
Articles
https://doi.org/10.1038/s42256-019-0123-3

1Sheffield Robotics, Department of Computing, Sheffield Hallam University, Sheffield, UK. 2Department of Psychology, Center for Mind, Brain and 
Computation, Stanford University, Stanford, CA, USA. *e-mail: a.dinuovo@shu.ac.uk

The embodied cognition theory affirms that human intelligence 
is formed not only by the brain, but is also shaped by the body 
and the experiences acquired through it, such as manipula-

tives, gestures and movements1–4. Research in developmental psy-
chology has shown that embodied experiences help children in 
learning various cognitive skills by using limbs and senses to interact 
with the surrounding environment and other human beings5.

Among the human cognitive skills that can be extended through 
bodily experiences, number processing is particularly valuable 
because it can provide a window into the neuronal mechanisms of 
high-level brain functions6. Numbers constitute the building blocks 
of mathematics, a language of the human mind that can express 
fundamental properties of the physical world and make the universe 
intelligible7. Therefore, understanding how the artificial sensorimo-
tor system embodies numerical processes can also help to answer 
the wider question of how bodily (real or artificial) systems support 
and scaffold the development of abstract cognitive skills8.

Within the embodied mathematics framework, fingers are sponta-
neous tools that play a crucial role in developing number cognition until 
a level of basic arithmetic is achieved (for details see recent reviews9,10). 
In particular, Gunderson et al11. observed that young children can bet-
ter communicate their knowledge about numbers using hand gestures 
rather than with words, particularly for numbers that they have not yet 
learned in speech. In fact, one of the most evident embodied interac-
tions with cognition is the use of fingers to convey both cardinal and 
ordinal aspects of numbers: finger montring12 refers to the use of fin-
ger configurations to represent cardinal number information; finger 
counting and pointing gestures are used to support ordinal representa-
tion for counting quantities or doing basic arithmetic operations13,14. In 
a short review15, Di Luca and Pesenti have shown that “finger-counting/ 
montring activities, especially if practised at an early age, can con-
tribute to a fast and deep understanding of number concepts, which 
has an impact during the entire cycle of life by providing the sensory-
motor roots onto which the number concept grows”. The essential role 
of motor contribution was validated by Sixtus et al16., who compared 
visual images with actively produced finger postures (motor priming) 
and showed that only canonical motor finger posing has a significant 

positive effect on number processing. The concept of embodied cog-
nition extends the role of fingers beyond just another external mate-
rial (for example blocks, Cuisenaire rods) for learning how to process 
numbers. Instead, internal finger-based representations provide a 
natural numerical representation that facilitates the development of 
initial mathematical cognition17. More specifically, Butterworth18 sug-
gested that “without the ability to attach number representations to 
the neural representations of fingers and hands in their normal loca-
tions, the numbers themselves will never have a normal representation 
in the brain”. These ideas from behavioural research were confirmed 
and extended by neuroimaging research in the area of embod-
ied mathematics (a recent literature review can be found in ref. 19),  
where empirical studies have suggested a neural link or even a com-
mon substrate for the representation of fingers and numbers in the 
human brain20. In the neuroimaging data, neural correlates of finger 
and number representations can be located in neighbouring, or even 
overlapping, cortex areas21. Therefore, it is suggested that finger pro-
cessing may play a role in setting up the biological neural networks on 
which more advanced mathematical computations are built22.

Numerous studies have also shown a permanent neural link 
between finger configurations and their cardinal number mean-
ing in adulthood. For instance, researchers have found that adult 
humans still activate the same motor cortex areas that control fingers 
while processing digits and number words, even if motor actions 
are inhibited23. Tschentscher et al24. hypothesized that the link is the 
result of an association in the early stages of number learning, when 
finger configurations are used by both teachers and children to rep-
resent numbers while explaining mathematical concepts. Indeed, 
hand gestures are often observed when teaching mathematical con-
cepts as a way of scaffolding students’ understanding25, especially 
when communicating new material26. Several authors27,28 show that 
children who observe gesture while learning mathematics perform 
better than children who do not, and that gesture during teaching 
encourages children to produce gestures of their own, which, in 
turn, can enhance the training and allow them to consolidate and 
transfer the learning of abstract concepts. However, while children 
often use fingers to support their early mathematical learning,  
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and this habit correlates with better performance in initial stages, 
they do not need gestures in later stages after they have successfully 
learned the basic concepts29. The use of fingers while learning about 
numbers has also generated a debate between researchers in neu-
rocognition and education, with the latter concerned that relying 
on fingers can be detrimental for the later numerical development. 
These authors recommend the use of finger representations only 
at early stages, to be replaced at later stages by concrete structured 
representations and, finally, mental representations of numbers to 
perform numerical operations30.

An innovative approach for studying the embodied learning is 
cognitive developmental robotics (CDR), which was defined as the 
“interdisciplinary approach to the autonomous design of behav-
ioural and cognitive capabilities in artificial agents (robots) that 
takes direct inspiration from the developmental principles and 
mechanisms observed in natural cognitive systems (children)”31. 
The application of embodied theory in artificial agents is among 
the motivations for designing new robotic platforms for research to 
resemble the shape of a human body, known as ‘humanoids’, such 
as ASIMO32, and in particular that of a child, notably iCub33. One 
of the postulates of CDR is that the humanization of the learning 
process can help to make artificial intelligence more understand-
able for humans and may increase the acceptance of robots in social 
environments34. CDR is still making its first steps, but it has already 
been successfully applied in the modelling of embodied word learn-
ing, as well as in the development of perceptual, social, language and 
numerical cognition35,36, and recently extended as far as the simula-
tion of embodied motor and spatial imagery37,38.

