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Summary

The Leaky Competing Accumulator (LCA) is a biologically inspired model of choice.
It describes the processes of leaky accumulation and competition observed in neuronal
populations during choice tasks and it accounts for reaction time distributions observed
in psychophysical experiments. This chapter discusses recent analyses and extensions
of the LCA model. First, it reviews the dynamics and it examines the conditions that
make the model achieve optimal performance. Second, it shows that nonlinearities of
the type present in biological neurons improve performance when the number of choice-
alternatives increases. Third, the model is extended to value-based choice, where it is
shown that nonlinearities in the value function, explain risk-aversion in risky-choice
and preference reversals in choice between alternatives characterised across multiple
dimensions.

6.1 Introduction

Making choices on the basis of visual perceptions is an ubiquitous and central element of
human and animal life, which has been studied extensively in experimental psychology.
Within the last half century, mathematical models of choice reaction times have been
proposed which assume that, during the choice process, noisy evidence supporting
the alternatives is accumulated (Laming, 1968; Ratcliff, 1978; Stone, 1960; Vickers,
1970). Within the last decade, data from neurobiological experiments have shed further
light on the neural bases of such choice. For example, it has been reported that while a
monkey decides which of two stimuli is presented, certain neuronal populations gradually
increase their firing rate, thereby accumulating evidence supporting the alternatives
(Gold and Shadlen, 2002; Schall, 2001; Shadlen and Newsome, 2001). Recently, a series
of neurocomputational models have offered an explanation of the neural mechanism
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underlying both, psychological measures like reaction times and neurophysiological
data of choice. One such model, is the Leaky Competing Accumulator (LCA; Usher and
McClelland, 2001), which is sufficiently simple to allow a detailed mathematical analysis.
Furthermore, as we will discuss, this model can, for certain values of its parameters,
approximate the same computations carried out by a series of mathematical models of
choice (Busemeyer and Townsend, 1993; Ratcliff, 1978; Shadlen and Newsome, 2001;
Vickers, 1970; Wang, 2002).

Since its original publication, the LCA model (Usher and McClelland, 2001) has
been analysed mathematically and extended in a number of directions (Bogacz et al.,
2006; Brown et al., 2005; Brown and Holmes, 2001; McMillen and Holmes, 2006).
In particular, which values of parameters achieve an optimal performance have been
investigated. This matter is important, because if ‘we expect natural selection to produce
rational behaviour’, as discussed by Houston et al. (2006), then the values of parameters
revealed by these analyses should be found in the neural networks mediating choice
processes. In this chapter, we will use the word ‘optimal’ to describe the theoretically
best possible performance. In some cases, decision networks cannot achieve the optimal
performance, e.g., due to some biological constraints, however, it is still of interest
to investigate which parameters give best possible performance within the constraints
considered – we use the word ‘optimised’ to refer to such performance.

It has been shown that for choices between two alternatives, the LCA model achieves
optimal performance for particular values of parameters when its processing is linear
(Bogacz et al., 2006) or remains in a linear range (Brown et al., 2005) (the precise
meaning of these conditions will be reviewed later). However, it is known that information
processing in biological neurons is nonlinear and two questions remain open: (1) is linear
processing also optimal for choice between multiple alternatives, and (2) what are the
parameters of the nonlinear LCA model that optimise its performance?

This chapter has two aims. First, it reviews the biological mechanisms assumed in
the LCA model, and reviews an analysis of the dynamics and performance of the
linear and nonlinear LCA models (Section 6.2). Second, it presents new developed
extensions connected with the introduction of nonlinearities. In Section 6.3 we show
that nonlinearities (of the type present in biological neurons) may improve performance
in choice between multiple alternatives. In Section 6.4 we discuss how to optimise the
performance of the nonlinear LCA model for two alternatives. Finally, in Section 6.5
we show how nonlinearities in the LCA model also explain counterintuitive results from
choice experiments involving multiple goals or stimulus dimensions.

6.2 Review of the LCA model

In this section we briefly review the experimental data on neurophysiology of choice
and models proposed to describe them, focusing on the LCA model. We examine the
linear version and nonlinear versions of this model and we analyse its dynamics and
performance.
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6.2.1 Neurophysiology of choice

The neurophysiology of choice processes has been the subject of a number of recent
reviews (Schall, 2001; Sugrue et al., 2005). We start by describing a typical task used to
study perceptual choice, which makes use of three important processes: representation
of noisy evidence, integration of evidence, and meeting a decision criterion.

In a typical experiment used to study neural bases of perceptual choice, animals are
presented with a cloud of moving dots on a computer screen (Britten et al., 1993).
In each trial, a proportion of the dots are moving coherently in one direction, while
the remaining dots are moving randomly. The animal has to indicate the direction of
prevalent dot movement by making a saccade in the corresponding direction. There
are two versions of this task. The first one is the free-response paradigm, in which
participants are allowed to respond at any moment of time. The second paradigm is
the interrogation (or response–signal) paradigm, in which participants are required to
continuously observe the stimulus until a particular signal (whose delay is controlled) is
provided and which prompts an immediate response.

During the choice process, sensory areas (e.g., motion area MT) provide noisy evi-
dence supporting the alternatives, which is represented in the firing rates of motion-
sensitive neurons tuned to specific directions (Britten et al., 1993; Schall, 2001). Let us
denote the mean activity of the population providing evidence supporting alternative i
by Ii. The perceptual choice problem may be formulated simply as finding which Ii is the
highest. However, this question is not trivial, as the activity levels of these input neurons
are noisy (Britten et al., 1993), and hence answering this question requires sampling the
inputs for a certain period.

It has been observed that in this task neurons in certain cortical regions including
the lateral intraparietal area (LIP) and the frontal eye field (FEF) gradually increase
their firing rates (Schall, 2001; Shadlen and Newsome, 2001). Furthermore, because
the easier the task, the faster is the rate of this increase (Shadlen and Newsome, 2001),
it has been suggested that these neurons integrate the evidence from sensory neurons
over time (Schall, 2001; Shadlen and Newsome, 2001). This integration averages out
the noise present in sensory neurons allowing the accuracy of the choice to increase
with time. Moreover, because (in the free-response paradigm) the firing rate, just before
the saccade, does not differ between difficulty levels of the task (Roitman and Shadlen,
2002), it is believed that the choice is made when the activity of the neuronal population
representing one of the alternatives reaches a decision threshold.

6.2.2 Biologically inspired models of perceptual choice

A number of computational models have been proposed to describe the choice process
described above, and their architectures are shown in Figure 6.1 for the case of two
alternatives (Mazurek et al., 2003; Usher and McClelland, 2001; Wang, 2002). All of
these models include two units (bottom circles in Figure 6.1) corresponding to neuronal
populations providing noisy evidence, and two accumulator units (denoted by y1 and y2
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Figure 6.1 Architectures of the models of choice. Arrows denote excitatory connections, lines
with filled circles denote inhibitory connections. (a) LCA model (Usher and McClelland, 2001)
(b) Mazurek et al. (2003) model, (c) Wang (2002) model.

in Figure 6.1) integrating the evidence. The models differ in the way inhibition affects the
integration process: in the LCA model (Figure 6.1a) the accumulators inhibit each other,
in the Mazurek et al. (2003) model (Figure 6.1b) the accumulators receive inhibition
from the other inputs, and in the Wang (2002) model (Figure 6.1c) the accumulators
inhibit each other via a population of inhibitory inter-neurons. It has been shown that
for certain values of their parameters, these models become computationally equivalent,
as they all implement the same optimal algorithm for decision between two alternatives
(Bogacz et al., 2006). In this chapter, we thus focus on the LCA model, and we review
its optimality (analogous analysis for the other two models is described in Bogacz et al.,
2006).

