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Abstract

Large transformer-based models are able to perform in-context few-shot learning,
without being explicitly trained for it. This observation raises the question: what
aspects of the training regime lead to this emergent behavior? Here, we show that
this behavior is driven by the distributions of the training data itself. In-context
learning emerges when the training data exhibits particular distributional properties
such as burstiness (items appear in clusters rather than being uniformly distributed
over time) and having large numbers of rarely occurring classes. In-context learning
also emerges more strongly when item meanings or interpretations are dynamic
rather than fixed. These properties are exemplified by natural language, but are
also inherent to naturalistic data in a wide range of other domains. They also
depart significantly from the uniform, i.i.d. training distributions typically used for
standard supervised learning. In our initial experiments, we found that in-context
learning traded off against more conventional weight-based learning, and models
were unable to achieve both simultaneously. However, our later experiments
uncovered that the two modes of learning could co-exist in a single model when
it was trained on data following a skewed Zipfian distribution – another common
property of naturalistic data, including language. In further experiments, we found
that naturalistic data distributions were only able to elicit in-context learning in
transformers, and not in recurrent models. In sum, our findings indicate how the
transformer architecture works together with particular properties of the training
data to drive the intriguing emergent in-context learning behaviour of large language
models, and how future work might encourage both in-context and in-weights
learning in domains beyond language.1

1 Introduction

Large transformer-based language models show an intriguing ability to perform in-context learning
(Brown et al., 2020). This is the ability to generalize rapidly from a few examples of a new concept
on which they have not been previously trained, without gradient updates to the model. In-context
learning is a special case of few-shot learning in which the output is conditioned on examples from a
‘context’, and where there are no gradient updates. It contrasts with ‘in-weights’ learning, which is

1Code is available at: https://github.com/deepmind/emergent_in_context_learning
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"(a) Model, inputs, and outputs.
(b) Sequences for training.
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(c) Sequences to evaluate in-context learning.
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(d) Sequences to evaluate in-weights learning.
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Figure 1: Experimental design, as described in Section 2. (a) For each experiment, a transformer
model is trained on sequences of image-label pairs. The model is trained to minimize the loss on
predicting the label corresponding to the final ‘query’ image. (b) In training, image-label mappings
are fixed across sequences, in contrast to few-shot meta-training. The training data consist of a mix
of ‘bursty’ and ‘non-bursty’ sequences. Bursty sequences, featuring multiple occurrences of the same
classes, can be solved by learning labels across sequences (in-weights learning), or referring back
to the context (in-context learning). Non-bursty sequences were composed of i.i.d. images. (c) To
evaluate few-shot in-context learning, the model is presented with a standard few-shot sequence. The
holdout image classes were never encountered in training, and are randomly assigned to labels {0,1}.
Thus the model must use the context to predict the query label. (d) To evaluate in-weights learning,
the model is presented with sequences where the labels are the same as in training. However, the
query class does not appear in the context. Thus, the model must used information stored in weights
to predict the query label. In the example sequences, we add colors and use only Latin characters for
visualization purposes.

the standard setting for supervised learning – this is slow (requiring many examples), and depends on
gradient updates to the weights. Earlier work in the context of ‘meta-learning’ showed how neural
networks can perform few-shot learning without the need for weight updates (Santoro et al., 2016;
Vinyals et al., 2016; Wang et al., 2016). To achieve this, the researchers explicitly designed the
training regime to incentivize in-context learning, a process sometimes called ’meta-training’. In
the case of transformer language models, however, the capacity for in-context learning is emergent.
Neither the model’s transformer architecture nor its learning objective are explicitly designed with
in-context learning in mind.

Here, we consider the question of how transformer language models are able to acquire this impressive
ability, without it being explicitly targeted by the training setup or learning objective. The emergence
of in-context learning in language models was observed as recurrent models were supplanted by
transformers, e.g. in GPT3. Was the novel architecture the critical factor behind this emergence?
In this work we explore this possibility, as well as a second: that a capacity for in-context learning
depends on the distributional qualities of the training data.