Yet, only a few attempts have been made so far to simulate 
embodied number learning in robots39, mostly aimed at investigat-
ing finger counting with synthetic datasets. For example, inspired 
by the earlier work by Alibali and Di Russo14, Ruciński et al40. pre-
sented a model in which pointing gestures significantly improve the 
counting accuracy of iCub. De La Cruz, Di Nuovo et al41–43. investi-
gated artificial models for learning finger counting (motor), Arabic 
digit recognition (visual) and spoken digits (auditory) to explore 
whether finger counting and its association with spoken or Arabic 
digits could serve to bootstrap number cognition. These experi-
ments show that learning number word sequences together with 
finger sequencing speeds up the building of the neural network’s 
internal representations, resulting in patterns that better capture the 
similarities between numbers. In fact, the internal representations of 
finger configurations can represent the ideal basis for the building 
of an embodied number representation in the robot. Subsequently,  
Di Nuovo et al44. presented a deep learning model that was validated 
in a simulation of the embodied learning behaviour of bicultural 
children using different finger counting habits to support their num-
ber learning. Recently, Di Nuovo45 presented a ‘shallow’ embodied 
model for handwritten digit recognition that incorporates the link 
hypothesized by Tschentscher et al24. Simulations showed how the 
robot fingers could boost the performance and be as effective as the 
cardinal numerosity magnitude that has been proposed to be the ideal 
computational representation for artificial mathematical abilities46.  
Moving to arithmetic, Di Nuovo47 investigated a long short-term 
memory (LSTM) architecture for modelling the addition operation 
of handwritten digits using an embodied strategy. The results con-
firm an improved accuracy in performing the simultaneous recog-
nition and addition of the digits with a higher frequency of split-five 
errors, in line with observations in studies with humans48.

All of these studies provided valuable information about the sim-
ulation of artificial learning and demonstrated the value of the CDR 
approach to studying aspects of numerical cognition. However, 
even if they apply machine intelligence methods, they lack general-
ization and applicability in this field. Indeed, like many other CDR 
studies, those presented above are based on simple, shallow models 
trained on synthetic data, which were often created ad hoc for the 

study. For instance, early models41–43 were a simple recurrent net-
work trained and tested on the same database of just 10 synthesized 
spoken number words and 5 × 2 black and white pixel visual digits, 
and no alternate representations were compared. Vice versa, two 
recent studies45,47 made use of the popular MNIST database of real 
handwritten digits, but they used an implausible setting in the con-
text of early cognitive development, where speech usually precedes 
and then accompanies writing. To substantially contribute to the 
progress of the state of the art in machine intelligence, research is 
needed to properly contextualize the simulations of developmental 
learning in deeper neural network architectures, while demonstrat-
ing applicability to real datasets and problems.

In this Article, we apply the CDR approach to the recognition 
of real spoken digits by presenting a deep convolutional neural 
network (CNN) architecture designed to apply the embodiment 
principles by using the sensory-motor information from an artifi-
cial humanoid body, iCub, which is one of the few platforms that 
has fully functional five-fingered hands49. The spoken digits are 
taken from a novel open database for speech recognition, created 
by Google to facilitate new applications50. Simulating the develop-
mental plasticity of the human brain, the models are trained using 
a two-stage approach, known as transfer learning51, in which the 
robot learns first to associate spoken digits and finger representa-
tions—that is, motor patterns specifying the state of each of the 
robot’s fingers (extended or open versus closed or retracted). The 
network is then extended with new layers to perform the classifica-
tion into the number classes by building on the previously learned 
association. In the first scenario, the training procedure simulates 
how children initially behave while learning to recognize symbolic 
numerals (in the form of spoken digits), in particular when learn-
ing number words by repeating them together with the correspond-
ing finger sequence to help the transition from preverbal to verbal 
counting and computation52. In the second scenario, we present a 
longitudinal analysis that gives useful insights into how biologically 
inspired strategies can improve deep CNN performance in the con-
text of applied robotics, where the training information is likely to 
be gradually acquired while operating, rather than being abundant 
and fully available, as in the majority of machine learning scenarios.

Recognizing spoken digits in a cognitive developmental 
robot
Here the experimental results of the CNN architecture designed 
to simulate the embodied learning to recognize spoken number 
digits in comparison with a standard non-embodied baseline are 
presented. Figure 1 presents the schematics of the baseline (left) 
and embodied (right) networks. Three possible internal representa-
tions, two embodied and one control, are considered and compared.  
(1) The cardinal numerosity using a thermometer representation. 
In this representation, the first neuron in a set of nine is active for 
the number 1, the first two are active for the number 2 and so on.  
(2) The iCub robot encoder values of the right and left hand when 
displaying the finger representations of digits (See inset in Fig. 1, 
and Supplementary Fig. 1). These representations indicate the 
number magnitude using the number of open fingers, although the 
numbers 3 and 4 and 8 and 9 involve only partially overlapping sets 
of fingers. (3) Random numbers in the range [0,1], which are used 
as the control for validation. As an additional control condition, we 
also applied the transfer learning approach to the baseline model by 
pretraining the convolutional blocks using the same random values 
as targets. The distribution of the examples for each scenario is pre-
sented in Table 1. Further details about the models, the embodied 
representations and the spoken digit database are in the Methods.

In the following, we label embodied models when the architec-
ture in Fig. 1 is trained with the cardinal numerosity or the iCub 
robot fingers as targets for the embodied layer. Cardinal numeros-
ity can be considered the ideal embodied representation of number 
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magnitude, while the fingers are its real-world implementation. 
Instead, we define as a control model if the targets are the random 
values. The two other conditions are the simple baseline, which is 
the one that goes straight from the input to the classification layer 
on the left of Fig. 1 and the pretrained baseline, which has the same 
baseline architecture, but the CNN blocks are pretrained similarly 
to the control model using random values as targets. The baselines 
and the control model are also considered as control conditions.

Deep learning architecture for simulating embodied 
learning
To explore the embodied learning of numbers in the iCub robot, we 
designed a baseline and an embodied connectionist model for clas-
sifying spoken digits. These models are based on a deep CNN clas-
sifier with 19 layers, the first 13 layers of which are shared between 

spoken digit recognition and embodied motor control. The CNN 
is an essential part of the network for selecting the right features to 
present to the actual classifier (that is, the hidden and classification 
layers), but they only account for 20–25% of the trainable param-
eters of our models.

Architectures based on CNNs are naturally fit to implement 
the ‘transfer learning’ approach because the convolutional lay-
ers can extract inherent properties from examples, which can be 
independent of the problem and, therefore, be generalized and 
used as a base for different problems. This strategy saves compu-
tational resources (time and memory) because the convolutional 
blocks have 73,632 parameters, representing just 20.83% of the 
full embodied model, which in total has 353,545 parameters when 
trained with the iCub fingers.