6.2.3 Linear LCA model

Figure 6.1a shows the architecture of the LCA model for the two alternative choice tasks
(Usher and McClelland, 2001). The accumulator units are modelled as leaky integrators
with activity levels denoted by y1 and y2. Each accumulator unit integrates evidence
from an input unit with mean activity Ii and independent white noise fluctuations dWi of
amplitude ci (dWi denote independent Wiener processes). These units also inhibit each
other by way of a connection of weight w. Hence, during the choice process, information
is accumulated according to (Usher and McClelland, 2001):{

dy1 = (−ky1 − wy2 + I1) dt + c1dW1

dy2 = (−ky2 − wy1 + I2) dt + c2dW2
, y1(0) = y2(0) = 0. (6.1)

In the equations above, the term k denotes the decay rate of the accumulators’ activity
(i.e., the leak) and − wyi denotes the mutual inhibition. For simplicity, it is assumed that
integration starts from y1(0) = y2(0) = 0 (cf. Bogacz et al., 2006).

The LCA model can be used to describe the two paradigms described in Subsection
6.2.1. In the free-response paradigm, the model is assumed to make a response as soon
as either accumulator exceeds a preassigned threshold, Z. The interrogation paradigm is
modelled by assuming that at the interrogation time the choice is made in favour of the
alternative with higher yi at the moment when the choice is requested.

Because the goal of the choice process is to select the alternative with highest mean
input Ii, in the following analyses and simulations we always set I1 > I2. Hence a
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simulated choice is considered to be correct if the first alternative is chosen; this will
happen in the majority of simulated trials. However, in some trials, due to noise, another
alternative may be chosen; such trials correspond to incorrect responses. By simulating
the model multiple times expected error rate (ER) may be estimated. In addition, in the
free-response paradigm, the average decision time (DT) from choice onset to reaching
the threshold can be computed.

The LCA model can be naturally extended to N alternatives. In this case, the dynamics
of each accumulator i is described by the following equation (Usher and McClelland,
2001):

dyi =

⎛
⎜⎜⎝−kyi − w

N∑
j=1
j 	=i

y j + Ii

⎞
⎟⎟⎠ dt + ci dWi , yi (0) = 0. (6.2)

When the decay and inhibition parameters are equal to zero, the terms in Equations
(6.1) and (6.2) describing leak and competition disappear, and the linear LCA model
reduces to another model known in psychological literature as the race model (Vick-
ers, 1970; 1979), in which accumulators integrate noisy evidence independent of one
another.

6.2.4 Dynamics of the model

The review of dynamics of the linear LCA model in this subsection is based on Bogacz
et al. (2006). In the case of two alternatives, the state of the model at a given moment in
time is described by the values of y1 and y2, and may therefore be represented as a point
on a plane whose horizontal and vertical axes correspond to y1 and y2; the evolution
of activities of the accumulator units during the choice process may be visualised as
a path in this plane. Representative paths for three different parameter ranges in this
plane are shown in Figure 6.2. In each case the choice process starts from y1 = 0 and
y2 = 0, i.e., from the bottom left corner of each panel. Initially the activities of both
accumulators increase due to stimulus onset, which is represented by a path going in an
upper-right direction. But as the accumulators become more active, mutual inhibition
causes the activity of the ‘weaker’ accumulator to decrease and the path moves toward
the threshold for the more strongly activated accumulator (i.e., the correct choice).

To better understand the dynamics of the model, Figure 6.2 shows its vector fields.
Each arrow shows the average direction in which the state moves from the point indicated
by the arrow’s tail, and its length corresponds to the speed of movement (i.e., rate of
change) in the absence of noise. Note that in all three panels of Figure 6.2 there is a line,
indicated by a thick grey line, to which all states are attracted: the arrows point towards
this line from both sides. The location along this line represents an important variable: the
difference in activity between the two accumulators. As most of the choice-determining
dynamics occur along this line, it is helpful to make use of new coordinates rotated
clockwise by 45◦ with respect to the y1 and y2 coordinates. These new coordinates are
shown in Figure 6.2b: x1 is parallel to the attracting line and describes the difference



96 Bogacz, Usher, Zhang, and McClelland

(a) Decay > Inhibition (b) Decay = Inhibition (c) Decay < Inhibition 
y2

y1
x1

x2

y1 y1

y2 y2

Figure 6.2 Examples of the evolution of the LCA model, showing paths in the state space of the
model. The horizontal axes denote the activation of the first accumulator; the vertical axes denote
the activation of the second accumulator. The paths show the choice process from stimulus onset
(where y1 = y2 = 0) to reaching a threshold (thresholds are shown by dashed lines). The model
was simulated for the following parameters: I1 = 4.41, I2 = 3, c = 0.33, Z = 0.4. The sum of
inhibition (w) and decay (k) is kept constant in all panels, by setting k + w = 20, but the
parameters themselves have different values in different panels: (a) w = 7, k = 13; (b) w = 10,
k = 10; (c) w = 13, k = 7. The simulations were performed using the Euler method with
timestep �t = 0.01. To simulate the Wiener processes, at every step of integration, each of the
variables y1 and y2 was increased by a random number from the normal distribution with mean 0
and variance c2�t. The arrows show the average direction of movement of LCA model in the
state space. The thick grey lines symbolise the attracting lines. The filled circle in panel (a)
indicates the attractor. The open circle in panel (c) indicates the unstable fixed point.

between activities of the two accumulators; while x2 describes the sum of their activities.
The transformation from y to x coordinates is given by (cf. Seung, 2003):⎧⎪⎪⎨

⎪⎪⎩
x1 = y1 − y2√

2
,

x2 = y1 + y2√
2

.

(6.3)

In these new coordinates Equations (6.1) become (Bogacz et al., 2006):

dx1 =
(

(w − k) x1 + I1 − I2√
2

)
dt + c1√

2
dW1 − c2√

2
dW2, (6.4)

dx2 =
(

(−k − w) x2 + I1 + I2√
2

)
dt + c1√

2
dW1 + c2√

2
dW2. (6.5)

Equations (6.4) and (6.5) are uncoupled; that is, the rate of change of each xi depends
only on xi itself (this was not the case for y1 and y2 in Equations (6.1)). Hence, the
evolution of x1 and x2 may be analysed separately.

We first consider the dynamics in the x2 direction, corresponding to the summed
activity of the two accumulators, which has the faster dynamics. As noted above, on all
panels of Figure 6.2 there is a line to whose proximity the state is attracted, implying that
x2 initially increases and then fluctuates around the value corresponding to the position
of the attracting line. The magnitude of these fluctuations depends on the inhibition and
decay parameters; the larger the sum of inhibition and decay, the smaller the fluctuation
(i.e., the closer the system stays to the attracting line).
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Figure 6.2 also shows that the dynamics of the system in the direction of coordinate
x1. These dynamics are slower than the x2 dynamics and correspond to a motion along
the line. Their characteristics depend on the relative values of inhibitory weight w and
decay k. When decay is larger than inhibition, there are also attractor dynamics for the
x1 dynamics, as shown in Figure 6.2a. The system is attracted towards this point and
fluctuates in its vicinity. In Figure 6.2a the threshold is reached when noise pushes the
system away from the attractor. When inhibition is larger than decay, x1-dynamics are
characterised by repulsion from the fixed point, as shown in Figure 6.2c.

When inhibition equals decay, the term (w – k) x1 in Equation (6.4) disappears, and
Equation (6.4) describing the evolution along the attracting line can be written as:

dx1 =
(

I1√
2

dt + c1√
2

dW1

)
−

(
I2√

2
dt + c2√

2
dW2

)
. (6.6)

In the remainder of this chapter we refer to the linear LCA model with inhibition equal
to decay as balanced. The vector field for this case is shown in Figure 6.2b. In this
case, according to Equation (6.6) the value of x1 changes according to the difference in
evidence in support of two alternatives, hence the value of x1 is equal to the accumulated
difference in evidence in support of two alternatives.

