# Constructive Convex Analysis and Disciplined Convex Programming

Stephen Boyd Steven Diamond Akshay Agrawal Junzi Zhang EE & CS Departments Stanford University

## Outline

Convex Optimization

Constructive Convex Analysis

Disciplined Convex Programming

Modeling Frameworks

## Outline

## Convex Optimization

Constructive Convex Analysis

**Disciplined Convex Programming** 

Modeling Frameworks

Conclusions

Convex optimization problem — standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & Ax = b \end{array}$$

with variable  $x \in \mathbf{R}^n$ 

▶ objective and inequality constraints f<sub>0</sub>,..., f<sub>m</sub> are convex for all x, y, θ ∈ [0, 1],

$$f_i( heta x + (1- heta)y) \leq heta f_i(x) + (1- heta)f_i(y)$$

*i.e.*, graphs of f<sub>i</sub> curve upward
equality constraints are linear

## Convex optimization problem — conic form

cone program:

minimize 
$$c^T x$$
  
subject to  $Ax = b$ ,  $x \in \mathcal{K}$ 

with variable  $x \in \mathbf{R}^n$ 

- ▶ linear objective, equality constraints; *K* is convex cone
- special cases:
  - linear program (LP)
  - semidefinite program (SDP)
- the modern canonical form
- there are well developed solvers for cone programs

# Other canonical forms

 $\begin{array}{ll} \text{minimize} & \frac{1}{2}x^T P x + q^T x \\ \text{subject to} & l \leq A x \leq u \end{array}$ 

smooth optimization:

minimize f(x)

where  $f : \mathbf{R}^n \to \mathbf{R}$  is smooth

Inearly constrained least squares:

minimize  $||Ax - b||_2^2$ subject to Fx = g

prox-affine:

minimize 
$$\sum_{i=1}^{N} f_i(H_i x_i)$$
  
subject to  $\sum_{i=1}^{N} A_i x_i = b$ .

# Why convex optimization?

beautiful, fairly complete, and useful theory

- solution algorithms that work well in theory and practice
  - convex optimization is actionable
- many applications in
  - control
  - combinatorial optimization
  - signal and image processing
  - communications, networks
  - circuit design
  - machine learning, statistics
  - finance
  - ... and many more

## How do you solve a convex problem?

use an existing custom solver for your specific problem

- develop a new solver for your problem using a currently fashionable method
  - requires work
  - but (with luck) will scale to large problems
- transform your problem into a cone program, and use a standard cone program solver
  - can be automated using domain specific languages

Outline

Convex Optimization

Constructive Convex Analysis

**Disciplined Convex Programming** 

Modeling Frameworks

Conclusions

Curvature: Convex, concave, and affine functions



▶ *f* is concave if -f is convex, *i.e.*, for any  $x, y, \theta \in [0, 1]$ ,

$$f( heta x + (1 - heta)y) \geq heta f(x) + (1 - heta)f(y)$$

f is affine if it is convex and concave, i.e.,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

for any  $x, y, \theta \in [0, 1]$  $\blacktriangleright f$  is affine  $\iff$  it has form  $f(x) = a^T x + b$ 

# Verifying a function is convex or concave

(verifying affine is easy)

approaches:

- via basic definition (inequality)
- ▶ via first or second order conditions, *e.g.*,  $\nabla^2 f(x) \succeq 0$
- via convex calculus: construct f using
  - library of basic functions that are convex or concave
  - calculus rules or transformations that preserve convexity

## **Convex functions: Basic examples**

▶ 
$$x^{p}$$
 ( $p \ge 1$  or  $p \le 0$ ), e.g.,  $x^{2}$ ,  $1/x$  ( $x > 0$ )  
▶  $e^{x}$ 

- x log x
- $\blacktriangleright a^T x + b$
- $\blacktriangleright x^T P x \ (P \succeq 0)$
- ▶ ||*x*|| (any norm)
- $\max(x_1,\ldots,x_n)$

