
Abstract 
Researchers exploring mathematical abilities have proposed 

that humans and animals possess an approximate number 
system (ANS) that enables them to estimate numerosities in 
visual displays. Experimental data shows that estimation 
responses exhibit a constant coefficient of variation (CV: ratio 
of variability of the estimates to their mean) for numerosities 
larger than four, and a constant CV has been taken as a 
signature characteristic of the innate ANS. For numerosities up 
to four, however, humans often produce error-free responses, 
suggesting the presence of estimation mechanisms distinct 
from the ANS specialized for this ‘subitizing range’. We 
explored whether a constant CV might arise from learning in 
generic neural networks using widely-used neural network 
learning procedures. We find that our networks exhibit a flat 
CV for numerosities larger than 4, but do not do so robustly for 
smaller numerosities. Our findings are consistent with the idea 
that estimation for numbers larger than 4 may not require innate 
specialization for number, while also supporting the view that 
a process different from the one we model may underlie 
estimation responses for the smallest numbers.   
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Introduction 
It is widely accepted that intuition (implicit knowledge) 

plays a strong role in mathematics.  Here, and in a companion 
article (Fang, Zhou, Chen & McClelland, 2018) we consider 
alternatives to the widely held view (Feigenson, Dehaene & 
Spelke, 2004) that emphasizes innate, specialized systems as 
the foundation for these intuitions.  Here, we focus on one 
putative system of this type, ‘the approximate number 
system’ (ANS), and explore the role of experience, rather 
than innate specialization, in shaping basic numerical 
abilities. Our work explores this possibility using neural 
network models and considers how the architecture and the 
details of the materials used to train and test the networks 
affect the outcome of learning and its developmental course.   

Neural networks with very particular properties can arise 
during pre-natal development, shaped by genetically 
orchestrated processes, and it is possible to wire up a neural 
network that expressly exhibits properties attributed to the 
ANS (Dehaene & Changeux, 1993).  We would not exclude 
the possibility that specialized pre-wiring may play a role in 
numerosity processing. However, it may still be worthwhile 
to explore neural networks lacking any specific specialization 

for number, similar to those that have been used to model a 
wide range of perceptual and cognitive processes, in both 
cognitive science (Rogers & McClelland, 2014) and artificial 
intelligence (LeCun, Bengio, & Hinton, 2015). 

Recently, Stoianov & Zorzi (2012) pioneered an approach 
of the kind we are pursuing, applying it to numerosity 
comparison, in which a human observer views a pair of arrays 
and determines which one contains the larger number of 
separate items. The ability to make such comparisons appears 
to be present in non-human animals, newborn infants, and 
adults from primitive cultures that lack exact number words 
(Pica et al., 2004).  However, Stoianov and Zorzi found that 
a generic deep neural network can learn to perform the 
numerosity comparison task, using numerosity sensitive 
representations acquired through unsupervised learning from 
displays containing blobs varying in size and number.  In 
work leading up to our present effort, Zou, Testolin & 
McClelland (in preparation) established that, prior to any 
learning, the representations in such networks can support 
numerosity discrimination at levels better than human 
neonates, and that unsupervised learning can then tune such 
representations. The gradual developmental refinement in 
numerosity acuity follows the power law pattern seen in 
human development (Odic et al., 2015). 

Here, we focus on another important aspect of numerical 
cognition: numerosity estimation.  We choose this ability 
because it appears to depend on experience with number:  
Children’s numerosity estimates can be uncorrelated with the 
actual number of presented items even for children who can 
perform counting tasks correctly, and the ability to estimate 
improves as children’s other number abilities improve with 
experience (Davidson, Eng & Barner, 2012). Estimation, like 
numerosity discrimination, is approximate, in that for 
numerosities (N) larger than 3 or 4, estimates exhibit 
variability.  This variability increases with N, such that the 
coefficient of variation (CV: ratio of the standard deviation 
to the mean estimate) is approximately constant (Revkin et 
al, 2008; Izard & Dehaene, 2008).  Animals (Platt & Johnson, 
1971) and humans (Whalen, Gallistel & Gelman, 1991) also 
exhibit an approximately constant coefficient of variation in 
tasks requiring the production of a target number of responses 
(for humans, brief presentation and pressure to respond 
quickly are used to prevent exact counting). 

