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Abstract

We present the GPU implementation of the general-purpose interior-point solver Clara-
bel for convex optimization problems with conic constraints. We introduce a mixed parallel
computing strategy that processes linear constraints first, then handles other conic con-
straints in parallel. This mixed parallel computing strategy currently supports linear,
second-order cone, exponential cone, and power cone constraints. We demonstrate that in-
tegrating a mixed parallel computing strategy with GPU-based direct linear system solvers
enhances the performance of GPU-based conic solvers, surpassing their CPU-based coun-
terparts across a wide range of conic optimization problems. We also show that employing
mixed-precision linear system solvers can potentially achieve additional acceleration with-
out compromising solution accuracy.

1 Introduction

We consider the following convex optimization problem [1] with a quadratic objective and conic
constraints:

minimize 1
2
xTPx+ qTx

subject to Ax+ s = b,
s ∈ K,

(P)

with respect to x, s and with parameters A ∈ Rm×n, b ∈ Rm, q ∈ Rn and P ∈ SSn
+ and variables

x ∈ Rn, s ∈ Rm. The cone K is a closed convex cone. The formulation (P) is very general and
can model most conic convex optimization problems in practice. Examples include the optimal
power flow problem in power systems [2], model predictive control in control [3, 4], limit analysis
of engineering structures in mechanics [5], support vector machines [6] and lasso problems [7]
in machine learning, statistics, and signal processing, and portfolio optimization in finance [8,
9]. Linear equality (zero cones) and inequality (nonnegative cones), second-order cone [10],
and semidefinite cone [11] constraints have been long supported in standard conic optimization
solvers, and support for exponential and power cone constraints was recently included in several
state-of-the-art conic optimization solvers [12, 13, 14, 15]. The combination of these cones
can represent many more elaborate convex constraints through the lens of disciplined convex
programming [16, 17, 18].
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The dual problem of (P) is
maximize −1

2
xTPx− bT z

subject to Px+ AT z = −q,
z ∈ K∗,

(D)

with respect to x, z and where K∗ is the dual cone of K. Solving P and D is equivalent to solving
the Karush-Kuhn-Tucker (KKT) conditions when strong duality holds. On the other hand, the
set of strongly primal infeasibility certificates for (P) is

P =
{
z
∣∣ AT z = 0, z ∈ K∗, ⟨b, z⟩ < 0

}
, (1)

and the set of strongly dual infeasibility certificates is

D = {x | Px = 0, − Ax ∈ K, ⟨q, x⟩ < 0} . (2)

Finding an optimal solution with strong duality or detecting a strongly infeasible certificate can
be unified into solving a linear complementarity problem with two additional slack variables
τ, κ ≥ 0 [19], which can be reformulated to the following problem [15]:

minimize sT z + τκ
subject to 1

τ
xTPx+ qTx+ bT z = −κ,

Px+ AT z + qτ = 0,
Ax+ s− bτ = 0,
(s, z, τ, κ) ∈ K ×K∗ ×R+ ×R+,

(H)

with respect to x, s, z, τ, κ. In [15] it is also shown that H is always (asymptotically) feasible,
and we can recover either an optimal solution or a strong infeasibility certificate of (P) and (D),
depending on the value of the optimal solution (x⋆, z⋆, s⋆, τ ⋆, κ⋆) to (H):

i) If τ ⋆ > 0 then (x⋆/τ ⋆, s⋆/τ ⋆) is an optimal solution to (P) and (x⋆/τ ⋆, z⋆/τ ⋆) is an optimal
solution to (D).

ii) If κ⋆ > 0 then at least one of the following holds:

• (P) is strongly infeasible and z⋆ ∈ P.

• (D) is strongly infeasible and x⋆ ∈ D.

The optimal solution τ ⋆, κ⋆ satisfy the complementarity slackness condition, i.e., at most one of
τ ⋆, κ⋆ is nonzero. The pathological case τ ⋆ = κ⋆ = 0 has been discussed in [19].

The interior-point method [20] is a popular choice for solving (H). However, it usually requires
to factorize linear systems that are increasingly ill-conditioned. Since the complexity of matrix
factorizations scales with respect to the number of nonzero entries within a linear system, it is
time-consuming to solve large-scale conic optimization problems with interior-point methods.