# **Concave functions: Basic examples**

## **Convex functions: Less basic examples**

## **Concave functions: Less basic examples**

## **Calculus rules**

- nonnegative scaling: f convex,  $\alpha \ge 0 \implies \alpha f$  convex
- **•** sum: f, g convex  $\implies f + g$  convex
- affine composition: f convex  $\implies f(Ax + b)$  convex
- **• pointwise maximum**:  $f_1, \ldots, f_m$  convex  $\implies \max_i f_i(x)$  convex

**composition**: *h* convex increasing, *f* convex  $\implies h(f(x))$  convex

... and similar rules for concave functions

(there are other more advanced rules)

from basic functions and calculus rules, we can show convexity of ...

- piecewise-linear function:  $\max_{i=1,...,k} (a_i^T x + b_i)$
- $\ell_1$ -regularized least-squares cost:  $||Ax b||_2^2 + \lambda ||x||_1$ , with  $\lambda \ge 0$
- sum of largest k elements of x:  $x_{[1]} + \cdots + x_{[k]}$
- ► log-barrier:  $-\sum_{i=1}^{m} \log(-f_i(x))$  (on  $\{x \mid f_i(x) < 0\}$ ,  $f_i$  convex)
- ► KL divergence:  $D(u, v) = \sum_i (u_i \log(u_i/v_i) u_i + v_i)$  (u, v > 0)

# A general composition rule

 $h(f_1(x),\ldots,f_k(x))$  is convex when h is convex and for each i

- h is increasing in argument i, and f<sub>i</sub> is convex, or
- h is decreasing in argument i, and f<sub>i</sub> is concave, or
- ▶ *f<sub>i</sub>* is affine
- there's a similar rule for concave compositions (just swap convex and concave above)
- this one rule subsumes all of the others
- this is pretty much the only rule you need to know

let's show that

$$f(u, v) = (u + 1) \log((u + 1) / \min(u, v))$$

is convex

is convex

- $\log(e^{u_1} + \cdots + e^{u_k})$  is convex, increasing
- so if  $f(x, \omega)$  is convex in x for each  $\omega$  and  $\gamma > 0$ ,

$$\log\left(\left(e^{\gamma f(x,\omega_1)}+\cdots+e^{\gamma f(x,\omega_k)}\right)/k\right)$$

is convex

- this is log **E**  $e^{\gamma f(x,\omega)}$ , where  $\omega \sim \mathcal{U}(\{\omega_1,\ldots,\omega_k\})$
- arises in stochastic optimization via bound

$$\log \operatorname{Prob}(f(x,\omega) \ge 0) \le \log \operatorname{\mathsf{E}} e^{\gamma f(x,\omega)}$$

# Constructive convexity verification

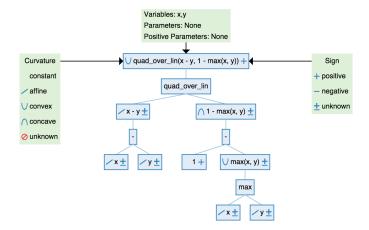
- start with function given as expression
- build parse tree for expression
  - leaves are variables or constants/parameters
  - nodes are functions of children, following general rule
- tag each subexpression as convex, concave, affine, constant
  - variation: tag subexpression signs, use for monotonicity e.g., (·)<sup>2</sup> is increasing if its argument is nonnegative
- sufficient (but not necessary) for convexity

for 
$$x < 1$$
,  $y < 1$   
$$\frac{(x - y)^2}{1 - \max(x, y)}$$

is convex

- (leaves) x, y, and 1 are affine expressions
- max(x, y) is convex; x y is affine
- $1 \max(x, y)$  is concave
- ▶ function u<sup>2</sup>/v is convex, monotone decreasing in v for v > 0 hence, convex with u = x y, v = 1 max(x, y)

analyzed by dcp.stanford.edu (Diamond 2014)



• 
$$f(x) = \sqrt{1 + x^2}$$
 is convex

but cannot show this using constructive convex analysis

- (leaves) 1 is constant, x is affine
- $\blacktriangleright$   $x^2$  is convex
- ▶  $1 + x^2$  is convex
- **b** but  $\sqrt{1+x^2}$  doesn't match general rule

