	Domahs, F., Krinzinger, H. & Willmes, K. Mind the gap between both hands:
evidence for internal finger-based number representations in children’s
mental calculation. Cortex 44, 359–367 (2008).

	49.	Davis, S., Tsagarakis, N. G. & Caldwell, D. G. The initial design and
manufacturing process of a low cost hand for the robot iCub. In
IEEE-RAS International Conference on Humanoid Robots (ed. Oh, J.-H.)
40–45 (IEEE, 2008).

	50.	Warden, P. Speech commands: a dataset for limited-vocabulary
speech recognition. Preprint at https://arxiv.org/abs/1804.03209 (2018).

	51.	Sharif Razavian, A., Azizpour, H., Sullivan, J. & Carlsson, S. CNN features
off-the-shelf: an astounding baseline for recognition. In IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops
(eds Betke, M. & Davis, J.) 806–813 (IEEE, 2014).

	52.	Gallistel, C. R. & Gelman, R. Preverbal and verbal counting and computation.
Cognition 44, 43–74 (1992).

	53.	Szegedy, C. et al. Going deeper with convolutions. In IEEE Conference on
Computer Vision and Pattern Recognition (ed. Mortensen, E.) 1–9 (IEEE,
2015).

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell604

https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech
http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz
https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech
https://arxiv.org/abs/1804.03209
http://www.nature.com/natmachintell

ArticlesNATure MAChIne InTellIgenCe

	54.	Gelman, R. & Gallistel, C. R. The Child’s Understanding of Number
(Harvard Univ. Press, 1986).

	55.	Piantadosi, S. T. Zipf ’s word frequency law in natural language: a critical
review and future directions. Psychon. Bull. Rev. 21, 1112–1130 (2014).

	56.	Laski, E. V. & Siegler, R. S. Is 27 a big number? Correlational and causal
connections among numerical categorization, number line estimation, and
numerical magnitude comparison. Child Dev. 78, 1723–1743 (2007).

	57.	Gunderson, E. A., Spaepen, E. & Levine, S. C. Approximate number
word knowledge before the cardinal principle. J. Exp. Child Psychol. 130,
35–55 (2015).

	58.	Tensorflow Speech Recognition Challenge (Kaggle, 2018); https://www.kaggle.
com/c/tensorflow-speech-recognition-challenge/leaderboard

	59.	Dehaene, S. & Mehler, J. Cross-linguistic regularities in the frequency of
number words. Cognition 43, 1–29 (1992).

	60.	Stoianov, I., Zorzi, M., Becker, S. & Umilta, C. Associative arithmetic with
Boltzmann machines: the role of number representations. In International
Conference on Artificial Neural Networks (ed. Dorronsoro, J. R.) 277–283
(Springer, 2002).

	61.	Schmitz, A. et al. Design, realization and sensorization of the dexterous iCub
hand. In IEEE-RAS International Conference on Humanoid Robots (ed. Wilkes,
M.) 186–191 (IEEE, 2010).

	62.	Lang, C. E. & Schieber, M. H. Human finger independence: limitations due to
passive mechanical coupling versus active neuromuscular control. J.
Neurophysiol. 92, 2802–2810 (2004).

	63.	Chollet, F. Keras: The Python Deep Learning Library (GitHub respository,
2018); http://keras.io

	64.	TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems (GoogleResearch, 2018); https://www.tensorflow.org

	65.	Schmidhuber, J. Deep learning in neural networks: An overview.
Neural Networks 61, 85–117 (2015).

	66.	LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

	67.	Fukushima, K. Artificial vision by multi-layered neural networks:
neocognitron and its advances. Neural Networks 37, 103–119 (2013).

	68.	Scherer, D., Müller, A. & Behnke, S. Evaluation of pooling operations in
convolutional srchitectures for object recognition. In International Conference
on Artificial Neural Networks (eds Diamantaras, K., Duch, W. & Iliadis, L.)
92–101 (Springer, 2010).

	69.	Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res. 15, 1929–1958 (2014).

	70.	Santurkar, S., Tsipras, D., Ilyas, A. & Madry, A. How does batch
normalization help optimization? In Advances in Neural Information
Processing Systems (eds Bengio, S. et al.) 2483–2493 (NIPS Foundation, 2018).

	71.	He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: surpassing
human-level performance on imagenet classification. In IEEE International
Conference on Computer Vision (eds Mortensen, E. & Fidler, S.) 1026–1034
(IEEE, 2015).

	72.	Glorot, X. & Bengio, Y. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of Machine
Learning Research (eds Teh, Y.W., & Titterington, M.) 249–256
(MLR Press, 2010).

	73.	Riedmiller, M. & Braun, H. A direct adaptive method for faster
backpropagation learning: the RPROP algorithm. In IEEE International
Conference on Neural Networks (ed. Ruspini, E.) 586–591 (IEEE, 1993).

	74.	Ruder, S., An overview of gradient descent optimization algorithms. Preprint
at https://arxiv.org/abs/1609.04747 (2017).

	75.	Kingma, D. P. & Ba, J. L. Adam: a method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980v9 (2017).

Acknowledgements
A.D.N. acknowledges the support of the EPSRC through project grant no. EP/P030033/1
(NUMBERS). A.D.N. also acknowledges the support of the NVIDIA Corporation with
the donation of the GeForce Titan X and the Tesla K40 GPUs used for this research.

Author contributions
A.D.N. conceptualized the experiment, developed the methodology and designed
the baseline artificial neural network architecture. A.D.N. and J.L.M. collaborated
on the design of the embodied model. A.D.N. implemented the source code, ran the
simulations, validated the results and wrote the first draft of the article. J.L.M. provided
relevant ideas from cognitive psychology and neuroscience and contributed to the
discussion.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s42256-019-0123-3.

Correspondence and requests for materials should be addressed to A.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

Nature Machine Intelligence | VOL 1 | December 2019 | 594–605 | www.nature.com/natmachintell 605

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/leaderboard
https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/leaderboard
http://keras.io
https://www.tensorflow.org
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1038/s42256-019-0123-3
https://doi.org/10.1038/s42256-019-0123-3
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Developing the knowledge of number digits in a child-like robot

	Recognizing spoken digits in a cognitive developmental robot

	Deep learning architecture for simulating embodied learning

	Scenario 1

	Scenario 2

	Conclusions

	Methods

	The Google Tensorflow Speech commands dataset
	Simulated internal representations
	Neural network implementation details
	The rectified linear unit layer
	The sigmoid layer
	The convolutional layer
	The max pooling layer
	The classification layer
	The other layers
	Initializers
	Algorithms for training the networks
	Loss function
	Training and testing procedures

	Acknowledgements

	Fig. 1 Schematics of the artificial neural network architecture.
	Fig. 2 Accuracy rate on the test set over epochs.
	Fig. 3 Accuracy rate on the test set over epochs.
	Table 1 Dataset distributions.
	Table 2 Summary of the CNN architecture.
	Table 3 Accuracy rates for varying training example sizes and different representations.
	Table 4 Accuracy progression for smaller and bigger digits.
	Table 5 Summary of the results on the test set.