The baseline is a relatively simple, but effective, deep CNN archi-
tecture that includes a sequence of 3 classical two-dimensional con-
volutional blocks, which have a combined total of 73,632 trainable 
parameters, whereas the baseline network includes a total of 320,041 
trainable parameters. The embodied model is created by extending 
the baseline by adding a dense layer named embodied (15 in Table 2),  
which serves both as an output for the embodied representations 
associated with the spoken digits and provides these representations 
as an input to the final classification layer (19). With the additional 
layer, there are two weighted connections that increase the number 
of trainable parameters to 353,545. The embodied model is trained 
in two steps: first, the shared CNN blocks and the embodied layer 
(red in Fig. 1, layers 1–15 in Table 2) are trained to associate digit 
images with embodied representations, then the remaining layers 
(blue in Fig. 1, 16–19 in Table 2) are connected and the full model is 
tuned to classify the spoken digits. In the full training phase, the loss 
is the weighted sum of the losses for the two outputs, both weighted 
1.0. Unless otherwise stated, the layers are regular, densely con-
nected layers, where all units are connected to the others.

From the machine learning point of view, the embodied strategy 
could be also seen as a bio-inspired alternative to the “auxiliary” 
classifiers that were introduced in the Google Inception network to 
prevent the middle part of the network from “dying out” because of 
the limitations of backpropagation algorithms in propagating the 
error through the many layers of deep CNN53.

The network parameters, for example number of units for each 
layer, were set on the baseline via a trial-and-error procedure using 
the final performance (accuracy) as a criterion for the selection. 
In fact, the baseline model, when fully trained, can achieve a final 
accuracy of over 97% with the test set.

Scenario 1
Scenario 1 is learning to process spoken digits while acquiring 
counting principles. This section presents a simplified simulation 
of the early number processing, when children initially learn the 
number digits while repeating them by rote together with the fin-
ger representations52. The first phase includes the acquisition of the 
one-to-one principle (that is, assigning one counting word to each 
item in a set)54. In this scenario, the models are initially pretrained 
using a smaller subset of uniformly distributed examples. Examples 
were grouped in batches formed by four sequences of the nine digits 
in their cardinal order.

Next, inspired by the children using finger representations while 
communicating number words, this simulated number learning 
scenario continues by training the robot to classify the spoken digits 
while reproducing the corresponding finger representations. This 
second training phase can be associated with the acquisition of the 
cardinal principle, which is defined as learning that “the last num-
ber spoken, when counting a set of items, tell how many items are in 
the set”54. For a proper simulation of digit learning at this develop-
mental stage, the appropriate distribution of the training examples 
should follow the Zipf ’s empirical law that the frequency of any 
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Fig. 1 | Schematics of the artificial neural network architecture. The baseline 
CNN architecture is on the left, whereas the detail of the Conv2D blocks is on 
the top right. The embodied architecture is created including the embodied 
layer (on the right). In the first stage, the layers in red are those pretrained to 
reproduce the embodied representation (for example, output is the positions 
for the robot’s finger motors). After the pretraining, the embodied model is 
completed by linking the embodied layer to the final dropout layer; the full 
embodied architecture can thus be trained both to classify the spoken digits 
and to reproduce the embodied representations. Table 2 gives a summary 
of the layers with details of the parameters, arguments and initialization. 
The embodied representation (green text) represents the output for the 
pretraining and for the full architecture. The likelihood of the number class 
(blue text) represents the output for the full architecture.
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word is inversely proportional to its frequency rank55. Therefore, as 
explained in the Methods, we created an ad hoc dataset to match the 
Zipfian distribution. To simulate a gradual education as in the case 
of children, we considered three quotas (25%, 50% and 100%) of 
the Zipfian training sample from which we extracted three uniform 
subsets for the pretraining.

The models’ performance during the second training phase is 
presented in Fig. 2, where the graphs show the accuracy rate on 
the test set at the end of each training epoch. They include the pre-
trained baseline (blue lines), the embodied models with the iCub 
robot fingers (purple), the Cardinal Numerosity (red) and the 
control model with random values (green). For all three training 
sample sizes, we see a significant increase in the accuracy for the 
models using either the cardinality numerosity or the iCub robot 
representation compared with either of the other two control condi-
tions, with a stronger initial effect for the smaller sample sizes where 

Cohen’s d is >1. Figure 2c shows that the accuracy on the test set 
grows quickly until after around 22 epochs (median) when it starts 
to oscillate, as is usual for CNNs, with little or no improvement but 
without significant overfitting. For this reason, we decided to stop 
the training after 25 epochs and average the accuracies of the epochs 
with the lowest loss.

Table 3 gives a comparative report of results after the first and 
the last epoch of the training. Accuracy rates and standard devia-
tions (s.d.) on the test set are shown for the embodied and control 
conditions along with the Cohen’s d for comparison with the pre-
trained baseline. After the first epoch, the performance of the con-
trol model with random values was always significantly inferior to 
the other two representations; even if its average accuracy was typi-
cally higher, the control model was not significantly better than the 
pretrained baseline and Cohen’s d always indicated a small effect 
size (d < 0.5).

Table 1 | Dataset distributions

Digit 1 2 3 4 5 6 7 8 9 Total

Test 788 708 763 733 811 821 794 742 812 6,972

Scenario 1: Initial learning (reduced dataset)

Pretraining (uniform) 344 344 344 344 344 344 344 344 344 3,096

Training (Zipfian) 3,102 1,551 1,034 775 620 517 443 387 344 8,773

Scenario 2: Original semi-uniform distribution (full dataset)

Training (100%) 3,102 3,172 2,964 2,995 3,241 3,039 3,204 3,045 3,122 27,884

The numbers of spoken digits from 1 to 9 in the test set and training sets for each scenario are shown. In Scenario 1, the training set is created by extracting examples from the original dataset in such a way 
that the distribution was Zipfian, then the pretraining set was derived from the training set using the same number of examples for each digit. In Scenario 2, from the full training dataset, we derived various 
subsets with the same distribution as the original.