1.1 Our contribution

We describe a Julia GPU implementation of the general-purpose interior-point solver Clara-
bel [15]. In our implementation, we support cases where K is an intersection of atomic cones:
zero cones, nonnegative cones, second order cones, exponential cones, and power cones. We
propose a mixed parallel computing strategy that parallelizes computing for each type of cone,
integrates the CUDSS [21] library for linear system solving, and supports mixed-precision linear
system solves for moderate speed improvements. Furthermore, we evaluate our solver against
others across a variety of conic optimization problems. Our implementation of CuClarabel is
available at https://github.com/cvxgrp/CuClarabel.
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1.2 Related work

Interior-point methods and solver development. The interior-point method [20] was
first discovered by Dikin [22], and became more mainstream after the conception of Karmarkar’s
method [23], a polynomial-time algorithm for linear programming, and Renegar’s [24] path
following method. Interior-point methods are known for their ability to solve conic optimization
problems to high precision, and is chosen as the default algorithm for many conic optimization
solvers [12, 25, 15, 26, 27]. Common variations of the interior-point method include potential
reduction methods and path-following methods.

Interior-point methods employ a Newton-like strategy to compute a search direction at every
iteration. Unfortunately, the matrix factorization required to compute this direction which
scales with the dimension of an optimization problem, rendering very large problems difficult
to solve. Developing efficient interior-point methods on exotic cones directly is a promising
research direction [26, 27] to alleviate this computational burden. Using exotic cones, we can
represent equivalent problems with significantly fewer variables and exploit sparse structure
within these exotic cones for efficient implementation of interior-point methods [25, 28, 29].
However, operations within an exotic cone can hardly be parallelized, while parallelism across
heterogeneous cones of different dimensionalities will introduce significant synchronization delay.

GPU acceleration in optimization algorithms. GPUs are playing an increasingly sig-
nificant role in scientific computing. In optimization, GPUs are used to run solvers based on
first-order methods. For example, CuPDLP [30] is based on the popular PDHG algorithm [31],
which requires only matrix multiplication and addition without the use of direct methods (i.e.
it is factorization-free). Solvers that require the solution to linear systems, like SCS [13] and
CuOSQP [32], have relied on indirect iterative methods—such as the conjugate gradient (CG),
the minimal residual (MINRES) [33], and the generalized minimum residual (GMRES) [34]
methods—to solve these systems on GPUs. However, the linear systems solved in first-order
methods are generally much better conditioned than those encountered in interior-point meth-
ods, where the linear systems become increasingly ill-conditioned as the iterations progress. As
an interior-point method approaches higher precision, the number of iterations for each inner
indirect linear solves increases significantly, which will eventually offset benefits of GPU par-
allelism and make GPU-based interior-point methods less preferable compared to CPU-based
solvers with direct methods in overall computational time [35]. Recently, NVIDIA released the
CUDSS package [36], which provides fast direct methods on GPUs for sparse linear systems. Pre-
vious work has integrated CUDSS in a nonlinear optimization solver [37], resulting in significant
speed-up on large-scale problems compared to its CPU-based counterpart.

Mixed-precision methods. Mixed-precision, or multiprecision, methods [38, 39] have be-
come progressively more popular due to their synergies with modern GPU architectures. For
example, in lower-precision configuration one enjoys significant speedup in algorithms, as modern
architectures have 32-bit implementations that are around twice as fast as their 64-bit counter-
parts [38, 40]. Mixed precision methods aim to capitalize on the computational benefits of
performing expensive operations in lower precision, while maintaining (or reducing the negative
impact to) the superior numerical accuracy from higher precision. Classically, mixed-precision
methods for direct (linear system solving) methods involve factorizing a matrix in lower preci-
sion, and then applying iterative refinement. In this approach, only the more expensive steps,
such as the matrix factorizations and backsolves, are done in lower precision. Mixed-precision
methods are used throughout scientific computing, with applications including BLAS opera-
tions [41], different linear system solvers such as Krylov methods (CG, GMRES) [39, 42, 43],
solving partial differential equations [44], and training deep neural networks [44, 45, 46].
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1.3 Paper outline

In §2, we review and discuss the interior point method used by Clarabel [15] for solving conic
optimization problems. In §3, we outline how to implement parallel computation for cone op-
erations and solve linear systems within our GPU solver. §4 details our numerical experiments.
We detail the supported cones in §A, how to calculate the barrier functions in §B and scaling
matrices for each cone in §C.