This hypothesis was inspired by the observation that many natural data sources – including natural
language – differ from typical supervised datasets due to a few notable features. For example, natural
data is temporally ‘bursty”. That is, a given entity (word, person, object, etc) may have a distribution
that is not uniform across time, instead tending to appear in clusters (Altmann et al., 2009; Alvarez-
Lacalle et al., 2006; Lambiotte et al., 2013; Neuts, 2007; Sarkar et al., 2005; Serrano et al., 2009).
Natural data also often has the property that the marginal distribution across entities is highly skewed,
following a Zipfian (power law) distribution with a long tail of infrequent items (Piantadosi, 2014;
Smith et al., 2018; Zipf, 1949). Finally, the ‘meaning’ of entities in natural data (such as words
in natural language) is often dynamic rather than fixed. That is, a single entity can have multiple
possible interpretations (polysemy and homonymy, in language) and multiple entities can map to the
same interpretation (synonymy, in language), usually in a context-dependent way. The combination
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(a) In-context learning on holdout classes.
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(b) In-weights learning on trained classes.
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Figure 2: Effects of burstiness. P (bursty) indicates the proportion of training sequences that were
bursty vs non-bursty, and models are evaluated on the two types of evaluation sequences, over the
course of training. Burstiness in the training data increases in-context learning, and decreases in-
weights learning. Also, over the course of training, in-context learning tends to decrease while in-
weights learning increases.

of these properties may result in training data that occupies some middle-ground between the data
used in canonical supervised learning and that used for few-shot meta-training.

In particular, standard supervised training typically consists of item classes that recur with uniform
regularity, and with item-label mappings that are fixed throughout training – these properties allow
a model to gradually learn over time, by encoding information into its weights, e.g. via gradient
descent. By contrast, few-shot or in-context meta-training generally involves training a model directly
on specially crafted sequences of data where item classes only recur and/or item-label mappings are
only fixed within episodes – they do not recur and are not fixed across episodes (Santoro et al., 2016;
Vinyals et al., 2016). Naturalistic data, such as language or first-person experience, has characteristics
of both of these data types. As in supervised training, items (words) do recur, and the relationship
between an entity and its interpretation (or meaning) is fixed, to some degree at least. At the same
time, the skewed and long-tailed distribution of natural data means that some entities recur very
frequently while a large number recur much more rarely. Importantly, however, these rare items are
often bursty, making them disproportionately likely to occur multiple times within a given context
window, somewhat like a sequence of ’meta-training’ data. We can also see the dynamic relationship
between entities and their interpretation (epitomized by synonyms, homonyms, and polysemy, in the
case of language) as weaker versions of the completely dynamic item-label mappings that are used in
few-shot meta-training, where the mappings are randomly permuted on every episode.

In this paper, we experimentally manipulated the distributional properties of the training data and
measured the effects on in-context few-shot learning. We performed our experiments over data
sequences sampled from a standard image-based few-shot dataset (the Omniglot dataset; Lake et al.,
2019). At training, we fed each model (such as a transformer or recurrent network) with input
sequences of Omniglot images and labels, varying the natural data-inspired distributional properties of
choice. At evaluation, we assessed whether these properties gave rise to in-context learning abilities.

Our results showed that, indeed, in-context learning emerges in a transformer model only when
trained on data that includes both burstiness and a large enough set of rarely occurring classes.We
also tested two instantiations of the kinds of dynamic item interpretation observed in natural data –
having many labels per item as well as within-class variation. We found that both interventions on
the training data could bias the model more strongly towards in-context learning. The models we
tested typically exhibited a tradeoff between rapid in-context learning vs. relying on information that
was stored through slow, gradient-based updates (‘in-weights” learning). However, we found that
models could simultaneously exhibit both in-context learning and in-weights learning when trained
on a skewed marginal distribution over classes (akin to the Zipfian distribution of natural data).

At the same time, architecture is also important. Unlike transformers, recurrent models like LSTMs
and RNNs (matched on number of parameters) were unable to exhibit in-context learning when
trained on the same data distribution. It is important to note, however, that transformer models trained
on the wrong data distributions still did fail to exhibit in-context learning. Thus, attention is not all
you need – architecture and data are both key to the emergence of in-context learning.
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(a) In-context learning on holdout classes.
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(b) In-weights learning on trained classes.
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Figure 3: Effects of number of classes. Increasing the number of training classes improves in-context
learning, while reducing in-weights learning.