Table 2 | Summary of the CNN architecture

Layer Type Output shape Input layer(s) Output 
layer(s)

Number of 
parameters

Arguments Initialization

1 Inputs 90 × 63 – 2 Range = [0,1]

2 Conv2D 90 × 63 1 3 640 filters = 64, size = 3 × 3; He uniform

3 Pooling 32 × 32 2 4 size = 3 × 3; stride = 3 × 2

4 BatchNorm 30 × 32 3 5 256

5 Dropout 30 × 32 4 6 probability = 0.25

6 Conv2D 15 × 16 5 7 36,928 filters = 64, size = 3 × 3; He uniform

7 Pooling 15 × 16 6 8 size = 3 × 3; stride = 2 × 2

8 BatchNorm 15 × 16 7 9 256

9 Dropout 15 × 16 8 10 probability = 0.25

10 Conv2D 8 × 8 9 11 18,464 filters = 32, size = 3 × 3; He uniform

11 Pooling 8 × 8 10 12 size = 3 × 3; stride = 2 × 2

12 BatchNorm 8 × 8 11 13 128

13 Dropout 8 × 8 12 14 probability = 0.25

14 Flatten 2,048 13 15 and 16

15 Embodied 9 or 16 14 18 function = Sigmoid Glorot uniform

16 Dense 128 14 17 262,272 function = ReLU Glorot uniform

17 BatchNorm 128 16 18 512

18 Dropout 128 15 and 17 19 probability = 0.5

19 Dense 9 19 – 1,161–1,305 function = Softmax Glorot uniform

The rows report the type, the size of the output, input and output links, the number of trainable parameters, the arguments and the initialization function for each layer. The baseline includes all of the layers, 
except 15 (embodied), which is part of the embodied network only. The input of the first layer is the short-time Fourier transform of a number digit, where as the output of layer 19 is the likelihood of each 
number class.
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The cardinal numerosity and the iCub fingers represent the 
magnitude of the digits, which can explain the better performance 
because they contribute to the acquisition of a more linear num-
ber line. They are faster at improving the accuracy for bigger dig-
its, which are more difficult because they are less represented in 

the Zipfian distribution of the training set. The correlation among 
improved numerical categorization, increasingly linear number line 
estimation and numerical magnitude in children was shown by 
Laski and Siegler56. To exemplify the advantage, Table 4 summarizes 
the development of average accuracy rates for the groups of smaller 
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Fig. 2 | Accuracy rate on the test set over epochs. a–c, The accuracy rates of the embodied models and pretrained control conditions are shown for the 
small (pretraining = 774 uniformly distributed examples, full training = 2,193 examples; a), medium (pretraining = 1,548 uniformly distributed examples, full 
training = 4,386 examples; b) and large (pretraining = 3,096 uniformly distributed examples, full training = 8,773; c) groups. All full training examples have 
a Zipfian distribution.
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(1–4) and bigger (5–9) digits. This analysis permits a comparison 
with experimental data for children, who can label small set sizes 
exactly (1–4) and larger set sizes approximately (5–9) while learning 
the cardinal principle57. Without pretending to replicate the study, 
we note that all of our models show a progression similar to that 
observed in children, who progress their knowledge starting from 
the smaller numbers, then gradually improving the others along the 
number line.

It is interesting to note that we did not find relevant differences 
between the cardinal numerosity representation and the iCub fin-
ger configurations, except for the final performance with a medium 
training size, in which there is a medium effect (d = 0.6312) in 
favour of cardinal numerosity. However, they both contributed 
equally to modelling a more uniform number line, even if, in the 
case of the robot, there are the same numbers of simulated motor 
activations for 3 and 4 or 8 and 9. Besides, pertaining to any of the 
four kinds considered provides a jump start for subsequent learning 
compared to the baseline with no pretraining (results not shown for 
conciseness), as expected. A comparison with the simple baseline is 
discussed in detail in the next subsection.

Scenario 2
Scenario 2 is a longitudinal study of spoken digit recognition in 
embodied artificial agents. We present the results that show how 
performance evolves with the training and the number of examples 
available for it. To analyse the gradual development of spoken digit 
recognition, we split the training examples and investigated the mod-
els’ performance with varying numbers of examples. For simplicity, 
we will refer to the groups as small (128, 512 and 1,024), medium 
(2,788 and 5,576) and large (13,942 and 27,884). The training  

and testing sets have a pseudo-uniform distribution, as specified in 
Table 1. In this experimental scenario, the artificial learner used a 
portion (25%) of the training dataset for a quick pretraining of the 
CNN blocks.

Figure 3a–c presents the history of the average accuracy rate 
on the test set at the end of each epoch for the small, medium and 
large groups, respectively. As seen in the previous experiment, we 
avoided significant overfitting by using common strategies such as 
mini-batches, batch normalization layers and dropout layers.

The results of the longitudinal experiment are summarized in 
Table 5, which presents the embodied models in a comparison with 
two control conditions: control model with the random values (first 
columns), and the simple baseline (last columns). Accuracies on the 
test set are calculated by averaging the results of the epochs with 
lowest training loss at half way (25 epochs) and at the end of the 
training (50 epochs). The last section of Table 5 reports the first 
epoch when average accuracy was greater than 99% of the base-
line’s final accuracy. This is a measure of how fast the training con-
verges. We see that control conditions reached the same accuracy 
of the embodied models after more training repetitions (epochs). 
Exceptions were found in the medium group (Fig. 3b), where the 
control model was as accurate as the embodied models earlier in 
the training (after 10 epochs; 2,788) and was almost as good as the 
embodied models since the beginning (5,576).