2 Overview of Clarabel

We first sketch briefly the main operations used in the Clarabel solver [15] for computing a
solution to (P). Solving the equivalent problem (H) amounts to finding a root of the following
nonlinear equations

G(x, z, s, τ, κ) =

0s
κ

−

 P AT q
−A 0 b
−qT −bT 0

xz
τ

+

 0
0

1
τ
xTPx

 = 0,

(x, z, s, τ, κ) ∈ F = Rn ×K ×K∗ ×R+ ×R+.

(3)

Besides the zero cone that is a linear constraint, other supported conic constraints are smoothed
by nonlinear equations in pairs within an interior-point method,

s = −µ∇f(z), τκ = µ, (4)

where µ is the smoothing parameter and f(·) is the logarithmically homogeneous self-concordant
barrier (LHSCB) function for cone K∗. The barrier functions for different cones are detailed
in §B. The trajectory (also called the central path)

G(v) = µG(v0),

s = −µ∇f(z), τκ = µ,
(5)

where v = (x, z, s, τ, κ), characterizes the solution of (3) in the right limit µ → 0, given an
initial point v0. After starting from v0, the Clarabel solver iterates the following steps for each
iteration k.

Update residuals and check the termination condition. We update several key metrics
at the start of each iteration. Defining the normalized variables x̄ = x/τ, s̄ = s/τ, z̄ = z/τ , the
primal and dual residuals are then

rp = Ax̄− s̄+ b,

rd = Px̄+ A⊤z̄ + q,

with corresponding primal and dual objectives

gp =
1

2
x̄⊤Px̄+ qTx,

gd = −1

2
x̄⊤Px̄− bT z̄,

and complementarity slackness µ = s⊤z+κτ
ν+1

. The solver returns an approximate optimal point if

∥rp∥∞ < ϵfeasmax{1, ∥b∥∞ + ∥x̄∥∞ + ∥s̄∥∞}
∥rd∥∞ < ϵfeasmax{1, ∥q∥∞ + ∥x̄∥∞ + ∥z̄∥∞}

|gp − gd| < ϵfeasmax{1,min{|gp|, |gd|}}.
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Otherwise, it returns a certificate of primal infeasibility if∥∥AT z
∥∥
∞ < −ϵinfmax(1, ∥x∥∞ + ∥z∥∞)(bT z)

bT z < −ϵinf,

and a certificate of dual infeasibility if

∥Px∥∞ < −ϵinfmax(1, ∥x∥∞)(bT z)

∥Ax+ s∥∞ < −ϵinfmax(1, ∥x∥∞ + ∥s∥∞)(qTx)

qTx < −ϵinf.

Note that ϵfeas, ϵinf are predefined parameters within the Clarabel solver.

Find search directions. We then compute Newton-like search directions using a linearization
of the central path (5). In other words, we solve the following linear system given some right-hand
side residual d = (dx, dz, dτ , ds, dκ), 0

∆s
∆κ

−

 P AT q
−A 0 b

−(q + 2Pξ)T −bT ξTPξ

∆x
∆z
∆τ

 = −

dxdz
dτ

 (6a)

H∆z +∆s = −ds, κ∆τ + τ∆κ = −dκ, (6b)

where H is the same scaling matrix as in the CPU version of Clarabel [15] and described in §C.
We have shown in [15] that solving (6) reduces to solve the next linear system with two different
right-hand sides, [

P A⊤

A −H

]
︸ ︷︷ ︸

K

[
∆x1 ∆x2

∆z1 ∆z2

]
=

[
dx −q

−(dz − ds) b

]
. (7)

After solving (7), we recover the search direction ∆ = (∆x,∆z,∆τ,∆s,∆κ) using

∆τ =
dτ − dκ/τ + (2Pξ + q)⊤∆x1 + b⊤∆z1
κ/τ + ξ⊤Pξ − (2Pξ + q)⊤∆x2 − b⊤∆z2

=
dτ − dκ/τ + q⊤∆x1 + b⊤∆z1 + 2ξ⊤P∆x1

∥∆x2 − ξ∥2P − ∥∆x2∥2P − q⊤∆x2 − b⊤∆z2
, (8a)

and

∆x = ∆x1 +∆τ∆x2, ∆z = ∆z1 +∆τ∆z2, (8b)

∆s = −ds −H∆z, ∆κ = −(dκ + κ∆τ)/τ. (8c)

In an interior-point method with a predictor-corrector scheme, we need to solve (6) with two
different values for d. The first is for the affine step (predictor) with

d = (G(x, z, s, τ, κ), κτ, s).