2 Experimental Design

2.1 The training data

To investigate the factors that lead to in-context few-shot learning, we created training and evaluation
sequences using the Omniglot dataset (Lake et al., 2019, MIT License), a standard image-label
dataset for few-shot learning. Omniglot consists of 1623 different character classes from various
international alphabets, with each class containing 20 handwritten examples. Using the Omniglot
dataset allowed us to apply evaluation procedures that are standard in the study of few-shot learning.
The few-shot challenge is to classify an example of a character class that was never seen in training,
based only on a few examples of that class and some alternate classes.

The training data consisted of sequences of images and labels (Fig 1b). The first 16 elements of
each sequence comprised the ‘context’, and consisted of 8 image-label pairs (where each image was
always followed immediately by its corresponding label). The final element was the ‘query’ image,
and the aim of the model was to predict the correct label for the query.

Images were allowed to recur throughout training, and the integer label for each image class was
unique and fixed across training, as in typical supervised datasets. We emphasize that this is a major
departure from conventional few-shot training, where item-label mappings are completely novel on
each episode, or the items themselves are novel on each episode.

In our standard experiments, we trained the model on a mixture of ‘bursty’ and ‘non-bursty’ sequences.
In the bursty sequences, the query class appeared 3 times in the context. There are many possible ways
to quantify or instantiate burstiness (e.g., Altmann et al., 2009; Alvarez-Lacalle et al., 2006; Lambiotte
et al., 2013; Neuts, 2007; Sarkar et al., 2005; Serrano et al., 2009), but the ‘bursty’ sequences in our
experiment were designed to reflect the within-context burstiness that is observed in e.g. language.
To prevent the model from simply outputting the most common label in the sequence, a second image-
label pair also appeared 3 times in the context. For the non-bursty sequences, the image-label pairs
were drawn randomly and uniformly from the full Omniglot set. We can continuously vary the overall
degree of burstiness in a dataset by changing the proportion of ‘bursty’ vs ‘non-bursty’ sequences.

2.2 The model

Each element of a sequence was first passed through an embedder (a standard embedding layer for
the integer labels, and a ResNet for the images; He et al., 2015). These embedded tokens were passed
into a causal transformer model (Fig 1a) (Vaswani et al., 2017). Unless stated otherwise, we used a
transformer with 12 layers and embedding size 64. The model was trained on a softmax cross-entropy
loss on the prediction for the final (query) image.

2.3 The evaluation data

We evaluated trained models on two types of sequences, to measure (1) in-context learning and (2)
in-weights learning. As in the training sequences, the evaluation sequences also consisted of 8 pairs
of ‘context’ image and label tokens, followed by a single ‘query’ image token.
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To measure a trained model’s ability for in-context few-shot learning, we used a standard few-shot
setup. The context consisted of a random ordering of 2 different image classes with 4 examples each,
and the query was randomly selected from one of the two image classes (a ‘4-shot 2-way’ problem,
in few-shot nomenclature). Unlike in training, where the labels were fixed across all sequences, the
labels for these two image classes were randomly re-assigned for each sequence. One image class
was assigned to 0, and the other to 1 (Fig 1c). Because the labels were randomly re-assigned for each
sequence, the model must use the context in the current sequence in order to make a label prediction
for the query image. Unless stated otherwise, in-context learning was always evaluated on holdout
image classes that were never seen in training.

Although the model is always required to perform a full multi-class classification over all possible
output labels (as in training), few-shot accuracy is computed by considering the model outputs only
for the two labels seen in the few-shot sequence (0 and 1), with chance at 1/2. This ensures that
performance above chance cannot be due to e.g. randomly selecting one of the labels from the context.
Note also that the model was evaluated for in-context learning on novel image classes, but not novel
labels (see the appendix for further discussion).

To measure in-weights learning of trained classes in a model, evaluation sequences consisted of
image classes that were selected uniformly without replacement, with the same labels that were used
in training (Fig 1d). Because the image classes were forced to be unique within each sequence, the
query had no support in the context. Thus, the only way for a model to correctly predict the label was
to rely on information stored in the model weights. For this problem, where the correct query label
could be any of the labels seen in training, chance was usually 1/1600.