The three cases illustrated in Figure 6.2 make different predictions about the impact of
temporal information on choice in the interrogation paradigm. If inhibition is larger than
decay (Figure 6.2c), and the repulsion is high, the state is likely to remain on the same side
of the fixed point. This causes a primacy effect (Busemeyer and Townsend, 1993; Usher
and McClelland, 2001): the inputs at the beginning of the trial determine to which side
of the fixed point the state of the network moves, and then due to repulsion, late inputs
before the interrogation time have little effect on choice made. Analogously, decay larger
than inhibition produces a recency effect: the inputs later in the trial have more influence
on the choice than inputs at the beginning, whose impact has decayed (Busemeyer and
Townsend, 1993; Usher and McClelland, 2001). If the decay is equal to inhibition, inputs
during the whole trial (from the stimulus onset to the interrogation signal) influence the
choice equally, resulting in a balanced choice (with maximal detection accuracy; see
below). Usher and McClelland (2001) tested whether the effects described above are
present in human decision makers by manipulating the time flow of input favouring two
alternatives, and reported significant individual differences: some participants showed
primacy, others showed recency and some were balanced and optimal in their choice.

6.2.5 Performance of linear LCA model

In this subsection we review parameters of the model (w, k) that result in an optimal
performance of the linear LCA model in the free-response paradigm for given parameters
of the inputs (Ii, ci). We start with the two alternatives in the free-response paradigm
(Bogacz et al., 2006), then we discuss multiple alternatives (see also McMillen and
Holmes, 2006), and the interrogation paradigm.

When inhibition and decay are both fairly strong (as in Figure 6.2b), the state evolves
very closely to the attracting line (see above) reaching the decision threshold very close
to the intersection of the decision threshold and attracting line (see Figure 6.2b). Thus
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in this case, the LCA model exceeds one of the decision thresholds approximately when
the variable x1 exceeds a positive value (corresponding to y1 exceeding Z) or decreases
below a certain negative value (corresponding to y2 exceeding Z).

The above analysis shows that when the LCA model is balanced and both inhibition
and decay are high, a choice is made approximately when x1 representing the accumulated
difference between the evidence supporting the two alternatives exceeds a positive or
negative threshold. This is the characteristic of a mathematical choice model known
as the diffusion model (Laming, 1968; Ratcliff, 1978; Stone, 1960), which implements
the optimal statistical test for choice in the free-response paradigm: the Sequential
Probability Ratio Test (SPRT) (Barnard, 1946; Wald, 1947). The SPRT is optimal in the
following sense: among all possible procedures for solving this choice problem given a
certain ER, it minimises the average DT.

In summary, when the linear LCA model of choice between two alternatives is bal-
anced and both inhibition and decay are high, the model approximates the optimal SPRT
and makes the fastest decisions for fixed ERs (Bogacz et al., 2006).

In the case of multiple alternatives the performance of the linear LCA model is also
optimised when inhibition is equal to decay and both have high values (McMillen and
Holmes, 2006). However, in contrast to the case of two alternatives, the LCA model
with the above parameters does not achieve as good performance as the statistically
(asymptotically) optimal tests: the Multiple SPRT (MSPRT) (Dragalin et al., 1999).
The MSPRT tests require much more complex neuronal implementation than the LCA
model (McMillen and Holmes, 2006). For example, one of the MSPRT tests may be
implemented by the ‘max vs. next’ procedure (McMillen and Holmes, 2006), in which
the following quantities are calculated for each alternative at each moment of time:
Li = yi-maxj 	=iyj, where yi is the evidence supporting alternative i accumulated according
to the race model. The choice is made whenever any of the Li exceeds a threshold.

Although the linear and balanced LCA with high inhibition and decay achieves
shorter DT for fixed ER than the linear LCA model with other values of parameters (e.g.,
inhibition different from decay, or both equal to zero), it is slower than MSPRT (McMillen
and Holmes, 2006). Furthermore, as the number of alternatives for N increases, the best
achievable DT for a fixed ER of the linear balanced LCA model approaches that of the
race model (McMillen and Holmes, 2006).

In the interrogation paradigm, the LCA model achieves optimal performance when it is
balanced both for two alternatives (it then implements the Neyman–Pearson test (Bogacz
et al., 2006; Neyman and Pearson, 1933)) and for multiple alternatives (McMillen and
Holmes, 2006). However, by contrast to the free-response paradigm, in the interrogation
paradigm, the high value of decay and inhibition is not necessary for optimal performance
and the balanced LCA model (even with high inhibition and decay) achieves the same
performance as the race model.

Table 6.1 summarises conditions necessary for the linear LCA model to implement
the optimal algorithm for a given type of choice problem. Note that the linear LCA
model can implement the algorithms achieving best possible performance for all cases
except of choice between multiple alternatives in the free-response paradigm. Hence
this is the only case in which there exists room for improvement of the LCA model –
this case is addressed in Section 6.3.
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Table 6.1 Summary of conditions the linear LCA model must satisfy to implement the optimal choice
algorithms.

# of alternatives

Paradigm N = 2 N > 2

Free response Inhibition = Decay and both high Optimality not attainable
Interrogation

(response-signal)
Inhibition = Decay Inhibition = Decay

−1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

y

f(
y
)

threshold linear

piece-wise linear

sigmoidal

Figure 6.3 Nonlinear input–output functions used in the LCA model. Threshold linear: f (y) = y
for y ≥ 0 and f (y) = 0 for y < 0 (Usher and McClelland, 2001). Piece-wise linear: f (y) = 0 for
y < 0, f (y) = 1 for y > 1, and f (y) = y otherwise (Brown et al., 2005). Sigmoidal: f (y) = 1 /

(1 + e− 4(y-0.5)) (Brown et al., 2005; Brown and Holmes, 2001).

6.2.6 Nonlinear LCA model

In the linear version of the LCA model described so far, during the course of the
choice process, the activity levels of accumulators can achieve arbitrarily large or small
(including negative) values. However, the firing rate of biological neurons cannot be
negative and cannot exceed a certain level (due to the refractory period of biological
neurons). A number of ways of capturing these limits in the LCA model has been
proposed, starting with the original version (Usher and McClelland, 2001), where the
values of y1 and y2 are transformed through a nonlinear activation function f(y) before
they influence (inhibit) each other:

dyi =

⎛
⎜⎜⎝−kyi − w

N∑
j=1
j 	=i

f
(

y j

) + Ii

⎞
⎟⎟⎠ dt + ci dWi , yi (0) = 0. (6.7)

Figure 6.3 shows three functions f (y) proposed in the literature: threshold linear (Usher
and McClelland, 2001), piece-wise linear (Brown et al., 2005), and sigmoidal (Brown
et al., 2005; Brown and Holmes, 2001). The threshold linear function corresponds to the
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Figure 6.4 State plane analysis of the LCA model. Thick grey lines symbolise attracting lines in
the y1y2 plane. The position of the attracting line is shown for parameters used in simulations in
Figure 6.5a and b, respectively. Thus the distance x∗

2 of the attracting line from the origin is equal
to 0.26 and 0.12, respectively (from Equation (6.8)). The dashed lines indicate the thresholds.
The values of the threshold are shown that produce ER = 10% in simulations of the unbounded
(linear) LCA model for N = 2 alternatives in Figure 6.5a and b respectively, i.e., 0.25 and 0.17.

constraint that actual neural activity is bounded (by zero) at its low end. The piece-wise
linear and sigmoidal functions bound the activity levels of accumulators at both ends
(the maximum level of activity being equal to 1). In the free-response paradigm, the
threshold of the model with piece-wise linear activation function (Brown et al., 2005)
must be lower than 1 (as otherwise a choice would never be made). Hence, in the free-
response paradigm the nonlinear model with piece-wise linear activation function is
equivalent to the model with the threshold linear function (Usher and McClelland, 2001)
(the upper boundary cannot be reached); these models only differ in the interrogation
paradigm.