The other assigns d as

(dx, dz, dτ ) = (1− σ)G(x, z, s, τ, κ), dκ = κτ +∆κ∆τ − σµ,

ds =

{
W⊤ (λ\ (λ ◦ λ+ η − σµe)) (symmetric)

s+ σµ∇f(z) + η (nonsymmetric),

(9)
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in the combined step (predictor+corrector), where λ = W−⊤s = Wz and e is the idempotent for
a symmetric cone with the product operator ‘◦’ and its inverse operator ‘\’ [47]. Here η denotes
a higher-order correction term, which is a heuristic technique that can significantly accelerate
the convergence of interior-point methods [48]. We set it to the Mehrotra correction [49]

η = (W−1∆s) ◦ (W∆z), (10a)

for symmetric cones and the 3rd-order correction [50]

η = −1

2
∇3f(z)[∆za,∇2f(z)−1∆sa], (10b)

for nonsymmetric cones. The centering parameter σ controls the decreasing speed of both the
residual G(x, z, s, τ, κ) and the complementarity slackness µ. which is determined heuristically
by value of the affine step size αa, which is the maximal value ensuring v + αa∆a ∈ F .

Update iterates. At the end of each iteration k, we move the current iterate v along the
combined direction ∆c and obtain the new iterate v + αc∆c. The combined step size αc should
satisfy v+αc∆c ∈ F , and furthermore we have to ensure that the new iterate v+αc∆c stays in
the neighborhood of the central path (5) [50].

3 GPU formulation of Clarabel

3.1 A primer on GPU programming

Originally developed for computationally demanding gaming applications, graphics processing
units (GPUs) are massively parallel, multithreaded, manycore processors, with massive com-
putational power and memory bandwidth. As a result, GPUs are used throughout scientific
computing. In this section, we outline some core properties of GPU computing devices to high-
light why a GPU implementation is a natural extension to Clarabel. We then discuss our specific
implementation details.

Due to their natural parallelism, GPUs differ dramatically from CPUs in the way their tran-
sistors are configured. GPUs have a smaller number of caches (blocks where memory access is
fast) and instruction processing blocks, and far more, albeit simpler, computational blocks (i.e.
arithmetic logic and floating point units). This suggests that CPUs utilize their larger caches to
minimize instruction and memory latency within each thread, while GPUs switch between their
significantly larger number of threads to hide said latency.

GPUs use a single instruction, many threads (SIMT) approach. In practice, the GPU receives a
stream of instructions – each instruction is sent to groups of GPU cores (also known as a warp)
and acts on multiple data in parallel. Each group of GPU cores, as a result, has single instruction,
many data (SIMD) structure. This contrasts the traditional CPU vector lane approach of single
instruction, single data. Note that modern CPUs also support SIMD, but at a much smaller
scale than GPUs, as implied by the transistor layout. Furthermore, the SIMD structure requires
data parallelism for parallel execution on a GPU.

In our approach, we utilize the SIMD structure of the GPU to accelerate our interior-point
method. For each iteration of our solving algorithm, we execute the following steps:

Interior-point method. Main computing steps.

1. Update the variable v.
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2. Update residuals and objective values for termination check.

3. Update the scaling matrix H.

4. Factorize the matrix K in (7).

5. Compute the right-hand sides of (7) for the constant, affine step, and combined steps.

6. Solve the linear systems (7) three times with different right-hand sides.

7. Recover the step direction ∆ via (8).

8. Perform a line search and neighborhood check with respect to the central path.

The matrix factorization (step 4) and the back-solve (step 6) are the most time-consuming parts
in each iteration of an interior point method [48] and can be computed using the CUDSS package.
Steps 1 and 2 contain matrix addition and multiplication operations that have already been
supported in CUDA, while steps 3, 5, 7, and 8 include cone operations that should be tailored
for each cone. We will detail how to parallelize each of these steps in the next subsection.

3.2 Mixed parallel computing strategy

The cone operations related to steps 3, 5, 7, and 8 above require only information local to each
constituent cone, and hence can be executed concurrently with respect to individual cones. We
propose the mixed parallel computing strategy for a cone operation across different types of cones.
Each family of cones is handled in parallel, and families of cones are handled sequentially.

As stated earlier, the cone operations related to zero cones and nonnegative cones are simply
vector additions and multiplications, which have already been parallelized in CUDA. In our
implementation we aggregate all zero cones into a single zero cone in our preprocessing step.
The same holds for nonnegative cones. For the remaining cones, we parallelize within each family
of cones (i.e., second-order cone, exponential cone, etc.). For each family of cones, we allocate a
thread to each cone belonging to that family, and execute in parallel. We synchronize threads
after executing for each type of cone. This adheres to the SIMD computing paradigm, as each
type of cone has its own set of instructions for updating its scaling matrix.