In summary, the longitudinal experiments confirmed that the 
embodied models were more effective learners than the control con-
ditions: they achieved higher recognition accuracies in fewer epochs, 
especially with the smaller training sets. The embodied models were 
significantly more successful than the baseline, with exceptions in the 
larger group, when they achieved a higher accuracy but there was no 

Table 3 | Accuracy rates for varying training example sizes and different representations

Training 
examples

Baseline (pretrained) Random values Cardinal numerosity iCub robot fingers

Accuracy s.d. Accuracy s.d. d Accuracy s.d. d Accuracy s.d. d

Average after Epoch 1

774/2,193 0.3950 0.0867 0.4009 0.0680 0.08 0.5386a 0.0539 1.99 0.5396a 0.0459 2.08

1,548/4,386 0.5811 0.0526 0.5926 0.0623 0.20 0.6766a 0.0394 2.05 0.6798a 0.0411 2.09

3,096/8,773 0.7592 0.0683 0.7692 0.0844 0.13 0.7946a 0.0309 0.67 0.7940a 0.0321 0.65

Final (average of epochs with lowest training loss)

774/2,193 0.8535 0.0191 0.8508 0.0180 -0.14 0.8638a 0.0147 0.60 0.8665a 0.0176 0.71

1,548/4,386 0.8990 0.0170 0.9055 0.0120 0.44 0.9126a 0.0076 1.03 0.9071 0.0097 0.58

3,096/8,773 0.9279 0.0098 0.9299 0.0098 0.20 0.9347a 0.0110 0.65 0.9361a 0.0053 1.04

Values in bold are significantly (P < 0.05) better than the baseline. aThe best overall accuracy rate for each row (multiple in the case of no statistical difference).

Table 4 | Accuracy progression for smaller and bigger digits

Pre/full train sizes Baseline (pretrained) Random values Cardinal numerosity iCub fingers

1–4 5–9 1–4 5–9 1–4 5–9 1–4 5–9

Average after epoch 1

774/2,193 0.578 0.172 0.601 0.181 0.707 0.360 0.723 0.350

1,548/4,386 0.776 0.388 0.758 0.424 0.806 0.540 0.815 0.537

3,096/8,773 0.865 0.638 0.868 0.664 0.879 0.713 0.879 0.704

Average after epoch 25

774/2,193 0.904 0.799 0.902 0.793 0.905 0.810 0.903 0.813

1,548/4,386 0.934 0.862 0.935 0.871 0.941 0.890 0.928 0.878

3,096/8,773 0.950 0.905 0.952 0.910 0.955 0.919 0.952 0.917

Table 3 reports the average accuracy rates for smaller digits (1–4) and bigger digits (5–9) after epochs 1 and 25. Higher accuracies are highlighted in bold.
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statistical difference. The embodied models were often more accurate 
than the control model, with some exceptions—when training with 
1,024 and 2,788 examples after 50 epochs, for example. However, while 

embodied models performed better until around 25 epochs, their 
advantage usually decreased with continued training, often lacking 
statistically significant differences if compared with the control model 
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Fig. 3 | Accuracy rate on the test set over epochs. a–c, The accuracy rates of the embodied models and control conditions are shown for the small 
(pretraining = 32, 128, 256, training = 128, 512, 1,024 examples; a), medium (pretraining = 697, 1,394, full training = 2,788, 5,576; b) and large 
(pretraining = 3,485, 6,971, full training = 13,942, 27,884; c) groups. In the groups, training with larger sets always achieved higher accuracy and there is no 
overlap among the lines of different groups. The only exception is the simple baseline (light blue) in a because the line for 1,024 starts below the previous 
case (512). For clarity, in b and c it is specified the training set size for the baselines (the legend in b also applies to c). The black horizontal lines in c mark 
the best overall results.
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final accuracy. These results can be linked to the transition from early 
to mature mathematical cognition in children, who initially perform 
better when they can use finger representations, then gradually aban-
don them for other strategies29.

Comparing the embodied models’ representations, the two were 
statistically equivalent in terms of performance (see Supplementary 
Table 2). This confirmed that the physically embodied representation 
is as good as the pure cardinality representation, while it captures the 
real motor activation data of the robot. Supplementary Table 3 shows a 
comparison of the control conditions. As seen in Scenario 1, the com-
parison showed that the control model often has a higher final accu-
racy, but it was not significantly different from the pretrained baseline. 
However, the pretrained baseline was slower than the control model, 
that is, it often reached the peak accuracy later.

Conclusions
Recent studies in developmental psychology and cognitive neuro-
science demonstrated a pivotal role of fingers in developing num-
ber cognition. Inspired by these studies, this Article investigated 
the perceptual process of recognizing spoken digits in deep CNNs 
by embodying them in iCub’s fingers during the training. In par-
ticular, finger representations replicated activations in motor cortex 
when processing numbers that reflect the hand used for counting as  
seen in humans24.

Simulation results showed that the robot’s fingers boost the per-
formance by setting up the network and augmenting the training 

examples when these were numerically limited. This is a common 
scenario in robotics, where robots can learn from a small amount 
of data. Results can be related to some behaviours that were also 
observed in several human studies in developmental psychology 
and neuroimaging. Overall, the hand-based representation pro-
vided our artificial system with information about magnitude rep-
resentations that improved the creation of a more uniform number 
line, as seen in children56,57. Interestingly, our results also indicate 
that accuracy can be increased by pretraining convolutional blocks 
with a uniform subset taken from a non-uniform training set. 
Furthermore, longitudinal experimentation showed that the perfor-
mance improvement from the representation of the robot’s fingers 
was reduced with experience, in a similar manner to the transition 
from early to mature mathematical cognition in children, who ini-
tially perform better when they can use fingers, but, after they grow 
in experience, gradually abandon finger representations without 
affecting accuracy29.

Comparative analyses showed that the embodied strategy can 
represent an approach to increase efficiency in training deep neu-
ral networks outside the context of robotics. Importantly, cogni-
tive developmental robotics were demonstrated to be effective 
using the standard approach in a benchmark machine learning 
problem. We saw performance improvements with other synthetic 
representations too, such as cardinal numerosity or, in some condi-
tions, even vectors of randomly generated values. Although cardinal 
numerosity showed a similar performance to the iCub fingers, the 

Table 5 | Summary of the results on the test set

Training 
examples  
(pre/full)

Random values Cardinal numerosity iCub robot fingers Baseline

Accuracy s.d. Accuracy s.d. d Accuracy s.d. d Accuracy s.d. d

After epoch 25 (average of testing after epochs with lowest training loss)

32/128 0.3602 0.035 0.3800a 0.028 0.625 0.3828a 0.024 0.748 0.3558 0.027 −0.140

128/512 0.6462 0.030 0.6816a 0.026 1.252 0.6847a 0.017 1.571 0.6148b 0.034 −0.985