3 Results

3.1 What kinds of training data promote in-context learning?

Burstiness. In our first experiments, we vary levels of burstiness in the training data by varying the
proportion of bursty vs non-bursty sequences in the training data (as described in Section 2.1). These
experiments replicate the finding that transformers can acquire in-context few-shot learning even
without explicit meta-training. They further show that, as hypothesized, the model displays better
in-context learning with more burstiness in training (Fig 2a). We also see that in-context learning
trades off against in-weights learning – greater burstiness simultaneously leads to lower weight-based
learning (Fig 2b). Interestingly, the models can in some cases lose an initial bias towards in-context
learning, moving towards in-weights learning over the course of training.

A large number of rarely occurring classes. Our second set of experiments show that in-context
learning performance depends on the number of training classes (keeping the level of burstiness fixed
at p(bursty) = 0.9). As we increase the number of classes from 100 to 1600 (and correspondingly
decrease the frequency of each class), we see improvement of in-context learning (Fig 3a). As
before, we also see an accompanying decrease in in-weights learning (Fig 3b). This accords with our
hypothesis about the importance of having a long tail in the distribution, or a large vocabulary. Note
that the bias against in-weights learning cannot be explained by the number of exposures to each
class – even controlling for the number of exposures, the model trained with 1600 classes is much
slower to achieve similar levels of in-weights learning. Importantly, we need both burstiness and a
large number of classes for in-context learning to emerge. In order to further increase the number of
classes beyond the 1623 available in the original Omniglot dataset, we rotated (0◦, 90◦, 180◦, 270◦)
and flipped (left-right) the images, obtaining 8× more image classes. We ensured that the holdout
set did not include transformed versions of train images. Training on these 12800 classes further
improved in-context learning (and reduced in-weights learning) (Fig 3). However, some images in
Omniglot have rotational or mirror symmetries, so that the models trained on 12800 classes may
additionally be pushed towards in-context learning by a label-multiplicity effect, described next.

Multiplicity of labels. Our third set of experiments explored the effect of dynamic meanings, with
training distributions where images did not have completely fixed labels. Each image class was
assigned to multiple possible labels and, in the data sequences, the label shown after each image
was randomly selected among the possible labels. If a class appeared more than once in the same
sequence, the label was consistent for all presentations within that sequence (this is commonly the
case in natural data such as language, too; Gale et al., 1992). In Fig 4, we see that increasing the ‘label
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multiplicity’ (the number of labels per class) also increases in-context learning. Again, burstiness
was fixed for these experiments at p(bursty) = 0.9.

(a) In-context learning on holdout classes.
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(b) In-weights learning on trained classes.
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Figure 5: Effects of within-class variation. When we increase the within-class variation (from left
to right), in-context learning tends to increase (a) while in-weights learning decreases (b). Both
effects are nonetheless upper-bounded by the difficulty of within-class generalization, with the ‘Full
Omniglot’ problem being more difficult than the rest. For the ‘Full Omniglot’ experiments, each
class contained the full set of 20 Omniglot exemplars per class. For the remaining experiments, each
consisted of only a single Omniglot exemplar image, with varying levels of Gaussian pixel noise.
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Figure 4: Dynamic meanings improve in-context learn-
ing. Increasing the number of labels per class (‘label
multiplicity’) increases in-context learning.

Within-class variation. We then explored
another source of dynamic variation of
meaning – the amount of variation within
image classes themselves. In the lowest-
variation condition, each image class con-
sists of only a single image, i.e. the images
for a given class were always identical. In
the medium-variation conditions, we added
Gaussian pixel noise to the images (resam-
pled for each presentation). In the high-
varation condition, we used the full Om-
niglot classes (each class consists of 20 dif-
ferent images drawn by 20 different peo-
ple). To our surprise, we found that greater
within-class variation leads to greater in-

context learning (Fig 5). In other words, making the generalization problem harder actually made
in-context learning emerge more strongly – it preferentially hampered in-weights learning more than
it hampered in-context learning.

Across all the above experiments (Figs 2-5), we also evaluated in-context learning on training classes
(rather than holdout classes), again randomly assigning the classes to labels 0 and 1 (rather than
using the ones seen in training). Evaluations looked similar in all cases, with only slightly higher
performance (Appendix C.3.
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(a) Examples of Zipfian distributions.
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(b) Distribution of tokens in a natural language
corpus.