One way to simplify the analysis is to use linear Equation (6.2) (rather than (6.7)) and
add reflecting boundaries on yj at 0, preventing any of yj from being negative (Usher
and McClelland, 2001), and we refer to such model as bounded. In every step of the
simulation of the bounded LCA model, the activity level of an accumulator yj is being
reset to 0 if a negative value is obtained. The bounded model behaves very similarly to the
nonlinear models with threshold linear, piece-wise linear and even sigmoidal activation
functions and provides a good approximation for them (see Appendix A of Usher and
McClelland, 2001, for detailed comparison between the bounded and nonlinear LCA
models).

6.2.7 Performance of bounded LCA model

For two alternatives, the bounded model implements the optimal choice algorithm, as
long as decay is equal to inhibition and both are large (see Subsection 6.2.5) and the
model remains in the linear range (i.e., the levels of accumulators never decrease to zero;
cf. Brown et al., 2005). Since during the choice process the state of the model moves
rapidly towards the attracting line, the levels of yj are likely to remain positive, if the
attracting line crosses the decision thresholds before the axes as shown in Figure 6.4a
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Figure 6.5 Performance and dynamics of choice models with only two accumulators receiving
inputs. All models were simulated using the Euler method with �t = 0.01s. (a), (b) Decision
time for a threshold resulting in an error rate (ER) of 10% of different choice models as a
function of the number of alternatives N (shown on x-axis). Three models are shown: the race
model, the unbounded (i.e., linear) LCA model, and the bounded LCA model (see key). The
parameters of the LCA model are equal to w = k = 10. The parameters of the first two inputs
were chosen such that c1 = c2 = 0.33, I1 − I2 = 1.41 (values estimated from data of a sample
participant of Experiment 1 in the study of Bogacz et al., 2006), while the other inputs were
equal to 0, I3 = . . . = IN = 0, c3 = . . . = cN = 0. The panels differ in the total mean input to the
first two accumulators: in panel (a) I2 = 3, while in panel (b) I2 = 1. For each set of parameters, a
threshold was found numerically that resulted in ER of 10 ± 0.2% (s.e.); this search for the
threshold was repeated 20 times. For each of these 20 thresholds, the decision time was then
found by simulation and their average used to construct the data points. Standard error
of the mean was lower than 2 ms for all data points hence the error bars are not shown.
(c), (d) Examples of the evolution of the bounded (c) and the unbounded (d) LCA model,
showing yi as functions of time. The models were simulated for the same parameters as in panel
(a), and for N = 5 alternatives. Panels (c) and (d) were simulated for the same initial seed of the
random number generator hence in both cases the networks received exactly the same inputs.

(but not in Figure 6.4b). The distance of the attracting line from the origin of the plane
is equal to (Bogacz et al., 2006):

x∗
2 = I1 + I2√

2 (k + w)
. (6.8)

According to Equation (6.8), the larger the sum of mean inputs I1 + I2, the further
the attracting line is from the origin. Figure 6.5 compares the performance of the
bounded LCA model and the linear LCA model without boundaries, which we refer to
as unbounded. Figure 6.4a shows the position of the attracting line relative to thresholds
for the parameters used in the simulations of the unbounded LCA model for N = 2
alternatives in Figure 6.5. For N = 2, adding the reflecting boundaries at yi = 0 does
not affect the performance of the model (the left end of the solid line coincides with
the left end of the dashed line). This can be expected since for the parameters used
in simulations, the attracting line crosses the threshold before the axes, as shown in
Figure 6.4a.
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Figure 6.6 (a) Example of a stimulus providing strong evidence in favour of two letters (P and R)
and very weak evidence in favour of any other letter. (b) State space analysis of the LCA model
for three alternatives. The grey triangle indicates the attracting plane, and dotted lines indicate
the intersection of the attracting plane with the y1y3 plane and the y2y3 plane. Thick grey line
symbolises the attracting line in the y1y2 plane. The double grey lines show sample positions of
the attracting line in the y1y2 plane for two negative values of y3. The two planes surrounded by
dashed lines indicate positions of the decision thresholds for alternatives 1 and 2. The ellipses
indicate the intersections of the attracting lines in the y1y2 plane with the decision thresholds.

Figure 6.4b shows the position of the attracting line for the parameters used in
simulations of the unbounded LCA model for N = 2 alternatives in Figure 6.5b. For
N = 2, adding the reflecting boundaries at yi = 0 degrades the performance of the
model (the left end of the solid line lies above the left end of the dashed line). This
happens because the attracting line reaches the axes before crossing the threshold, as
shown in Figure 6.4b and hence the state is likely to hit the boundaries before reaching
the threshold.

McMillen and Holmes (2006) tested the performance of the bounded LCA model
for multiple alternatives, for the following parameters: I1 = 2, I2 = . . . = IN = 0, c1 =
. . . = cN = 1 (all accumulators received noise of equal standard deviation), w = k = 1,
and N varying from 2 to 16. They found that the DT of bounded LCA for ER = 10%
was slower than that of the unbounded LCA model. However, it will be shown here that
this is not the case for more biologically realistic types of inputs.

6.3 The advantage of nonlinearity in multiple choice

Most real-life decisions involve the need to select between multiple alternatives, on the
basis of partial evidence that supports a small subset of them. One ubiquitous example
could correspond to a letter (or word) classification task, based on occluded (or partial)
information. This is illustrated in Figure 6.6a for a visual stimulus that provides strong
evidence in favour of P/R and very weak evidence in favour of any other letter (a simple
analogue for the case of word-classification would consist of a word-stem consistent
with few word completions). Note the need to select among multiple alternatives, based
on input that supports only a few of them.
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We compare the performance of the bounded and unbounded LCA models in the
tasks of type described above within the free-response paradigm: we will discuss two
cases (with regards to the type of evidence and noise parameters), which may arise in
such situations. We start with a simplified case, which is helpful for the purpose of
mathematical analysis, followed by a more realistic situation.

6.3.1 Case 1: only two accumulators receive input and noise

Consider a model of N accumulators yi (corresponding to N alternatives), two of which
receive input (supporting evidence; with means I1, I2 and standard deviation c), while
other accumulators do not, so that I3 = . . . = IN = c3 = . . . = cN = 0. Let us examine
first the dynamics of the bounded LCA model (with y1, y2 ≥ 0). In this case, the other
accumulators y3, . . . , yN do not receive any input but only inhibition from y1, y2 and
hence they remain equal to 0 (i.e., yi = 0 for all i > 2; see Figure 6.5c). Therefore, the
choice process simplifies to a model of two alternatives, as described by Equation (6.1).
Hence, when the boundaries are present, the performance of the model does not depend
on the total number of alternatives N. This is illustrated in Figure 6.5a and b for sample
parameters of the model. Note that DTs for fixed ER in each panel (shown by solid lines)
do not differ significantly between different values of N.

Figure 6.5c and d compare the evolution of bounded and unbounded LCA models for
N = 5 alternatives. Figure 6.5c shows the evolution of the bounded LCA model in which
accumulators y1, y2 evolve in the way typical for the LCA model for two alternatives
(compare with Figure 6.2b): the competition between accumulators y1, y2 is resolved and
as y1 increases, y2 decreases towards 0. Figure 6.5d shows that during the evolution of the
unbounded model, the accumulators y3, . . . , yN become more and more negative. Hence
the inhibition received by y1, y2 from y3, . . . , yN is actually positive, and increases the
value of both y1, y2. Therefore, in Figure 6.5d (by contrast to Figure 6.5c) the activation
of the ‘losing’ accumulator, y2, also increases.

To better illustrate the difference between the bounded and unbounded choice
behaviour, consider the dynamics of the unbounded model (Equation (6.1)) for N = 3
alternatives. In such a case, the state is attracted to a plane (indicated in Figure 6.6b;
McMillen and Holmes, 2006). However, since only alternatives 1 and 2 can be chosen,
it is still useful to examine the dynamics in the y1y2 plane. In the y1y2 plane the state of
the model is attracted to a line, and the position of this line is determined by the value of
y3. For example, if y3 = 0, then the attracting line in the y1y2 plane is the intersection of
the attracting plane and the y1y2 plane, i.e., the thick grey line in Figure 6.6b. For other
values of y3, the attracting line in the y1y2 plane is the intersection of the attracting plane
and the plane parallel to the y1y2 plane intersecting y3 axis in the current value of y3. For
example, the double grey lines in Figure 6.6b show the attracting lines in the y1y2 plane
for two negative values of y3.