Note that the SIMD GPU computing structure naturally favors balanced workloads, i.e., the
workloads in each thread should be similar so that the synchronization will not take too much
time. The exponential and power cones are 3-dimensional nonsymmetric cones that all cone
operations have balanced workload among the same class of cones, thus we can parallelize the
computation for each cone. On the other hand, the second-order cones may vary in dimen-
sionality, which may not mesh well with the SIMD computing paradigm. In most use cases for
large-scale second-order cone problems, e.g. optimal power flow problems [2] and finite-element
problems [5], the second-order cones are of small (less than 5) dimensionality; thus the effect
of this workload imbalance is negligible. Regardless, we support second-order cones of all sizes.
In the next section, we outline a preprocessing procedure for our second-order cones we use to
balance workloads.

We illustrate our mixed parallel computing strategy via step 3, the scaling matrix update. Recall
that the conic constraint K can be decomposed as a Cartesian product of p constituent atomic
cones K1 × · · · × Kp that are ordered by cone types. We assume K1 is a zero cone, K2 is
a nonnegative cone, K3 to Ki are second-order cones, Ki+1 to Kj are exponential cones and
Kj+1 to Kp are power cones. Due to our composition into constituent atomic cones, H is a
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block-diagonal matrix,

H =

H1

. . .

Hp

 ,

where H1 and H2 are diagonal matrices and each block Ht, t ≥ 3 is the scaling matrix corre-
sponding to cone Kt of small dimensionality.

For the update of H at iteration k + 1, we first set diagonal terms of the scaling matrix Hk+1
1

for the zero cone to all 0s, and then update the diagonals of the scaling matrix Hk+1
2 for the

nonnegative cone by element-wise vector division, as in the Nesterov-Todd (NT) scaling [51].
These computations are already parallelized by CUDA. For conic constraints other than the zero
cone and the nonnegative cone, the corresponding parts in the scaling matrix H are no longer
diagonal, but we observe Ht only requires local information within each constituent cone, and
thus we can solve for each Ht concurrently, independent to the other cones. We implement ker-
nel functions soc update H(), exp update H() and pow update H() for second-order cones,
exponential cones and power cones respectively. The kernel function will process one cone op-
eration per thread, and the kernel functions belongs to the same class of cones are executed in
parallel and finally synchronized by calling @sync. Details regarding the update functions for
each type of cone and Algorithm 1 illustrating the update of scaling matrix H can also be found
in §C.

Since the mixed parallel computing strategy is independent of choices of optimization algorithms,
it is also applicable for GPU implementations for cone operations in first-order operator-splitting
conic solvers, like SCS [13] and COSMO [14].

3.3 Second-order cone preprocessing for balanced workloads

We can decompose any large second-order cone into a set of small second-order cones of fixed
dimensionality d. The workload is then balanced for each second-order cone, adhering to the
SIMD computing paradigm. For an n-dimensional second-order cone Kn

soc{x ∈ Rn | x1 ≥√∑n
i=2 x

2
i }, we can decompose it into the equivalent set of q = ⌈(n− 2)/(d− 2)⌉ second-order

cones:

x1 ≥
√

x2
2 + · · ·+ x2

d−1 + z21

z1 ≥
√

x2
d + · · ·+ x2

2d−2 + z22
...

zq ≥
√

x2
n−d + · · ·+ x2

n

,

where z ∈ Rq is an a slack variable. Each of the first q−1 second-order cones are d-dimensional,
while the gth cone has dimension not larger than d. The workload is now balanced among these
p cones.

3.4 Data structures

Since data parallelism is required for parallel execution on GPUs, we manage data for each cone
as a structure of arrays (SoA) in our GPU implementation, in contrast to the existing CPU
counterpart which uses an array of structures (AoS). In other words, instead of creating structs
for Ki, i = 1, . . . , p and storing pointers to each struct in an array, we concatenate the same type
of local variable from different cones into a global variable and then store it in a global struct
for K, which is illustrated in Figure 1.
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AoS

K1

x1 y1

. . .