The present work focuses on estimation of small 
numerosities in visually-presented arrays, where educated 
human adults produce estimates whose mean value matches 
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the presented numerosity N (Revkin et al, 2008; Figure 
1).  Their participants were virtually perfect for N up to 4, and 
showed CV’s varying in a narrow range over the numbers 5 
to 8 (a slight distortion in both the mean estimate and the CV 
for N=8 arises from the fact that the response options were 
restricted to the range from 1-8).  The authors concluded that 
a distinct ‘subitizing’ mechanism is responsible for responses 
for N=4 or less, but that the ANS is responsible for responses 
for N greater than or equal to 5. 

As we shall see, we find that, with sufficient training, 
neural networks with very different architectures trained and 
tested with varied materials can estimate numerosity with 
human level accuracy, exhibiting an approximately constant 
coefficient of variation across numerosities greater than or 
equal to 5.  Our work supports the view that approximate 
number representation and processing may not require an 
innate system specialized for number; it may instead be a 
robust characteristic of relatively generic neural networks 
trained using generic training procedures. 

Below we present two experiments.  Experiment 1 
explored estimation in both a complex contemporary network 
architecture designed for visual search and object 
identification and in a simpler, more standard, feed-forward 
architecture. We chose the former, the Differentiable 
Recurrent Attention Model (DRAM) of Gregor, Danihelka, 
Graves, Rezende, Wierstra (2015), as a first step toward a 
broader examination of number learning, including counting 
(see Fang et al., 2018). The architecture has an attentional 
window similar to a camera that it can learn to move and 
zoom in and out, allowing it to process an input over a series 
of glimpses and to produce a sequence of responses, such as 
the names of the objects in the display.  We chose the second, 
simpler and more generic architecture called the Feed-
Forward (FF) network because we found that the complex 
features of the DRAM model (though important for counting, 
see Fang et al, 2018) were not used in estimation. For 
instance, the focus of attention remained constant over 
glimpses, and the accuracy of estimates was almost as good 
on the first as on the last glimpse.  As we shall see, both 
networks exhibited a constant CV after training over 
numerosities greater than 4, capturing this signature feature 
of human and animal numerosity estimates. 

Experiment 2 explored the effects of variation in the 
frequency of presentation of different numerosities during 
training and in the sizes of items in displays of different 

numerosities, using the FF network. The consideration of 
presentation frequency was motivated by findings and 
proposals of Piantadosi (2016), who observed that the 
frequency of occurrence of a numerosity in natural text 
decreases with N approximately in accordance with the 
function f(N)∝1/(N2). He further suggested that a constant 
CV independent of N arises as a rational consequence of the 
1/(N2) frequency distribution (the essence of the idea is that 
it is better to allow more variability in estimates of numbers 
that are used less frequently). We used this frequency 
distribution in our training materials for experiment 1.  By 
comparing the outcome of training the network with the 
decreasing frequency distribution to a flat frequency 
distribution (f(N) the same for all N) we tested whether the 
fact that our networks in Expt 1. exhibited a constant CV 
depended on the use of the 1/(N2) frequency distribution.  
Importantly, as we shall see, a constant CV was observed 
after training with either a flat or a decreasing frequency 
distribution, indicating that a decreasing frequency 
distribution is not necessary to observe this signature 
property in numerosity estimation. 