(c) In-context learning on holdout
classes.
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(d) In-weights learning on
common classes.
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(e) In-weights learning on
rare classes.
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Figure 6: Effects of training on Zipfian (rather than uniform) marginal distributions over classes.
(a) Examples of Zipfian distributions with varying exponents. (b) The distribution of tokens in an
example English-language corpus. In (c-e), bars indicate mean evaluation accuracy in the window
[400k, 500k] steps of training. (c) As we increase the Zipf exponent, i.e. increasing the skew on the
class distribution, we see a decrease in in-context learning. (d) In-weights learning of the 10 most
common classes, in contrast, increases with more skew. With uniform training (Zipf exponent = 0),
the model exhibits only in-context learning and not in-weights learning. However, if we train on
skewed distributions, there is a sweet spot where both in-context learning and in-weights learning can
be maintained at a high level in the same model (Zipf exponent = 1, for this particular training regime).
Coincidentally, a Zipf exponent of 1 corresponds approximately to the skew in many natural languages.
(e) Rare items from training are never memorized (performance is at chance for all Zipf exponents).

3.2 What kinds of training data enable in-context learning and in-weights learning to co-exist
in the same model?

In the previous section, we saw a consistent tradeoff between in-context learning and in-weights
learning – no models could maintain both. However, it is useful for a model to have both capabilities
– to remember information about classes that will re-appear in evaluation, while also being able to
perform rapid in-context learning on new classes that appear only in holdout. Large language models
certainly do have both of these capabilities. How might we achieve this?

For all prior experiments, the training data were marginally distributed uniformly over classes, even if
the data were non-uniform in other ways. I.e., each class was equally likely to appear, marginalizing
across the dataset. We postulated that we might achieve both types of learning in the same model by
instead training on marginally-skewed distributions. In this case, some classes appear very commonly,
while most classes appear very rarely. Many natural phenomena such as word distributions take this
form, and are classically described as a Zipfian (power law) distribution (Zipf, 1949):

p(X = x) ∝ 1

xα
(1)

Here, X is the rank of the class (e.g. 1 for the most common class), and the exponent α ∈ [0,∞)
determines the degree of skew. Fig 6a shows some examples of Zipfian distributions with various
exponents. Fig 6b shows an example of token distributions in English (from the Brown corpus; Francis
and Kucera, 1979).2 This type of skewed distribution could allow a model to learn common classes in
its weights, while the long tail of rare classes simultaneously induces an ability for in-context learning.

2Plot generation adapted from https://gist.github.com/fnielsen/7102991
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To test this hypothesis, we trained on Zipfian distributions, varying the Zipf exponent and hence the
degree of skew. We used the same training sequences as before, with 12800 classes and p(bursty) =
0.9. Our results are shown in Figs 6c-e. We evaluate in-weights learning separately on common classes
(the 10 classes seen most often in training) and on rare classes (the remaining classes). When there is
no skew, all classes are relatively rare, and we see high levels of in-context learning but no in-weights
learning. Increasing the skew leads to the loss of in-context learning and increased in-weights learning
of common classes.3 In between the two extremes, we observe a sweet spot at Zipf exponent = 1,
where the model maintains high levels of both in-context learning and in-weights learning of common
classes. Intriguingly, natural languages are best described by a Zipfian distribution with an exponent of
approximately 1 (Piantadosi, 2014). Note though that the sweet spot for simultaneously maintaining
in-weights and in-context learning in transformers may differ, depending on the training regime.
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(c) LSTM.
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Figure 7: In-context learning in transformers vs. recurrent architectures. We compare architectures
while holding fixed the number of layers, hidden layer size, and number of parameters. Only a
transformer is able to attain in-context learning; the Vanilla RNN and LSTM never perform above
chance. One run was performed for each set of hyperparameters in a hyperparameter sweep. Each
color denotes one run, but not any particular hyperparameter values.

3.3 But architecture does matter too.

To investigate whether these results are specific to transformer models, we performed similar experi-
ments using recurrent sequence models. For these models, we simply replaced the transformer with
either a vanilla recurrent neural network (RNN; David E. Rumelhart et al., 1985) or a long short-term
memory network (LSTM; Hochreiter and Schmidhuber, 1997). We used the same training sequences
as before, with 1600 classes and p(bursty) = 0.9. We also used the same image and label encoders,
and cross-entropy classification loss. The recurrent models were matched to the transformer for depth,
number of parameters, and hidden layer size. We performed a comprehensive hyperparameter search
for all models (see Appendix for details).