256/1,024 0.8095 0.017 0.8243a 0.010 1.039 0.8255a 0.016 0.975 0.7663b 0.016 −2.604

697/2,788 0.9143a 0.007 0.9126a 0.008 −0.234 0.9139a 0.006 −0.056 0.9003b 0.008 −1.796

1,394/5,576 0.9384 0.006 0.9426a 0.005 0.745 0.9424a 0.005 0.723 0.9317b 0.006 −1.125

3,485/13,942 0.9584 0.004 0.9607a 0.002 0.727 0.9613a 0.003 0.872 0.9587 0.003 0.084

6,971/27,884 0.9677 0.002 0.9698 0.002 0.861 0.9694 0.002 0.690 0.9688 0.002 0.483

Final (average of testing after epochs with lowest training loss)

32/128 0.4093 0.027 0.4186a 0.019 0.402 0.4203a 0.029 0.394 0.4000 0.028 −0.341

128/512 0.7213 0.018 0.7308a 0.018 0.525 0.7327a 0.025 0.524 0.6960b 0.025 −1.172

256/1,024 0.8487a 0.011 0.8484a 0.010 −0.024 0.8472a 0.014 −0.119 0.8340b 0.013 −1.263

697/2,788 0.9230a 0.006 0.9222a 0.005 −0.133 0.9230a 0.005 −0.007 0.9166b 0.006 −1.060

1,394/5,576 0.9463a 0.004 0.9470a 0.004 0.195 0.9474a 0.004 0.285 0.9419b 0.005 −0.977

3,485/13,942 0.9630 0.003 0.9648a 0.002 0.676 0.9639 0.002 0.339 0.9625 0.003 −0.150

6,971/27,884 0.9714 0.002 0.9721 0.001 0.455 0.9716 0.002 0.125 0.9716 0.002 0.120

Epoch when testing accuracy was greater than 99% of the baseline’s final average accuracy

32/128 44 36 35 43

128/512 36 29 27 45

256/1,024 31 27 29 46

697/2,788 17 19 19 34

13,94/5,576 16 15 16 22

3,485/13,942 13 11 10 14

6,971/27,884 12 6 9 14

Accuracy rates are in bold when significantly (P < 0.05) better than the control model with random values. aSignificantly (P < 0.05) better than the baseline. bSignificantly worse (P < 0.5) than the control 
model with random values. The final rows of this table show the median epochs when test accuracy was greater than 99% of the baseline’s final average accuracy. Supplementary Table 2 reports the  
P values for all the pairs considered.
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control model with random values often underperformed and was 
not significantly different from the other control conditions.

Like their biological counterparts, the robot’s fingers seem bet-
ter suited than other synthetic representations for simulating early 
mathematical education in interactive scenarios with a child-like 
robot. Indeed, they are more likely to be presented and intuitively 
understood by humans without requiring advanced communica-
tion with the robot. For instance, examples of spoken digits can be 
proactively acquired by the robot by showing finger representations 
and asking: “what number is this?” Human teachers may also sim-
ply open and close the robot’s fingers to instruct the robot or correct 
the representation in the case of errors.

In conclusion, we believe that these findings validate the cog-
nitive developmental robotics approach as a tool for implementing 
embodied cognition ideas, and for developing machine intelligence 
while making artificial learning more intuitive for humans.

Methods
The Google Tensorflow Speech commands dataset. To provide a realistic 
numerical challenge to our models, we used a new publicly available benchmark 
in machine learning: the Google Tensorflow Speech commands dataset50. The 
accompanying paper50 reports a basic benchmark of 88.2% (on the whole database 
of spoken commands) and the best result reported in the Leaderboard of the 2017 
TensorFlow Speech Recognition Challenge58 was 91.06% on the first version of  
the database.

Here, we used the second version of the database, which contains 105,829 
1-s-long utterances of 35 short words, by thousands of different people. The 
digits are around one-third of the database, which includes 34,856 spoken digits 
from 1 to 9 that we randomly split into an 80% (27,884) training set and a 20% 
(6,972) testing set. For Scenario 1, we aimed for a standard child development 
scenario, where the analysis of number word frequencies in natural corpora55,59 
suggests that smaller numbers are more frequent than larger numbers. This 
implied that frequencies of digits should decrease proportionally to their 
numerical magnitude. For this reason, we created an ad hoc training dataset 
with a Zipfian distribution by extracting examples with frequency 1/N, where 
N is the numerical value of the digit. The distribution of the examples for each 
scenario is presented in Table 1.

The original files are 16-bit little-endian PCM-encoded in the WAVE format 
at a 16 KHz sample rate. For our experiments, these were preprocessed using a 
standard approach that makes use of the short-time Fourier transform (STFT). The 
resulting samples are 90 × 63 STFT spectrograms; these were rescaled to be in the 
range [0,1], which is optimal for training artificial neural networks.

Note that in this study, we did not include the zeros because there is no finger 
representation that can be associated with them. This is coherent with all empirical 
studies about embodied arithmetic in the literature, where tasks usually do not include 
the zero (for example, see refs. 11,24) because of its special status among numbers.

In our experiments, the database is split into smaller sets to simulate a 
gradual course of education typical for the children, by investigating the models’ 
performance of varying size of training examples. This also allows us to gather 
information on the efficacy and efficiency of the proposed embodied strategy in 
scenarios where examples are scarce. The division is obtained simply by taking 
a sequence of consecutive examples from the main database. The sequences are 
varied among the 32 runs, Algorithm 1 describes the procedure. For Scenario 1, the 
sizes considered were 25%, 50% and 100% of the Zipfian dataset. For Scenario 2,  
we aimed for a more fine-grained analysis, with seven set sizes. The 3 smallest 
sizes were selected as multipliers of the mini-batch size (32), while the others were 
respectively 10%, 20%, 50% and 100% of the training dataset.

The source code for the implementation can be found in the GitHub repository 
(files: generator.py; dataset.py; zipfian.py; see the data availability). Supplementary 
Figure 2 shows examples of the spectrograms.