During the choice process of unbounded LCA of Equation (6.1), accumulator y3

becomes more and more negative (as it receives more and more inhibition from y1 and
y2), as illustrated in Figure 6.5d. Hence the attracting line in the y1y2 plane moves further
and further away from the origin of the y1y2 plane. For example, the thick grey line in
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Figure 6.6b shows the position of the attracting line in the y1y2 plane at the beginning of
the choice process and the double grey lines show the positions at two later time points.
Therefore, the choice involves two processes: evolution along the attracting line (the
optimal process) and evolution of this line’s position (which depends on the total input
integrated so far). Due to the presence of the second process the performance of the
unbounded LCA model for N = 3 departs from that for N = 2, which is visible in Figure
6.5a and b. Also note in Figure 6.6b that as y3 becomes more and more negative, the
relative positions of the decision thresholds and the attracting line change, and the part
of the attracting line between the thresholds becomes shorter and shorter. Hence relative
to the attractive line, the thresholds move during the choice process. This situation is in
contrast to the case of the bounded LCA model, in which y3 is constant (as stated above),
and hence the position of the attracting line in the y1y2 plane (and thus its relation to the
thresholds) does not change.

In summary, in the case of choice between multiple alternatives with only two alterna-
tives receiving supporting evidence, the boundaries allow the LCA model to achieve the
performance of the LCA model for two alternatives (close to the optimal performance).
The performance of the unbounded LCA model is lower – approaching that of the race
model as the number of alternatives increases.

6.3.2 Case 2: biologically realistic input parameters for choice with continuous variables

We assumed above that only two integrators receive input while the others received none:
I3 = . . . = IN = 0. However, in many situations, it might be expected that there is a
more graded similarity among the different inputs, with the strength of the input falling
off as a continuous function of similarity. This would be the case, for example, in tasks
where the stimuli were arranged along a continuum, as they might be in a wavelength or
length discrimination task. Here we consider the case of stimuli arranged at N equally
spaced positions around a ring, an organisation that is relevant to many tasks used in
psychophysical and physiological experiments, where the ring may be defined in terms
of positions, orientations, or directions of motion. We use the motion case since it is well
studied in the perceptual decision-making literature but the analysis applies equally to
other such cases as well, and may be instructive for the larger class of cases in which
stimuli are positioned at various points in a space.

Considering the motion discrimination case, motion-sensitive neurons in area MT
are thought to provide evidence of the direction of stimulus motion. Neurons providing
evidence for alternative i respond with a mean firing rate that is a function of the angular
distance di between the direction of coherent motion in the stimulus and their preferred
direction. This function is called a tuning curve, and can be well approximated by a
Gaussian (Snowden et al., 1992):

Ii = rmin + (rmax − rmin) exp

(
− d2

i

2σ 2

)
(6.9)
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Figure 6.7 Simulation of the motion discrimination task. (a) Tuning curve describing the simulated
firing rate of MT neurons (network inputs) as a function of angular difference di between the
direction of coherent motion in the stimulus and neurons’ preferred direction. We used the
following parameters of the tuning curve σ = 46.5◦ (the average value over tuning curves fitted
to 30 MT neurons by Snowden et al., 1992), rmin = 30 Hz, rmax = 68 Hz (values from a neuron
analysed in Britten et al., 1993). Thick lines show sample values of Ii in case of N = 4, which
were computed in the following way. Since we assume that the first alternative is correct and
alternatives are equally distributed around 360◦, we computed di = 360◦(i − 1)/N, then if
di > 180◦, we made di = di – 360◦, and then we computed Ii from Equation (6.9). (b) Decision
time with a threshold resulting in error rate of 10% of different models as a function of the
number of alternatives N (shown on x-axis). Four models are shown: the race model, the
unbounded LCA model, the bounded LCA model, and max vs. next (see key). Methods of
simulations as in Figure 6.5. The parameters of LCA model are equal to w = k = 4; this value
was chosen as it optimised performance of the bonded LCA model for the inputs described in
panel (a).

where rmin and rmax denote the minimum and the maximum firing rate of the neuron,
and σ describes the width of the tuning curve. In our simulation we use the parameter
values that generate the tuning curve function shown in Figure 6.7a.

Furthermore, we simulated the input to the accumulators as spikes (rather than values
chosen from a Gaussian distribution). In particular, we assumed that the input to accu-
mulator i comes from the Poisson process with mean Ii, because the Poisson process
captures many aspects of firing of cortical neurons (Shadlen and Newsome, 1998). Thus
the input to accumulator i within a very short interval dt is chosen stochastically such
that it is equal to 1 with probability Iidt (that corresponds to a spike being produced by
sensory population i), and 0 with probability 1 – Iidt.

Figure 6.7b shows the DTs under the assumptions described above. The DT grows
rapidly as N increases, because as N grows, the difference between the largest input (I1)
and the next two largest inputs (I2 and IN) decreases. Importantly, in the simulation,
introduction of boundaries to the LCA model reduce DT (for a fixed ER of 10%) very
significantly, as N increases. For example, for N = 10 the boundaries reduce the DT by
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about 25%. Figure 6.7b also shows that the performance of bounded LCA model is close
to that of the max vs. next procedure (that implements asymptotically optimal test; see
Subsection 6.2.5).

In summary, this simulation shows that the introduction of the biologically realistic
assumption that the firing rate of accumulator neurons cannot be negative, may not only
improve the performance of choice networks for biologically realistic parameters of
inputs, but it also allows the LCA model to approximate the optimal performance.

6.4 Optimisation of performance of bounded LCA model in the
interrogation paradigm

It is typically assumed that in the interrogation paradigm the decision threshold is no
longer used to render a choice. Instead, the alternative with the highest activity level is
chosen when the interrogation signal appears (Usher and McClelland, 2001). However,
a more complex assumption regarding the process that terminates decisions in the inter-
rogation paradigm is also possible. As suggested by Roger Ratcliff (1988), a response
criterion is still in place (as in the free-response paradigm) and participants use a response
criterion (like in free-response paradigm) and when the activation reaches this criterion,
they make a preliminary decision (and stop integrating input). Accordingly there are two
type of trials: (1) those that reach criterion (as above), and (2) those that do not reach
criterion until the interrogation signal is received and where the choice is determined by
the unit with highest activation. This is mathematically equivalent to the introduction of
an absorbing upper boundary on the accumulator trajectories; once an accumulator hits
the upper boundary, it terminates the decision process, so that the state of the model does
not change from that moment until the interrogation time (Mazurek et al., 2003; Ratcliff,
1988). Mazurek et al. (2003) point out that the dynamics of the model with absorbing
upper boundaries is consistent with the observation that in the motion discrimination
task under interrogation paradigm, the time courses of average responses from popula-
tion of LIP neurons cease increasing after a certain period following the stimulus onset,
and are maintained until the interrogation time (Roitman and Shadlen, 2002).

In Subsection 6.2.5, we showed that the unbounded LCA model achieves optimal
performance when the decay is equal to inhibition. Then the following question arises:
does the balance of decay and inhibition still optimise the performance of the bounded
LCA model in the interrogation paradigm, when an absorbing upper boundary is assumed
(to account for pre-interrogation decisions)? Figure 6.8 illustrates the ER of bounded
LCA model for N = 2 alternatives. To make the position of the attracting line stable
(cf. Equation (6.8)), we fixed parameters w + k but varied w − k. The results illustrate
that by increasing inhibition relative to decay the bounded model can achieve lower ER
in the interrogation paradigm. This happens because in this case, there is an attracting
point to which state of the model is attracted, as shown in Figure 6.2a, and this attraction
prevents the model from hitting the absorbing boundary prematurely due to noise; thus
the biasing effect of early input leading to premature choice is minimised. In summary,
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Figure 6.8 The ER of bounded LCA model in the interrogation paradigm. The models were
simulated with parameters: I1 = 5.414, I2 = 4, c1 = c2 = 0.8, B = 1.4, T = 2.5. The sum of
decay and inhibition was fixed w + k = 6, while their difference changed from −6 to 6. Data is
averaged from 10 000 trials.

in contrast to the unbounded model, a balance of decay and inhibition did not optimise
ER in the interrogation paradigm for the bounded model. Instead, optimal performance
within the tested range was achieved when inhibition was smaller than decay.