• writing 
$$f(x) = ||(1, x)||_2$$
, however, works

- (1, x) is affine
- ▶ ||(1, x)||<sub>2</sub> is convex

## Outline

Convex Optimization

**Constructive Convex Analysis** 

Disciplined Convex Programming

Modeling Frameworks

Conclusions

**Disciplined Convex Programming** 

# Disciplined convex programming (DCP)

(Grant, Boyd, Ye, 2006)

- framework for describing convex optimization problems
- based on constructive convex analysis
- sufficient but not necessary for convexity
- basis for several domain specific languages and tools for convex optimization

# Disciplined convex program: Structure

## a DCP has

zero or one objective, with form

- minimize {scalar convex expression} or
- maximize {scalar concave expression}

zero or more constraints, with form

- {convex expression} <= {concave expression} or</p>
- {concave expression} >= {convex expression} or
- {affine expression} == {affine expression}

# **Disciplined convex program: Expressions**

## expressions formed from

- variables,
- constants/parameters,
- and functions from a library
- library functions have known convexity, monotonicity, and sign properties
- all subexpressions match general composition rule

# Disciplined convex program

## a valid DCP is

- convex-by-construction (cf. posterior convexity analysis)
- 'syntactically' convex (can be checked 'locally')
- convexity depends only on *attributes* of library functions, and not their meanings
  - e.g., could swap  $\sqrt{\cdot}$  and  $\sqrt[4]{\cdot}$ , or exp  $\cdot$  and  $(\cdot)_+$ , since their attributes match

# Canonicalization

- easy to build a DCP parser/analyzer
- not much harder to implement a *canonicalizer*, which transforms DCP to equivalent cone program
- then solve the cone program using a generic solver
- yields a modeling framework for convex optimization

# Outline

**Convex Optimization** 

**Constructive Convex Analysis** 

**Disciplined Convex Programming** 

Modeling Frameworks

Conclusions

# **Optimization modeling languages**

- domain specific language (DSL) for optimization
- express optimization problem in high level language
  - declare variables
  - form constraints and objective
  - solve
- Iong history: AMPL, GAMS, ....
  - no special support for convex problems
  - very limited syntax
  - callable from, but not embedded in other languages

Modeling languages for convex optimization

all based on  $\mathsf{DCP}$ 

| YALMIP    | Matlab | Löfberg                       | 2004       |
|-----------|--------|-------------------------------|------------|
| CVX       | Matlab | Grant, Boyd                   | 2005       |
| CVXPY     | Python | Diamond, Boyd; Agrawal et al. | 2013; 2018 |
| Convex.jl | Julia  | Udell et al.                  | 2014       |
| CVXR      | R      | Fu, Narasimhan, Boyd          | 2017       |

some precursors

SDPSOL (*Wu, Boyd, 2000*)
 LMITOOL (*El Ghaoui et al., 1995*)

# CVX

```
cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1
cvx_end</pre>
```

- A, b, gamma are constants (gamma nonnegative)
- variables, expressions, constraints exist inside problem
- after cvx\_end
  - problem is canonicalized to cone program
  - then solved

# Some functions in the CVX library

| function                      | meaning                      | attributes        |
|-------------------------------|------------------------------|-------------------|
| norm(x, p)                    | $\ x\ _p, p \ge 1$           | сvх               |
| square(x)                     | x <sup>2</sup>               | cvx               |
| pos(x)                        | x <sub>+</sub>               | cvx, nondecr      |
| <pre>sum_largest(x,k)</pre>   | $x_{[1]} + \cdots + x_{[k]}$ | cvx, nondecr      |
| sqrt(x)                       | $\sqrt{x}$ , $x \ge 0$       | ccv, nondecr      |
| inv_pos(x)                    | 1/x, x > 0                   | cvx, nonincr      |
| max(x)                        | $\max\{x_1,\ldots,x_n\}$     | cvx, nondecr      |
| <pre>quad_over_lin(x,y)</pre> | $x^2/y, y > 0$               | cvx, nonincr in y |
| lambda_max(X)                 | $\lambda_{\max}(X), X = X^T$ | cvx               |