In these experiments, we see that the recurrent models are never able to achieve in-context learning,
despite the parity in training setup (Fig 7). Interestingly, the transformer actually outperforms the
recurrent models on in-weights learning as well (see Fig 8 in the Appendix), indicating that we cannot
explain these results by proposing that recurrent models are simply more biased towards in-weights
learning than transformers.

4 Discussion

In summary, we find that both data and architectures contribute significantly to the emergence of
in-context learning in transformers.

Data properties that promote in-context learning. We identify several features of training data
that can promote in-context learning – burstiness, number and rarity of training classes, and dynamic
meaning (as instantiated by multiple labels per class or within-class variation). These data properties
allow in-context learning to emerge despite differing significantly from the data used in standard
few-shot meta-training, in that we allow items and item-label mappings to recur throughout training.
These properties are also central features of natural data including language, and thus may explain the
remarkable emergence of in-context learning in large language models without explicit meta-training.

3We see decreased in-weights learning for Zipf exponent = 3, because that level of skew leads to extreme
focus on a tiny number of classes (e.g. the three most common classes form 97% of the data).
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Effects of architecture. We find that architecture does matter as well. Transformers show a
significantly greater capacity for in-context learning than recurrent models – we were completely
unable to elicit in-context learning in recurrent models, even with the training procedure, number of
parameters, and model architecture otherwise matched to the transformer experiments. We emphasize
however that the transformer architecture alone was insufficient for eliciting in-context learning – it
was necessary for the training data to exhibit at least burstiness and large numbers of classes, too.

In-context vs. in-weights learning. In most cases, we found that transformers exhibited a tradeoff in
their bias towards either in-context learning or in-weights learning, and could not maintain both in
the same model. We characterize this behavior as a ‘bias’, because neither type of learning is ‘correct’
per se. For our training data, an in-context learning strategy and an in-weights learning strategy will
give the same answer, since the labels are fixed. Thus, in the in-context evaluation sequences, it is
ambiguous (by design) whether the model should use the labels seen in training or in the current
context, allowing us to measure the model’s bias. We also note that even models with an initial bias
towards in-context learning can often move towards in-weights learning with enough repetition.

However, it is often important and useful for a model to exhibit both capabilities – to perform
slow, gradient-based in-weights learning of class information that is presented during training, while
also being able to quickly learn (without weight updates) about new classes that appear only in
evaluation. Indeed, large language models exhibit both of these capabilities (Brown et al., 2020).
In our experiments, we discovered that an additional language-like distributional property could
allow models to maintain both capabilities as well – a skewed, Zipfian distribution over classes. This
allowed the models to retain information in their weights about common classes, while simultaneously
developing in-context learning abilities that were presumably induced by the long tail of rare classes.

Implications for understanding language models. Our findings have a few noteworthy implications.
First, by pointing to specific distributional properties of training data that both exist in language and
also promote in-context learning, these results may help us reach a more scientific understanding of
why in-context learning emerges in transformer-based language models. This is an area of increasing
interest (e.g. Min et al., 2022; Razeghi et al., 2022; Webson and Pavlick, 2021; Xie et al., 2021).

We emphasize that the transformers in our experiments successfully performed in-context evaluation
on holdout classes, and only performed slightly better with in-context evaluation on trained classes.
These results are counter to an emerging narrative that large language models may not actually be
performing genuine in-context learning, and simply draw on examples seen in training (Min et al.,
2022; Razeghi et al., 2022; Xie et al., 2021) – our experiments show that naturalistic distributional
properties can give rise to a capacity for in-context learning on classes that were never seen in training.

Broader implications. This understanding may also help us design and collect datasets to achieve in-
context learning in domains outside of language, an area of ongoing research (e.g. Finn et al., 2017;
Hill et al., 2020; Wang et al., 2016). Given that reinforcement learning environments are generally
designed to be uniformly distributed (Chan et al., 2022), or that supervised datasets are frequently
rebalanced to have more uniform distributions (Chawla et al., 2002; Katharopoulos and Fleuret, 2019;
Van Hulse et al., 2007), we may be missing an opportunity to endow non-language models with a
powerful capability. We may need to consider data distributions more carefully when pre-training in
non-language domains, as well. For example, recent work has shown that pre-training on language
data was useful for offline reinforcement learning, but pre-training on vision data was not (Reid et al.,
2022) – could this difference be due to the non-uniform, structured distribution of the language data?