6.5 Value-based decisions

The LCA model and its extensions discussed so far are targeting an important, but special
type of choice; the type deployed in perceptual classification judgements. A different
type of choice, of no less importance to humans and animals, is deciding between
alternatives on the basis of their match to a set of internal motivations. Typically, this
comes under the label of decision making. While human decision making is a mature
field, where much data and theories have been accumulated (Kahneman and Tversky,
2000), more recently neurophysiological studies of value-based decisions have also been
conducted on behaving animals (Platt and Glimcher, 1999; Sugrue et al., 2004).

Although both the perceptual and the value/motivational decisions involve a common
selection mechanism, the basis on which this selection operates differs. The aim of this
section is to discuss the underlying principles of value-based decisions and to suggest
ways in which a simple LCA type of mechanism can be used to explain the underlying
cognitive processes. We start with a brief review of these principles and of some puzzling
challenges they raise for an optimal theory of choice, before we explore a computational
model that addresses the underlying processes.
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6.5.1 Value and motivation-based choice

Unlike in perceptual choice, the decisions we consider here cannot be settled on the
basis of perceptual information alone. Rather, each alternative (typically an action, such
as purchasing a laptop from a set of alternatives) needs to be evaluated in relation to its
potential consequences and its match to internal motivations. Often, this is a complex
process, where the preferences for the various alternatives are being constructed as part
of the decision process itself (Slovic, 1995). In some situations, where the consequences
are obvious or explicitly described, the process can be simplified. Consider, for example,
a choice between three laptops, which vary in their properties as described by a number
of dimensions (screen size, price, etc.) or a choice between lotteries described in terms
of their potential win and corresponding risks. The immediate challenge facing a choice
in such situations is the need to convert between the different currencies, associated with
the various dimensions. The concept of value is central to decision making, as a way to
provide such a universal internal currency.

Assuming the existence of a value function, associated with each dimension, a sim-
ple normative rule of decision making, the expected-additive-value, seems to result.
Accordingly, one should add the values that an alternative has on each dimension and
compute expectation values when the consequences of the alternatives are probabilistic.
Such a rule is then bound to generate a fixed and stable preference order for the various
alternatives. Behavioural research in decision making indicates, however, that humans
and animals violate expected-value prescriptions and change their preferences between
a set of options depending on the way the options are described and on a set of contextual
factors.

6.5.2 Violations of expected-value and preference reversals

First, consider the pattern of risk-aversion for gains. Humans and animals prefer the less
risky of two options that are equated for expected value (Kahneman and Tversky, 2000).
For example most people prefer a sure gain of £100 to a lottery with a probability 0.5 of
winning £200 and nothing otherwise. An opposite pattern, risk-seeking is apparent for
losses: most people prefer to play lottery with a chance 0.5 of losing £200 (and nothing
otherwise) to a sure loss of £100.

Second, the preference between alternatives depends on a reference, which cor-
responds either to the present state of the decision maker, or even to an expected
state, which is subject to manipulation. Consider, for example the following situation
(Figure 6.9a). When offered a choice between two job alternatives A and B, described
on two dimensions (e.g., distance from home and salary) to replace an hypothetical
job that is being terminated – the reference (RA or RB, which is manipulated between
groups) – participants prefer the option that is more similar to the reference (Tversky
and Kahneman, 1991).

Third, it has been shown that the preference order between two options can be modified
by the introduction of a third option, even when this option is not being chosen. Three
such situations have been widely discussed in the decision-making literature, resulting



Extending a biologically inspired model of choice 109

B

A

RA

RB

S

B

A

D

C

    low       Salary       high 

   
 f

ar
   

 D
is

ta
nc

e 
   

cl
os

e 
(a) (b)

RAC

Figure 6.9 Configurations of alternatives in the attribute space. In each panel the two axes denote
two attributes of the alternatives (sample attributes’ labels are given in panel (a). The capital
letters denote the positions of the alternative choices in the attribute space, while letters Ri denote
the reference points. (a) Reference effect in multi-attribute decision making (after Tversky and
Kahneman, 1991). (b) Contextual preference reversal: similarity, attraction and the compromise
effects. Alternatives A, B, C, S lie on the indifference line.

in the similarity, the attraction and the compromise effects. To illustrate these effects
consider a set of options, A, B, C, and S, which are characterised by two attributes (or
dimensions) and which are located on a decision-maker indifference curve: the person
is of equal preference on a choice between any two of these options (Figure 6.9b). The
similarity effect is the finding that the preference between A and B can be modified in
the favour of B by the introduction of a new option, S, similar to A in the choice-set. The
attraction effect corresponds to the finding that, when a new option similar to A, D, and
dominated by it (D is worse than A on both dimensions) is introduced into the choice set,
the choice preference is modified in favour of A (the similar option; note that while the
similarity effects favours the dissimilar option, the attraction effect favours the similar
one). Finally, the compromise effect corresponds to the finding that, when a new option
such as B is introduced into the choice set of two options A and C, the choice is now
biased in favour of the intermediate one, C, the compromise.

The traditional way in which the decision-making literature addresses such devia-
tions from the normative (additive-expected-value) theory is via the introduction of
a set of disparate heuristics, each addressing some other aspect of these deviations
(LeBoef and Shafir, 2005). One notable exception is work by Tversky and colleagues
(Tversky, 1972; Tversky and Simonson, 1993), who developed a mathematical, context-
dependent-advantage model that accounts for reference effects and preference reversal
in multidimensional choice. However, as observed by Roe et al. (2001), the context-
dependent-advantage model cannot explain the preference reversals in similarity effect
situations (interestingly, a much earlier model by Tversky (1972), the elimination by
aspects, accounts for the similarity effect but not for the attraction, the compromise or
other reference effect). In turn, Roe et al. (2001), have proposed a neurocomputational
account of preference reversal in multidimensional choice, termed the Decision Field
Theory (DFT; see also Busemeyer and Townsend, 1993). More recently, Usher and
McClelland (2004) have proposed a neurocomputational account of the same findings,
using the LCA framework extended to include some assumptions regarding nonlinear-
ities in value functions and reference effects introduced by Tversky and colleagues.
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The DFT and the LCA models share many principles but also differ on some. While
DFT is a linear model (where excitation by negated inhibition, of the type described in
Section 6.2, is allowed) and where the degree of lateral inhibition depends on the simi-
larity between the alternatives, in the LCA account the lateral inhibition is constant (not
similarity dependent) but we impose two types of nonlinearity. The first type corresponds
to a zero-activation threshold (discussed in Section 6.3), while the second one involves
a convex utility-value function (Kahneman and Tversky, 2000).

It is beyond the scope of this chapter to compare detailed predictions of the two
models (but see Usher and McClelland, 2004, and reply by Busemeyer et al., 2005).
We believe, however, that there is enough independent motivation for nonlinearity and
reference dependency of the value functions. In the next subsection we discuss some
principles underlying value evaluation and then we show how a simple LCA type model,
taking these principles on board, can address value-based decisions.

6.5.3 Nonlinear utility functions and the Weber law

The need for a nonlinear relation between internal utility and objective value was noticed
by Daniel Bernoulli (1738 [1954]), almost two centuries ago. Bernoulli proposed a log-
arithmic type of nonlinearity in the value function in response to the so-called St. Peters-
burg Paradox. (The paradox was first noticed by the casino operators of St. Petersburg.
See for example Martin, 2004, and Glimcher, 2004, pp. 188–92 for good descriptions
of the paradox and of Bernoulli’s solution). Due to its simple logic and intuitive appeal,
we reiterate it here.