# DCP analysis in CVX

```
cvx_begin
variables x y
square(x+1) <= sqrt(y) % accepted
max(x,y) == 1 % not DCP
...</pre>
```

Disciplined convex programming error: Invalid constraint: {convex} == {real constant}

# **CVXPY**

- A, b, gamma are constants (gamma nonnegative)
- variables, expressions, constraints exist outside of problem
- solve method canonicalizes, solves, assigns value attributes

# Signed DCP in CVXPY

| function   | meaning                                                                      |   | attribu | ites                    |
|------------|------------------------------------------------------------------------------|---|---------|-------------------------|
| abs(x)     |                                                                              |   | cvx,    | nondecr for $x \ge 0$ , |
|            |                                                                              |   |         | nonincr for $x \leq 0$  |
| huber(x)   | $\left\{egin{array}{cc} x^2, &  x \leq 1\ 2 x -1, &  x >1 \end{array} ight.$ | L | cvx,    | nondecr for $x \ge 0$ , |
| nuber (x)  | 2 x  - 1,  x  > 1                                                            | L |         | nonincr for $x \leq 0$  |
| norm(x, p) |                                                                              |   | cvx,    | nondecr for $x \ge 0$ , |
| norm(x, p) | $  ^{  } p, p \leq 1$                                                        |   |         | nonincr for $x \leq 0$  |
| square(x)  | × <sup>2</sup>                                                               |   | cvx,    | nondecr for $x \ge 0$ , |
| bquare(x)  |                                                                              |   |         | nonincr for $x \leq 0$  |

# DCP analysis in CVXPY

$$expr = \frac{(x-y)^2}{1-\max(x,y)}$$

# Parameters in CVXPY

- symbolic representations of constants
- can specify sign
- change value of constant without re-parsing problem

```
for-loop style trade-off curve:
```

```
x_values = []
for val in numpy.logspace(-4, 2, 100):
    gamma.value = val
    prob.solve()
    x_values.append(x.value)
```

## Parallel style trade-off curve

# Use tools for parallelism in standard library. from multiprocessing import Pool

```
# Function maps gamma value to optimal x.
def get_x(gamma_value):
   gamma.value = gamma_value
   result = prob.solve()
   return x.value
```

```
# Parallel computation with N processes.
pool = Pool(processes = N)
x_values = pool.map(get_x, numpy.logspace(-4, 2, 100))
```

# Convex.jl

```
using Convex
x = Variable(n);
cost = sum_squares(A*x-b) + gamma*norm(x,1);
prob = minimize(cost, [norm(x,Inf) <= 1]);
opt_val = solve!(prob);
solution = x.value;
```

A, b, gamma are constants (gamma nonnegative)

- similar structure to CVXPY
- solve! method canonicalizes, solves, assigns value attributes

# Outline

Convex Optimization

Constructive Convex Analysis

**Disciplined Convex Programming** 

Modeling Frameworks

Conclusions

## Conclusions

DCP is a formalization of constructive convex analysis

- simple method to certify problem as convex (sufficient, but not necessary)
- basis of several DSLs/modeling frameworks for convex optimization

 modeling frameworks make rapid prototyping of convex optimization based methods easy

# References

- Disciplined Convex Programming (Grant, Boyd, Ye)
- Graph Implementations for Nonsmooth Convex Programs (Grant, Boyd)
- Matrix-Free Convex Optimization Modeling (Diamond, Boyd)
- A Rewriting System for Convex Optimization Problems (Agrawal, Verschueren, Diamond, Boyd)
- CVX: http://cvxr.com/
- CVXPY: https://www.cvxpy.org/
- Convex.jl: http://convexjl.readthedocs.org/
- CVXR: https://cvxr.rbind.io/
- DCP tools: https://dcp.stanford.edu/