Cognition and neuroscience. Our experiments could also potentially inspire research on the role
of non-uniformity in human cognitive development. Infants rapidly learn statistical properties of
language (Saffran and Kirkham, 2018) — could these distributional features help infants to acquire
an ability for rapid learning, or serve as useful pretraining for later learning? And could non-uniform
distributions in other domains (e.g., vision) also contribute to this development (cf. Smith et al., 2018)?

Our results may also relate to complementary learning systems theory (Kumaran et al., 2016; Mc-
Clelland and O’Reilly, 1995) and its application to language understanding in the brain (McClelland
et al., 2020). According to this theory, the neocortical part of the language system bears similarities
to the weights of neural networks, in that both systems learn gradually through the accumulated in-
fluence of large amounts of experience. The hippocampal system plays a role similar to the context
window in a transformer model, by representing the associations encountered most recently (the hip-
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pocampus generally has a time-limited window; Squire, 1992). 4 In this light, it is possible to see the
human hippocampal system as a system that provides the architectural advantage of the transformer’s
context representations for in-context learning.

Future directions. The above results suggest exciting lines of future research. How do these data
distributional properties interact with reinforcement learning vs. supervised losses? How might
results differ in experiments that replicate other aspects of language and language modeling, e.g. using
symbolic inputs, training on next-token or masked-token prediction, and having the meaning of words
determined by their context? For models that display both in-context and in-weights learning, it would
be interesting to understand contextual cuing of already learned information – does this increase with
more exposure? There is also a lot more to understand about the behaviors and biases of transformers
vs. recurrent architectures – why do transformers seem to be more capable of in-context learning?

Non-uniformity. Finally, we hope to emphasize the dual nature of non-uniformity in training data.
While it can impair both supervised and reinforcement learning (Chan et al., 2022; Van Hulse et al.,
2007), we show here that non-uniform training distributions can induce the emergence of at least one
useful and interesting capability, and thus can be an opportunity as well as a challenge.
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Appendix
A Model and training procedure: details

All experiments used the same model and training procedure, unless stated otherwise. The transformer
consisted of 12 layers, with embedding dimension 64 and 8 heads. The images were embedded by a
ResNet with two blocks per group and channels per group (16, 32, 32, 64), and which was not pre-
trained. The integer labels were embedded using a standard embedding layer. The input embeddings
were augmented with a standard sinusoidal positional encoding. Experiments were run for 500k
training steps on 16 TPU v2 or v3 cores. They were trained using Adam and a learning rate schedule
with a linear warmup up to a maximum learning rate of 3e-4 at 4000 steps, followed by an inverse
square root decay. The experiments shown in Figs 5 and 6 were run with 3 seeds each (because of the
larger number of conditions in those experiments), and all other experiments were run with 5 runs
each. In all figures, (shaded) error bars indicate standard deviation around the mean.

B Possible extensions: Generating new image labels

An important constraint of the model implementation and evaluation procedure is that we do not
require the models to handle novel image labels, only novel image classes. Thus, in-context learning
is evaluated on labels that were previously seen in training, i.e. 0 and 1 (on the Zipfian-skewed
experiments, these corresponded to two most common labels). Note that, if anything, this causes
in-context learning to be more difficult for the model, since it must overcome existing image-label
associations that were learned in training.

However, as future extensions, it would be possible to extend the model to handle novel labels as well.
For example, we might tie the input and output embedding layers (sometimes done in large language
models, though mainly for computational efficiency), or to generate novel labels as combinations of
already-seen tokens (akin to language models that use the SentencePiece family of tokenization).

C Experiments comparing recurrent vs. transformer

C.1 Architectural details

Hyperparameter sweep:

• Max learning rate: 15 samples log-uniform distributed over the range [1e-5, 0.1]
• Num warmup steps: 15 samples log-uniform distribution over the range [1, 10000]

We performed 15 runs for each architecture (Transformer with 2 or 12 layers, LSTM with 2 or 12
layers, Vanilla RNN with 2 or 12 layers), i.e. 90 runs total.