Consider the option of entering a game, where you are allowed to repeatedly toss a fair
coin until ‘head’ comes. If the ‘head’ comes in the first toss you receive £2. If the ‘head’
comes in the second toss, you receive £4, if in the third toss, £8, and so on (with each
new toss needed to obtain a ‘head’ the value is doubled). The question is what is the price
that a person should be willing to pay for playing this game. The puzzle is that although
the expected value of the game is infinite (E = 
i=1, . . . ,∞ 1/2

i 2i = 
i=1, . . . ,∞ 1 = ∞),
as the casino operators in St. Petersburg discovered, most people are not willing to pay
more than £4 for playing the game and very few more than £25 (Hacking, 1980). Most
people show risk-aversion. (In this game, most often one wins small amounts (75% to
win less than £5), but in few cases one can win a lot. Paying a large amount to play the
game results in a high probability of making a loss and a small probability of a high win.
Hence the low value that people are willing to pay reflects risk-aversion.)

Bernoulli’s assumption, that internal utility is nonlinearly (with diminishing returns)
related to objective value, offers a solution to this paradox (the utility of a twice larger
value is less than twice the utility of the original value) and has been included in the
dominant theory of risky choice, the prospect theory (Tversky and Kahneman, 1979). A
logarithmic value function u(x) = log10 (x), used as the expected utility, gives a value of
about £4 for the St. Petersburg game.

Note that the need to trade between the utility associated with different objective
values arises, not only in risky choice between options associated with monetary values
but also in cases of multidimensional choice (as illustrated in Figure 6.9) where the
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Figure 6.10 (a) Utility function, u(x) = log(1 + kx) for x > 0, and −γ log(1 − kx), for x < 0.
(k = 2, γ = 1). (b) Combined 2D-utility function for gains (x1 > 0, x2 > 0).

options are characterised by their value on two or more dimensions. Moreover, as such
values are examples of analogue magnitude representations, one attractive idea is to
assume that their evaluation obeys a psychophysical principle that applies to magnitude
judgements, in general: the Weber law. The Weber law states that to be able to discriminate
between two magnitudes (e.g., weights), x and x + dx, the just-noticeable-difference, dx,
is proportional to x itself.

One simple way to satisfy the Weber law is to assume that there are neural repre-
sentations that transform their input (which corresponds to objective value) under a
logarithmic type of nonlinearity and that the output is subject to additional independent
noise of constant variance. This explanation for the Weber law is consistent with neuro-
physiological data from a task in which monkeys discriminated between stimuli differing
in the number of dots, that suggest that prefrontal neurons represent the logarithms of
numbers (Dehaene, 2003).

As proposed by Bernoulli (1738 [1954]) a logarithmic nonlinearity also accounts for
risk aversion. Here we assume a logarithmic nonlinearity of the type, u(x) = log(1 + kx)
for x > 0, and u(x) = −γ log(1 − kx), for x < 0 (x > 0 corresponds to gains and x < 0
to losses); the constant of 1 in the logarithm corresponds to a baseline of present value
before any gains or losses are received). [In prospect theory (Kahneman and Tversky,
2000; Tversky and Simonson, 1993) one chooses, γ > 1, indicating a higher slope for
losses than for gains. This is also assumed in Usher and McClelland (2004). Here we use
γ = 1 in order to explore the simplest set of assumptions that can result in these reversal
effects; increasing γ strengthens the effects.] As shown in Figure 6.10a, function u(x)
starts linearly and then is subject to diminishing returns, which is a good approximation
to the neuronal input–output response function of neurons at low to intermediate firing
rates (Usher and Niebur, 1996).

There is a third rationale for a logarithmic utility function, which relates to the need
to combine utilities across dimensions. When summing such a utility function across
multiple dimensions, one obtains (for two dimensions), U(x1,x2) = u(x1) + u(x2) =
log[1 + k(x1 + x2) + k2 x1x2]. Note that to maximise this utility function one has to max-
imise a combination of linear and multiplicative terms. The inclusion of a multiplicative
term in the utility optimisation is supported by a survival rationale: to survive animals
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needs to ensure the joined (rather than separate) possession of essential resources (like
food and water). Figure 6.10b illustrates a contour plot of this 2D utility function. One
can observe that equal preference curves are now curved in the x1–x2 continuum: the
compromise (0.5,0.5) has a much better utility than the (1,0) option.

Another component of the utility evaluation is its reference dependence. Moreover,
as discussed in Subsection 6.5.2, the reference depends on the subjective expectations
and on the information accessible to the decision maker (Kahneman, 2003). As we
show below, the combination of nonlinear utility and reference dependence explains
the presence of contextual preference reversals. Finally, when choice alternatives are
characterised over multiple dimensions, we assume (following Tversky’s elimination by
aspects, Tversky, 1972, and the various DFT applications, Busemeyer and Townsend,
1993; Roe et al., 2001) that decision makers switch their attention, stochastically, from
dimension to dimension. Thus at every time step the evaluation is performed with
regard to one of the dimensions and the preference is integrated by the leaky competing
accumulators. In the following subsection, these components of utility evaluations are
introduced into an LCA model and applied to the value-based decision patterns described
above.

6.5.4 Modelling value-based choice in the LCA framework

To allow for the switching between the alternative dimensions, the LCA simulations are
done using a discretised version of the LCA model of Equation (6.2) (single step of
Euler method; note a threshold nonlinearity at zero is imposed: only yi > 0 are allowed)

yi (t + �t) = yi (t) + �t

⎛
⎜⎜⎝−kyi − w

N∑
j=1
j 	=i

y j + Ii + I0 + noise

⎞
⎟⎟⎠ (6.10)

where Ii were evaluated according to the utility function described above and I0 is a
constant input added to all choice units, which is forcing a choice (in all simulations
reported here this value is chosen as 0.6). To account for the stochastic nature of human
choice each integrator received the noise that was Gaussian distributed (with standard
deviation (SD) of 0.5). During all simulations the following parameters were chosen,
�t = 0.05, k = w = 1 (balanced network). When a reference location is explicitly
provided (as in the situation depicted in Figure 6.9) the utility is computed relative to
that reference. When no explicit reference is given, a number of possibilities for implicit
reference are considered.

In all the simulations we present, the decision is monitored (as in Roe et al., 2001, and
in Usher and McClelland, 2004) via an interrogation-like procedure. The response units
are allowed to accumulate their preference-evaluation for T-time steps. A total of 500
trials of this type are simulated and the probability of choosing an option as a function
of time, Pi(t) is computed by counting the fraction of trials in which the corresponding
unit has the highest activation (relative to all other units) at time-t. We start with a simple
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Figure 6.11 Probability of choosing the sure option as a function of deliberation time for five
values of risk (indicated in the plot). Solid lines were obtained from simulations of the LCA
model for the following parameters W = 1, I0 = 0.6, SD = .5, and the utility function from
Figure 6.10. Dashed lines show corresponding probabilities derived in Bogacz et al. (2007).

demonstration of risk-aversion in probabilistic monetary choice and then we turn to
preference reversals in multidimensional choice.