Expt. 2 also explored the effect of varying the relationship 
between N and the average area occupied by each item in the 
display, both during network training and testing.  In 
Experiment 1, item area did not vary with N, either in training 
or testing, but area does tend to decrease with N in natural 
images (Zou et al, in preparation), and experimenters vary 
size inversely with N in a subset of their test stimuli to ensure 
numerosity estimates are not based on a simple estimate of 
total occupied area.  Expt. 2 therefore explored whether a 
constant CV for numerosities larger than 4 would still be 
observed with training and testing materials in which item 
area decreased with increasing numerosity. 

 
Materials and Methods 

The DRAM model. We used a version of the Differentiable 
Recurrent Attention Model (DRAM, Gregor et al., 2015) 
implemented in TensorFlow (https://www.tensorflow.org/). 
The network is a recurrent neural network that can learn to 
direct its attention while attempting to estimate the number of 
dots in the display over a series of nine glimpses (the 
computational graph for one glimpse is shown in Figure 2A). 
As in Gregor et al, the network contains a selective attention 
mechanism, implemented by the read module, and a pair of 
LSTM modules (an encoder and a decoder LSTM, each 
containing 256 units). A linear bottleneck layer (100 units, 
simplified from Gregor et al., designated as z in the figure) 
lies between the two LSTMs. At each glimpse t, the output 
from the decoder LSTM at glimpse t-1 specifies the center 
position, spacing, and filter width of an 10x10 grid of 
Gaussian filters (the initial specification at t = 0 is determined 
by learned bias weights) used by the read operation, which 
convolves the image with the Gaussian filters. The filtered 
image is fed upward through the network as shown in Figure 
2A. Each arrow corresponds to a linear mapping 
(multiplication with a matrix of modifiable connection 

   
Figure 1. Mean response for different numerosities (Left) 
and coefficient of variation (right) from the experiment of 
Revkin et al (2008). 
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weights plus biases), and corresponding weights are re-used 
across glimpses. The encoder and decoder LSTMs also 
receive their output at glimpse t-1 as part of their input at 
glimpse t. The output of the decoder LSTM propagates 
through a linear mapping and a ReLU non-linearity to another 
hidden layer (256 units). Finally, the hidden layer output 
passes through another linear mapping followed by a softmax 
computation, producing output activations across a set of 
output units corresponding to numerosity responses ranging 
from 1 to 15.  The unit with the largest activation at the last 
glimpse is the estimate of the number of items in the image. 

The Feed-Forward Model. Our FF network has one hidden 
layer and uses a simplified read operation. The read 
operation performs filtering of the image based on a set of 
15x15 Gaussian filters centered on the image and spaced to 
cover it completely. The filtered output of the read operation 
is then converted into a hidden layer (250 units) by the linear 
operation followed by a ReLU. A linear operation followed 
by a softmax determines the activations of the output units. 
The unit with the largest activation is treated as the network’s 
numerosity estimate. Source code for both models is 
available at https://github.com/numberlearning/Estimation.) 

Learning. Weights were modified based on the gradient of 
the cross-entropy loss computed by comparing the 
activations at the output of the softmax computation to a 
target pattern specifying the number of blobs in the input 
image. In DRAM, the gradient is computed at every glimpse 
and propagated backward through each arrow in the full 9-
glimpse network graph. Learning occurs over a series of 
iterations. In each iteration, gradients are calculated over 100 
patterns sampled with replacement from the training 
environment, then weights are updated using the Adam 
optimizer, with initial learning rate of .01 and epsilon =1. 

Training and Test Data and Procedures.  For both 
experiments, training and test images were 100x100 pixels, 
initialized to RGB value 0 (black). In each image, a certain 
number of blobs were generated. Each blob was a square of 

pixels of RGB value 255 (white). For training, each image 
contained a number N of blobs ranging from 1 to 15. A new 
set of 10,000 training images was generated after every 1,000 
training iterations to prevent overfitting, and a new set of test 
images (1,000 for each N) was generated each time a network 
was tested. Networks were tested at pre-specified intervals as 
training progressed. During testing, input N ranged from 1 to 
9, though responses could still range from 1 to 15. This 
prevented distortion of responses for larger numerosities in 
the test range (1-9) since responses both above and below this 
value were allowed.  Gradient computations and weight 
updates did not occur during testing. 