Simulated internal representations. Three fixed codes are used to simulate the 
embodied representations of the digits from one to nine:
•	 The cardinal numerosity, which represents a cardinal number N with the 

same quantity of ones. If the number of available digits for the representation 
is greater than N, then zeros are included to fill. In our case, we used nine 
digits to represent the numbers, with 1 represented as 100000000 and 9 as 
111111111 and, for instance, the representation of N = 4 is 111100000. The 
cardinal numerosity has cognitive plausibility and it has been shown to facili-
tate learning for symbolic and ordinal representations60. Indeed, neural net-
work models based on the numerosity representation can account for a wide 
range of empirical data46. In the context of this article, the cardinal numerosity 
is an abstract representation; however, it could synthetically represent a set of 
objects that the robot can produce, providing an alternate method to the use of 
fingers while learning about numbers.

•	 The iCub robot encoder values for the finger representations. The iCub is 
an open-source humanoid robot platform designed to facilitate embodied 
artificial intelligence research33. The iCub provides motor proprioception 
(joint angles) of the fingers’ motors, for a total of seven degrees of freedom for 
each hand as follows: two degrees of freedom for each of the thumb, index and 
middle fingers, and one for controlling both ring and pinky fingers, which are 
coupled together61. However, this limitation is also common in human beings, 
who often cannot freely move these two fingers independently62. To overcome 
the possible distortion by unbalanced representations, the contribution of the 
motors controlling two fingers is double; we therefore have 16 inputs that we 
normalized in the [0,1] range. Pictures of the iCub finger representations are 
shown in Supplementary Fig. 1, which shows the right hand. Note that the 
finger configurations of each hand are replicating American Sign Language 
number representation from one to five. Indeed, the representations with the 
left hand are specular, and they are used in addition to the fully open right 
hand to represent numbers from 6 (5+1) to 9 (5+4). The finger representa-
tions of American Sign Language were selected to represent the embodied 
internal representation as an appropriate solution to a limitation of the iCub 
hand. Also, some physical limitation prevents some fingers from being fully 
opened or closed, for example the thumb (see Supplementary Video 1 of the 
iCub counting from 1 to 10). The numerical values of the encoders can be 
found in the file named robot.cvs in the database folder of the GitHub reposi-
tory (see data availability).

•	 Random numbers in the range [0,1] as ‘control’ representations. In this case, 9 
vectors of 16 random numbers are created and associated with the numbers. 
These representations are generated for each run and remain stable for the 
entire training. Random representations are included as a control group to 
confirm the performance contribution is due to the embodied signals rather 
than other factors.

It should be noted that while arbitrary random gestures are suitable in 
computer simulations for control conditions, it is unlikely that they would be 
successful in realistic scenarios because they will require preliminary training to be 
executed and it is unlikely that human teachers can be precise in repeating them; 
that is, there will be significant noise and systematic errors to disrupt the training.

Neural network implementation details. To improve understanding of the 
Article, we give an overview of the layers that comprise the architectures and 
the methods used for learning in the following subsections. The overview is not 
intended to be exhaustive; the aim is to facilitate a general understanding of the 
methods used in this work and to point the inexperienced reader towards the 
relevant sources. The models were implemented, trained and tested using Python 
and Keras 2.2.463 high-level application program interfaces (APIs) running on top 
of TensorFlow 1.8.064. Greater detail can be found in the documentation of these 
tools available from the respective websites.

The rectified linear unit layer. The label ReLU is commonly used to identify a 
layer with rectified linear units, which apply a non-saturating activation function:

=x xReLU( ) max(0, )

This layer increases the nonlinear properties of the decision function and of the 
overall network. In our models, the ReLU layers proved to be more effective than 
the classical sigmoid.

The sigmoid layer. A sigmoid layer is formed of units with the most common 
transfer function for artificial neural networks, the sigmoid:

=
+

xsigmoid( ) e
e 1

x

x

The convolutional layer. Convolutional layers characterize the convolutional 
blocks; they are one of the most successful instruments for building deep learning 
architectures65,66, which represent the current state of the art in computer vision, 
and are inspired by biological organization and visual cortex processes in animals 
and humans67. The convolutional layers enable artificial neural networks to extract 
the main features from an image and recognize patterns by learning about the 
shapes of objects.

In a convolutional layer, each unit is repeatedly activated by a receptive field 
(typically rectangular), which is connected via a weight vector (a filter) to single-
input sensory neurons. The receptive field is shifted step by step across a two-
dimensional array of input values, such as the frequency for a time step.

The max pooling layer. Another important concept of CNNs is pooling, which 
is a form of nonlinear downsampling. There are several nonlinear functions for 
implementing pooling, amongst which max pooling is the most common because 
it has been shown that max pooling can give a better performance than other 
pooling operations68. The pooling layer partitions the input image into a set of  
non-overlapping rectangles and, for each such subregion, outputs the maximum. 
The pooling layer serves to progressively reduce the spatial size of the 
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representation, to reduce the number of parameters and amount of computation 
in the network, and also to control overfitting. The pooling operation provides 
another form of translation invariance.

The classification layer. The final layer of the models (Classification_Layer) uses 
the softmax transfer function that naturally ensures all output values are between 
0 and 1, and that their sum is 1. The output of a softmax classifier is a probability/
likelihood; a classification output layer is also trained to transform the probabilities 
into one of the classes. The total number of classes considered in our experiment is 9, 
which corresponds to the digits from 1 to 9.

The softmax function used is as follows:

=
∑ =

ixsoftmax ( , ) e
e

x

j
n x

1

i

j

where the vector x is the net input to a softmax node and n is the number of nodes 
in the softmax layer.

The other layers. The other layers included in our models are:
•	 The Dropout layer, which operates by randomly dropping a fraction of input at 

each update at training time. Dropout layers help to prevent overfitting69. The 
drop rate of the dropout layers in the three convolutional blocks is 0.25, while 
the last drop rate is 0.5.

•	 The Flatten layer, which reshapes multidimensional inputs into a one-
dimensional output vector. This layer does not apply a transfer function and 
it is transparent to the learning, but it is needed to enable the transition from 
convolutional layers to standard layers.

•	 The batch normalization (BatchNorm) layer, which scales the output of the 
previous layer by standardizing the activations of each input variable per mini-
batch. This has the effect of inducing a more predictive and stable behaviour of 
the gradients, which allows faster training70.