6.5.4.1 Risk-aversion in probabilistic choice
We simulate here a choice between two options. The first one corresponds to a ‘sure’
win, W, while the second one to a probabilistic win of W/p, with probability p (note
that the two have equal expected objective value, W, and that p provides a measure of
risk: lower p is more risky). The model assumes that decision makers undergo a ‘mental
simulation’ process, in which the utility of the gain drives the value accumulator, thus
the sure unit receives a constant input I0 + u(W), while the probabilistic unit receives
probabilistic input, chosen to be I0 + u(W/p) with probability p, and I0 otherwise. In
addition, a constant noise input (SD = 0.5) is applied to both units at all time steps.
Note that due to the shape of utility function u, the average input to the sure unit
(I0 + u(W)) is larger than to the probabilistic unit (I0 + u(W/p)p). In Figure 6.11 we
show the probability of choosing the sure option as a function of deliberation time for
five risk levels, p (small p corresponds to large risk and p close to 1 to low risk). Thus
the higher the risk the more likely is the bias of choosing the sure option (this bias starts
at value approximately proportional to 1 − p and increases due to time integration to
asymptotic value). This is consistent with experimental data, except for low p, where
as explained by the Prospect Theory (Tversky and Kahneman, 1979), decision makers
show an overestimative discrepancy between subjective and objective probability, which
we do not address here (but see Hertwig et al., 2004). Risk seeking for losses can be
simulated analogously.
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6.5.4.2 Multidimensional choice: reference effects and preference reversal
Three simulations are reported. In all of them, at each time step, one dimension is
probabilistically chosen (with p = 0.5) for evaluation. The preferences are then accu-
mulated across time and the choices for the various options are reported as a function of
deliberation time.

First, we examine how the choice between two options, corresponding to A and B
in Figure 6.9a is affected by a change of the reference, RA versus RB. The options are
defined on two dimensions as follows: A = (0.2,0.8), B = (0.8,0.2), RA = (0.2,0.6)
and RB = (0.6,0.2). Thus, for example, in simulations with reference RA, when the first
dimension is considered, the inputs IA and IB are I0 + u(0) and I0 + u(0.6) while when
the second dimension is considered the inputs are I0 + u(0.2) and I0 + u( −0.4) (this
follows from the fact that A − RA = (0,0.2) and B − RA = (0.6, −0.4)). We observe
(Figure 6.12a) that the RA reference increases the probability of choosing the similar
A-option (top curve) and that the choice preference reverses with the RB reference (the
middle curve corresponds to a neutral (0,0) reference point). This happens because with
reference RA the average input to A is larger than to B (as u(0) + u(0.2) = u(0.2) >

u(0.6) − u(0.4) = u(0.6) + u( −0.4)) and vice versa. [If I0 = 0, the net advantage in
utility for the nearby option is partially cancelled by an advantage for the distant option
due to the zero-activation boundary (negative inputs are reflected by the boundary). The
value of I0 does not affect the other results (compromise or similarity)].

Second, we examine the compromise effect. The options correspond to a choice
situation with three alternatives A, B, and C differing on two dimensions as shown in
Figure 6.9b. A and B are defined as before and C is defined as (0.5,0.5). We assume
that when all three choices are available the reference is neutral (0, 0). We observe
(Figure 6.12b) that the compromise alternative is preferred among the three. This is a
direct result of 2D utility function (Figure 6.10b). For binary choice between A and C we
assume that the reference point is moved to a point of neutrality between A and C, such
as RAC = (0.2,0.5), which corresponds to a new baseline relative to which the options
A and C can be easily evaluated as having only gains and no losses (alternatively, one
can assume that each option serves as a reference for the evaluation of the other ones;
Usher and McClelland, 2004). This maintains an equal preference between C and the
extremes in binary choice. Note also the dynamics of the compromise effect. This takes
time to develop; at short times the preference is larger for the extremes, depending on
the dimension evaluated first. Experimental data indicates that, indeed, the magnitude
of the compromise effect increases with the deliberation time (Dhar et al., 2000).

Third, we examine the similarity effect. In this situation, the option S = (0.2,0.7)
(similar to A) is added to the choice set of A and B. The reference is again neutral (0,
0). We observe that the dissimilar option, B (Figure 6.12c, solid curve), is preferred.
This effect is due to the correlation in the activation of the similar alternatives (A and
S), which is caused by their co-activation by the same dimensional evaluation. When the
supporting dimension is evaluated both of the similar options rise in activation and they
split their choices, while the dissimilar option peaks at different times and has a relative
advantage. Note also a small compromise effect in this situation. Among the similar
options, S (which is a compromise) has a higher choice probability. The attraction effect
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Figure 6.12 Contextual preference reversal. (a) Reference effects in binary choice.
(b) Compromise effect. (c) Similarity effect.

is similar to the reference effect. One simple way to explain it is to assume that the
reference moves towards the dominated option. (Alternatively, each option may serve as
a reference for every other option; Tversky and Simonson, 1993; Usher and McClelland,
2004).

To summarise, we have shown that when the input to LCA choice units is evaluated
according to a nonlinear utility function of the type proposed by Bernoulli, which is
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applied to differences in value between options and a referent, the model can account
for a number of choice patterns that ‘appear’ to violate normativity. For example, the
model provides a plausible neural implementation and extension of the Prospect Theory
(Tversky and Kahneman, 1979), displaying risk aversion (it prefers the sure option on
a risky one of equal expected value) and a series of preference reversals that are due to
the effect of context on the choice-reference.

6.6 Discussion

In this chapter we have reviewed the conditions under which various versions of the LCA
model (linear and nonlinear) achieve optimal performance for different experimental
conditions (free-response and interrogation). We have also shown how the LCA model
can be extended to value-based decisions to account for risk aversion and contextual
preference reversals.

We have shown that the linear LCA model can implement the optimal choice algorithm
for all tasks except the choice between multiple alternatives receiving similar amounts of
supporting evidence in the free-response paradigm. Moreover, we have shown that for the
choice involving multiple alternatives in the free-response paradigm, the nonlinearities
of type present in a biological decision network can improve the performance, and in
fact may allow the networks to approximate the optimal choice algorithm. This raises an
intriguing possibility, that these nonlinearities are not a result of constraints of biological
neurons, but may rather be a result of evolutionary pressure for speed of decisions.

We have also identified a condition (see Section 6.4) in which performance can be
optimised by an elevation/decrease in the level of lateral inhibition relative to the leak
(this may be achieved via neuromodulation, e.g., Usher and Davelaar, 2002). It will be
interesting to test whether the behavioural manifestations of unbalance of decay and
inhibition (Usher and McClelland, 2001) can be experimentally observed under these
conditions.

One interesting comment relates to Hick’s law, according to which the DT is pro-
portional to the logarithm of the number of alternatives (Teichner and Krebs, 1974). In
the simulations of bounded LCA model in Figure 6.5a and b, the DT does not depend
on the number of potentially available alternatives. Note, however, this simulation was
designed to model the task described at the beginning of Section 6.3 (Figure 6.6a) in
which the choice is mainly between two alternatives, which match the ambiguous input
(in this simulation only two accumulators receive any input or noise). If all accumulators
received equal levels of noise and the bounded LCA model remained in the linear range,
it would satisfy Hick’s law, because when the bounded LCA model is in linear range, it
is equivalent to the linear model, and the linear model satisfies Hick’s law when accu-
mulators receive equal level of noise (McMillen and Holmes, 2006). However, it has
been recently reported that in tasks where one of the alternatives receives much more
support than all the others, Hick’s law is indeed violated and the DT does not depend
on the number of alternatives (Kveraga et al., 2002). Thus it would be interesting to
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investigate the prediction of our theory that a similar independence may occur when two
alternatives receive much larger input than the others.

It has been recently proposed that if the balanced LCA model projects to a complex
network with architecture resembling that of the basal ganglia, the system as a whole
may implement the MSPRT (Bogacz and Gurney, 2007) – the optimal algorithm for
this condition. The system involving the basal ganglia may thus optimally make choices
between motor actions. However, many other choices (e.g., perceptual or motivational)
are likely to be implemented in the cortex. The complexity of MSPRT prevents any
obvious cortical implementations, hence it is still of great interest to investigate the
parameters optimising the LCA model which can be viewed as an abstraction of cortical
processing.

The extension to value based decisions brings the model in closer contact with the
topic of action selection. Actions need to be selected according to the value of their
consequences, and this requires an estimation of utility and its integration across dimen-
sions. The LCA model is also related to many models of choice on the basis of noisy data
presented in this book. In particular, it is very similar to the model of action selection in
the cerebral cortex by Cisek (2006), which also includes accumulation of evidence and
competition between neuronal populations corresponding to different alternatives.
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