Experiment 1 compared the two architectures. We used 10 
independent runs of the DRAM network (trained for 
2,000,000 iterations) and of the FF network (trained for 
3,000,000 iterations) to assess the final estimation 
performance and learning trajectory of each type of network.  
Each run used different random initial weights and different 
randomly generated training and testing patterns. 
  Blob size and numerosity specifications. The edge length 

of each blob was randomly chosen from {2,3,4,5} 
independently for each blob, regardless of the number of 
blobs in the image.  Blobs were placed randomly with the 
restriction that they could not overlap or touch. The number 
of images in each randomly generated set of	training images 
containing N blobs was 10,000/N2 rounded to the nearest 
integer. 
Experiment 2 investigated effects of varying aspects of the 
training and testing materials in the FF network, employing 
10 independent runs in each of four conditions (40 runs total). 
Each condition combined one of two numerosity-frequency 
distributions with one of two numerosity-area distributions. 
The two numerosity frequency distributions were 
f(N)∝1/(N2), in which the number of images containing N 
blobs in each set of training images was (10,000/N2), rounded 
to the nearest integer and f(N) constant, in which the number 
of images in each training set containing N blobs was 1000.  
The two types of numerosity-area distributions used 

                
Figure 2. A: One glimpse from the DRAM network. B: 
the Feed-Forward Network. See text for details. 

 
Figure 3. Examples of the stimuli used in the experiments. 
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decreasing average area and constant average area. For the 
former, we approximated the decrease in object size with 
numerosity in a natural image data set (Zou et al, in 
preparation). A scale factor s(N) was chosen randomly from 
the interval a(N)*[0.8,1.2] for each blob, where a(N) 
decreased with N according to a(N) = 2/(N0.3154). The width 
and height of each blob were determined by sampling a width 
variable k1*s(N) and a height variable k2*s(N); k1 and k2 were 
chosen independently from the range {2,3,4}, allowing blobs 
to be rectangles of different shapes. Values were then 
rounded probabilistically up or down so that the height and 
width of a blob was always an integer.  In the constant 
average area condition, the size of each blob, independent of 
N, was chosen from the interval 3*[0.8, 1.2]. This ensured 
that the average blob area was approximately constant across 
different N. Probabilistic rounding resulted in square blobs 
whose size could range from 2x2 to 4x4. 

For testing, as in Experiment 1, 1000 images were created 
for each N each time a network was tested. We followed 
procedures used in Revkin et al (2008) and in Izard and 
Dehaene (2008) to ensure that numerosity responses were 
based on the number of items in the display, rather than the 
total occupied area or the average area of items in the display.  
For each N, half of the test images had approximately 
constant total area (CTA), and the second half had 
approximately constant average area (CAA) occupied by 
individual blobs. Specifically, the total area occupied by 
blobs was approximately 81 for the CTA images regardless 
of N (so that individual blob size decreased with N), while 
the average area occupied by individual blobs was 
approximately constant at 9, independently of N in the CAA 
images (so that total blob area increased with N). 

Results 

Analysis Approach. We present results averaged over the 
10 runs of each condition (DRAM vs FF in Experiment 1; 
training frequency and area conditions for Experiment 2). For 
each condition, we sought to quantify the relationship, 
displayed in Figure 4, between the true numerosity N (from 
1-9) and both the mean numerosity estimate and the 
coefficient of variation (CV) of these estimates. For the mean 
estimates, the figure presents means and 95% confidence 
intervals over the 10 networks in each condition for the slopes 
(S), intercepts (I), and regression (R) of the relationship 
between the mean estimate and the true value of N.  Similarly, 
for the relationship between the CV and the value of N, 
Figure 4 displays the slope, intercept, and regression values 
over values of N ranging from 5 to 9.   To match the results 
from Revkin et al., the slope for the mean estimates should 
be 1 and the intercept should be 0; the slope for the CV over 
the range 5-9 should be about 0 and the intercept 
(corresponding to the constant CV) should be a small 
number, close to 0.1.  For experiment 2, we concentrate on 
results from the training conditions in which blob area 
decreased with N; results were similar when blob area during 
training did not vary with N, except where noted. 