Parameter counts:

• Transformer with 12 layers: 831,479
• LSTM with 12 layers: 627,959
• Transformer with 2 layers: 331,639
• LSTM with 2 layers: 297,719

C.2 In-weights learning

Transformers exhibited similar or slightly higher in-weights learning than the recurrent models (Fig
8), indicating that their superior in-context learning performance (as seen in Fig 7) cannot simply be
explained by a bias towards in-context learning and against in-weights learning.

C.3 In-context evaluation on trained classes

Fig 9 shows results of evaluating in-context learning on classes that were seen in training, rather than
on holdout classes (the standard evaluation setting for few-shot learning, as described in Sec 2.3. The
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pattern of results is very similar between the two settings, with just slightly higher performance when
evaluating on training classes.

C.4 Multi-class in-context evaluation

For completeness, we also report the in-context evaluation results by computing accuracy fully multi-
class across all possible outputs of the model (Fig. 10). This is in contrast to the evaluations that
were reported in the main text (as described Sec 2.3), across just the two labels that appeared in
context; the two-choice evaluation provides a more sensitive measure of performance, ensuring that
all experimental conditions have the same levels of chance, and also ensuring that the model cannot
achieve above-chance performance simply by randomly selecting from the labels in context. Note
that, across training and both types of evaluation (in-context and in-weights), the model is the same –
it is trained to perform multi-class classification.

Multi-class evaluation shows the same patterns of results as the two-way evaluation from the main
text. Note that the multi-class evaluation results showing the effects of the number of training classes
(Fig 10b) and dynamic meanings (Fig 10d) need to be interpreted with caution, because the number
of model outputs changes in the different conditions, so that task difficulty and chance levels differ
for each.

The multi-class evaluation uncovers one additional interesting result, for the models trained on
Zipfian distributions (Fig 10e). As in the two-choice evaluation setting, a Zipfian distribution with an
exponent of 1 is the only one able to elicit significantly above chance accuracy on both in-context
evaluation and in-weights evaluation on common classes. However, Zipf 1 models have relatively
lower few-shot performance when evaluated in the fully multi-class setting. Further investigation
revealed that this was because those models have overall less tendency to output labels from context
(Fig 11). Nonetheless, the Zipf 1 models do perform significantly above chance in both settings, and
when forced to choose between the two labels that are shown in context, the model performs very
well on these sequences. This indicates that, interestingly, a model can attain both in-weights and
in-context learning abilities and process an input sequence in both ways, even if it is unsure which of
those two processes it should output the result for.

(a) Transformer.
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(b) Vanilla RNN.
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(c) LSTM.
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Figure 8: In-weights learning in transformers vs. recurrent architectures. We compare architectures
while holding fixed the number of layers, hidden layer size, and number of parameters. One run was
performed for each set of hyperparameters in a hyperparameter sweep. Each color denotes one run,
but not any particular hyperparameter values.
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(a) Burstiness.
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(b) Num training classes*
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(c) Within-class variation.

1 2 3 4 5
# train steps 1e5

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

Pixel noise 0

1 2 3 4 5
# train steps 1e5

0.00

0.25

0.50

0.75

1.00
Pixel noise 0.1

1 2 3 4 5
# train steps 1e5

0.00

0.25

0.50

0.75

1.00
Pixel noise 0.5

1 2 3 4 5
# train steps 1e5

0.00

0.25

0.50

0.75

1.00
Full Omniglot P(bursty)

0.5
0.9
1.0

(d) Dynamic meanings*
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Figure 9: In-context learning accuracy, evaluated on classes that were observed in training, rather
than holdout classes. Patterns of results are very similar to those shown in the main text, with overall
slightly higher performance when evaluated on training classes.
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(a) Burstiness.
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(b) Num training classes*
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(c) Within-class variation.
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(d) Dynamic meanings*
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(e) Zipfian distributions.
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Figure 10: In-context learning accuracy, evaluated fully multi-class across all possible outputs of
the model, rather than considering outputs on just the two labels that appeared in context. Patterns
of results are qualitatively similar to those shown in the main text. *Figures (b) and (d) should be
interpreted with caution, because the total number of classes differ for each experimental condition,
and therefore chance levels. We include them for completeness.
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Figure 11: Frequency of outputting any of the two labels that appear in context, for a model trained
on Zipfian distributions and evaluated on in-context evaluation sequences.
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