The dropout and batch normalization layers are inserted to reduce overfitting 
and improve the generalization performance.

Initializers. The layer initializers used were:
•	 He Uniform71, which uses a uniform distribution within 

− ∕ ∕Nw Nw[ 6 , 6 ]in in  where Nwin is the number of inputs of the layer.
•	 Glorot Uniform72, which draws samples from a uniform distribution within 

− ∕ + + ∕ +Nw Nw Nw Nw[ 6 ( ) , 6 ( ) ]in out in out  where Nwout is the number of 
outputs.

Algorithms for training the networks. After some preliminary tests with the 
optimization algorithms included in the Keras framework, we selected two 
adaptive learning methods, based on stochastic gradient descent, for training 
the models: RMSprop and the adaptive moment estimation algorithm (Adam). 
As recommended, we left the parameters of this optimizer at their default 
values, which follow those provided in the original publications cited below. The 
training was executed in mini-batches of 16 or 32 examples, full and pretraining 
respectively. The use of mini-batches proved to improve the generalization of the 
network, that is the accuracy in the test set.

The root mean square propagation (RMSprop) method73 is a gradient-based 
method that maintains per-parameter learning rates, which are divided by a 
moving average θ̂v t( , )  of the squared gradient for each model parameter θ:

θ θ η
θ θ

+ = −
̂

∂
∂

t t
v t

L t( 1) ( )
( , )

( )

Where 
θ

∂
∂

t( )L  is the gradient of the loss function L(t) at epoch t, η is the learning rate, 
which, in our experiments, has been set as 0.001. θ̂v t( , ) is calculated as:
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where γ is 0.9, as suggested in ref. 74. RMSprop can be seen as a mini-batch version 
of Rprop73.

Adam75 combines the advantages of RMSprop and Adagrad. In fact, Adam is 
widely used in the field of deep learning because it is fast and achieves good results. 
Like RMSprop, Adam also makes use of a moving average of the squared gradient 

θ̂v t( , ), but it keeps an exponentially decaying average of past gradients θm̂ t( , ), 
similar to the momentum. The parameter update in Adam is given by:

θ θ η θ
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Specifically, θ̂v t( , ) and θm̂ t( , ) are calculated using the parameters β1 and β2 to 
control the decay rates of past and past squared gradients θm̂ t( , ) and θ̂v t( , ) 
respectively as follows:
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Note that β t
1  and β t

2 denote the parameters β1 and β2 to the power of t; m(θ,0) = 0 
and ν(θ,0) = 0.

Good default settings are η = 0.001, β1 = 0.9 and β2 = 0.999. These values are 
used in our experiments.

In our experiments, Adam was used to train the final classifiers, while 
RMSprop was used in the regression tasks, where it showed the best performance 
(that is, when the learning target was the embodied representations used to 
pretrain the CNN layers).
Loss function. The loss function L(t) was the cross-entropy function, which 
computes the performance given by network outputs and targets in such a way that 
extremely inaccurate outputs are heavily penalized, while a very small penalty is 
given to almost-correct classifications.

The calculation of the cross-entropy H depends on the task: categorical HC 
when classifying into the number classes; binary HB when predicting the embodied 
representations.

In the case of classification, the output p is a categorical vector of N probabilities 
that represent the likelihood of each of the N classes with ∑ =p 1, while ∼y is a one-
hot encoded vector (1 for the target class, 0 for the rest). HC is calculated as the average 
of the cross-entropy of each pair of output-target elements (classes):

∼∑= − ⋅
=

H
N

py1 log( )
i

N

i iC
1

When the target is the embodied representation, the output is a vector z of K 
independent elements. The cross-entropy can be calculated by considering two 
binary classes: one corresponds to the target value, the other is zero. In this case, 
the loss function is calculated using the HB expression:

∼ ∼∑= − ⋅ − − ⋅ −
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H
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Training and testing procedures. We ran the training 32 times with random 
parameter initializations. The stopping criterion was a fixed number of epochs 
(25 for the first experiment and all of the pretraining, 50 for the second). The final 
performance was calculated as the average of the accuracies on the test set after the 
epoch with the lowest loss for each run. The following pseudocode summarizes the 
training and testing procedure for our experiments.

For clarity, details on the statistical analysis used are given in the 
Supplementary Information.

Algorithm 1. Pseudo-algorithm of the training procedure. 
N = 27884 #number of training examples

  For ∈i [1, 32] #number of runs for each model was 32
 � Random = generate_random_normal_distribution(9;[0,1])  

#generates 9 representations; each has 16 random values in [0,1]
      For each ∈K {{2193, 4386, 8773}  #Scenario 1: Zipfian distribution
  |{128,512,1024,2788,5576,13942,27884}}�#Scenario 2: standard semi-

uniform distribution
   �   train_interval = [(K*((i−1)%(int(N/K))),K*(i%int(N/K))}]  

#the train interval covers as much of the training dataset as possible.
        train(convolutional_blocks,

          optimizer=rmsprop,
          epochs=25,
          mini-batches_size=32
          input=MNIST_TRAIN[pre-train_interval],
     �     output=(random|num_mag|robot))  

#embodied architecture only

        train(full_model, optimizer=adam,
          epochs=(25|50) #25 for experiment 1; 50 for experiment 2
          mini-batches_size=16
          input= SPOKEN_DIGITS_TRAIN[train_interval],
     �     main_output=(classes),embodied_output=(random|num_

mag|robot),
          loss=1.0*classifier_loss+1.0*embodied_loss) #full training

    �     =kaccuracy( , epoch)i
�evaluate(full_model, input= SPOKEN_
DIGITS_TEST)

Note that, in the case of 128,512 and 1,024 examples, all runs had a different 
portion of the training set, while in the other cases they cycle among 10, 5 and 2 
folds of the training set.

θ θ
β

θ β θ β
θ
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Data availability
The data for the models presented in this paper can be found in the GitHub 
repository: https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech.  
A Supplementary Video of the iCub counting from 1 to 10 is also provided.  
The Google Tensorflow Speech Command database can be downloaded from 
http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz.

Code availability
The source code for the models presented in this paper can be found in the GitHub 
repository: https://github.com/EPSRC-NUMBERS/EmbodiedCNN-Speech.
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