Experiment 1. Final performance. The final performance 
of our DRAM network (D) and our FF (F) network were both 
consistent with the results of Revkin et al, as shown in the top 
left panels for Figure 4. For both networks, mean estimates 
corresponded nearly perfectly to the true numerosity for all 
N, with slopes close to 1 and intercepts close to 0 (SD=.979, 
SF =.9904, ID=0.02, IF =0.0368; see Figure for confidence 
intervals). The coefficient of variation (CV) for each of the 
two networks was near 0 for displays with 1 blob and 
increased as numerosity increased. The CV flattened for 
numerosities over 4, with slopes approximately 0 in both 
networks (SD =-0.0007, SF =0.0031). For displays with 5 or 
more blobs, the CV for the FF network (I=0.0977), was 
slightly smaller than that of the DRAM network (I=0.1469). 
  Development. Both the DRAM and the FF network initially 
underestimated the number of items presented, and both 
showed decrease in the CV over the course of training (top 
right panels of Figure 4). However, the FF network learned 
faster and reached a lower CV, and showed a compression of 
the numerosity range, such that spacing between numbers 
decreases as N increases.  Such a pattern is often seen in 
human estimation data, especially without calibration or 
feedback (Isard & Dehaene, 2008). The CV improved much 
more quickly for FF (note the factor of 10 scaling of iteration 
numbers chosen for presentation). Also, DRAM initially 
exhibited a linear relationship between mean estimate and N 
with a slope less than 1, while the FF network initially 
produced a nonlinear relationship that fit a power function 
with an exponent of less than 1 better than a linear function 
(for each run, R was slightly larger for the non-linear than the 
linear fit). 

Experiment 2. Many interesting findings emerged from this 
study.  We focus on three key findings. 
  Effect of area variation with N during testing.  In all four 
conditions, we found that our FF model was sensitive to 
numerosity rather than a possible confounded area variable 
when tested at the end of training. Mean estimates of 
numerosity were completely unaffected by whether total area 
(CTA) or average area (CAA) stayed constant in the test 
stimuli. For example, for both the f(N)∝1/(N2) and f(N) 
constant conditions, the mean estimates for CTA and CAA 
test stimuli lie on top of each other (see the 3rd and 4th rows, 
1st column of Figure 4).  Even early in development (3rd and 
4th rows, 3rd column) the difference between CTA and CAA 
test stimuli makes very little difference to the mean estimates, 
though there are effects on the CV, especially for N = 1 early 
in development (3rd and 4th row, 4th column).   
  Effect of numerosity frequency distribution.  To address the 
role of the numerosity frequency distribution during training, 
we first consider the CV slopes for numbers from 5-9. 
Surprisingly, the CV was strikingly constant over the range 
from 5-9 in the f(N) constant conditions (S = .0014 ± .0008) 
as well as in the  f(N)∝1/(N2) conditions (S = .0059 ± .001), 
indicating that the CV at the end of training is nearly constant 
for all four combinations of frequency distribution and area 
distribution. It thus appears that a decreasing numerosity 
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frequency function is not necessary to achieve a flat CV over 
this range in our feed-forward neural network. 
  That said, the numerosity frequency distribution did have a 
striking effect early in development.  For the f(N)∝1/(N2) 
condition (row 3, column 3), there is a strong tendency to 
underestimate larger numerosities early during training, and 
the estimates appear to follow a logarithmic or power 
function with an exponent less than 1. On the other hand, 
early in training with a constant frequency distribution (row 

4, col 3 of the figure) mean estimates tend to be too high, and 
increase almost linearly with N. 

Effect of numerosity area distribution. The results already 
described indicate that the numerosity area distribution had 
little effect on the CV for numerosities greater than 4: 
However, the numerosity area distribution during training 
had a striking effect on the CV for small numerosities. 
Indeed, for N = 1, a constant numerosity area distribution 
during training (Experiment 1, top panels, and the constant 
average area training condition of Experiment 2, not shown) 

 
Figure 4.  Results from Experiment 1 (top two rows) and from the Decreasing Average Area conditions of Expt. 2 

(bottom 2 rows).  Yellow bands signify range of values observed across runs.  Numbers in legends for developmental 
results (right panels) correspond to iteration numbers. Abbreviations: S: Slope; I: Intercept; R: Regression coefficient 

(R); CTA: Constant total area test items; CAA: Constant Average Area Test items. 
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led to a CV near 0, while a decreasing average area 
distribution led to a larger CV for N =1 than for any other 
numerosity.   A similar tendency appears for N = 2, but it 
fades out for larger numerosities. 

Discussion 
   In this work, we explored whether generic neural networks 
can exhibit characteristics of human number estimation 
through development. We trained and evaluated two distinct 
neural networks on datasets in which we manipulated 
relationships between numerosity and frequency and between 
numerosity and area. Our results demonstrated that generic 
neural networks can learn to estimate numerosities 
accurately, regardless of these factors. In particular, the fact 
that they estimated well for numerosities that were relatively 
infrequent in the training data (e.g., for N = 9, when 
f(N)∝1/(N2)), and for the constant total area testing data, for 
which successful estimation based on area is impossible, 
showcased the robustness of their acquired numerical 
estimation ability. After sufficient development, across all 
combinations of training and testing sets, our networks’ 
performance on the estimation task displayed a signature 
characteristic of the human approximate number system: 
constant CV for numerosities over 4. Our networks’ 
acquisition of human-like estimations for numerosities in this 
range supports the idea that human estimation abilities may 
not require an innate approximate number system. 
   The finding that network performance eventually reached a 
stage in which its CV curve displayed the same levelling off 
for higher numerosities and independence from the influence 
of these extraneous factors has relevance for recent theories 
about the possible reason why numerosity judgments exhibit 
a constant CV. For instance, in Experiment 2, later in 
training, we obtained flat CV curves for higher numerosities 
even for networks trained with data in which all numerosities 
occurred with equal frequency. This suggests that the 
proposal of Piantadosi (2016), that there is less need for 
precision with less frequent numerosities, may not be the only 
way to explain why variability increases with N in 
numerosity estimation.  In future work we hope to explore the 
idea, suggested by our developmental findings, that 
Piantadosi’s suggestions may be relevant to estimation early 
in development, but experience may eventually level the 
playing field, an effect that we hope to explore in subsequent 
investigations. 
   It should be noted that our generic neural networks did not 
capture the human data for numerosities from 1 to 4. For 
these smaller numerosities, humans estimated the numerosity 
almost perfectly, with a CV close to 0, whereas we only 
observed such a low CV for N = 1, and then only in some 
conditions. Revkin et al (2008) and others have proposed that 
a distinct ‘subitizing’ mechanism, distinguished from the 
ANS, is responsible for estimating these numerosities. Our 
findings can be interpreted as falling in line with this 
possibility.   
   The possible ‘subitizing’ mechanisms that could explain 
human expertise in estimating smaller numerosities include 

the object individuation system (Feigenson et al., 2004), in 
which humans are thought to be able to hold up to three 
objects in mind simultaneously. Another way these findings 
might be explained would be in terms of the idea that small 
numerosities give rise to distinctive emergent shapes, such as 
‘point’, ‘line’, and ‘triangle’.  In future work, we hope to 
explore these possibilities. 
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