Kp

xp yp

SoA

K

xp

...

x1

yp

...

y1

x y

Figure 1: Illustration of AoS (CPU) and SoA (GPU) data structure

In addition, indexing cones in order in the setup phase can simplify the implementation of mixed
parallel computing strategy. We reorder the input cones such that memory is coalescing for the
same class of cones, which can accelerate computation on GPUs. Matrices are stored in the
compressed sparse row (CSR) format. Instead of storing only the triangular part of a square
matrix as in the CPU-based Clarabel, we store the full matrix for more efficient multiplication
on the GPU.

3.5 Solving linear systems

Most of the computation time for our interior point method is spent in factorizing the matrix K
and in the three backsolve operations in (7). Our GPU implementation also leverages the power
of the newly released sparse linear system solver CUDSS [36] for the LDLT factorization and
backsolve operations. The iterative refinement [52] is implemented to increase the numerical
stability of the backsolve operation.

Currently, a GPU has more computing cores for Float32 than Float64 and hence better
performance for parallel algorithms. Also, Float32 requires less memory and takes less time for
the same computation than Float64. However, lowering the precision will introduce numerical
instability for solving linear systems. Thus, we employ a mixed precision solve in our matrix
solves. Specifically, we use mixed precision for data within the iterative refinement step:

1. Solve for the residual at step i: ri = b−Kxi−1, where xi−1 is our guess for iteration i− 1.
(Full precision)

2. Solve the linear system under a regularization parameter (K + δI)∆i = ri. (Lower preci-
sion)

3. Take xi = xi−1 +∆i. (Full precision)

In all our matrix solves, given matrix K and right-hand side b, we factorize the lower precision
copy of K, and then solve the linear system in this lower precision. A regularization parameter δ
is added to K to increase the numerical stability of matrix factorization. It is the sum of a static
regularization and a dynamic regularization. To offset the regularization effect and rounding
errors from the lower precision in backsolves, we solve in full precision for the other steps, i.e.,
we compute the residual ri and save the update {xi} in full precision. We loop until either (1)
we reach a pre-specified number of max steps for iterative refinement, or (2) the ℓ∞ norm of
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b −Kxi reaches a certain threshold, specifically ∥b−Kxi∥∞ ≤ tabs + trel ∥b∥∞. For the mixed
precision, we set the static regularization to the square root of machine precision, i.e.,

√
ϵ, and

take a maximum of 10 iterative refinement steps. For the full-precision solve, tabs (absolute
tolerance) and trel (relative tolerance) are both 10−12 by default.

Although the mixed precision for the iterative refinement can improve the numerical stability for
solving linear system in lower precision, it is to be expected that the mixed precision may take
longer time to converge or fail in cases where the matrix K is extremely ill-conditioned. Caution
is required when using mixed precision for numerically hard problems, e.g., conic programs with
exponential cones.

4 Numerical experiments

We have benchmarked our Julia GPU implementation of the Clarabel solver1 against the state-
of-the-art commercial interior-point solvers Mosek [12] and Gurobi [53]. We also include our
Rust CPU implementation of Clarabel solver with the 3rd-party multithreaded supernodal LDL
factorization method in the faer-rs package [54]. We have included benchmark results for several
classes of problems including quadratic programming (QP), second-order cone programming
(SOCP) and exponential cone programming. All benchmarks are performed using the default
settings for each solver, with pre-solve disabled where applicable to ensure equivalent problem-
solving conditions. No additional iteration limits are imposed beyond each solver’s internal
defaults. All experiments were carried out on a workstation with Intel(R) Xeon(R) w9-3475X
CPU@ 4.8 GHz with 256 GB RAM and NVIDIA GeForce RTX 4090 24GB GPU. All benchmarks
tests are scripted in Julia and access solver interfaces via JuMP [82]. We use Rust compiler
version 1.76.0 and Julia version 1.10.2.

4.1 Benchmarking metrics

We choose the same benchmarking tests as used in the Clarabel solver [15], and compare our
results using metrics that are commonly used when comparing solve time across different solvers.
For a set of N test problems, we define the shifted geometric mean gs as

gs =

[
N∏
p=1

(tp,s + k)

] 1
N

− k,

where tp,s is the time in seconds for solver s to solve problem p, and k = 1 is the shift. The
normalized shifted geometric mean is then defined as

rs =
gs

mins′ gs′
.

Note that the solver with the lowest shifted geometric mean solve time has a normalized score
of 1. We assign a solve time tp,s equal to the maximum allowable solve time if solver s fails to
solve the problem p.

The relative performance ratio for a solver s and a problem p is defined as

up,s =
tp,s

mins′ tp,s′
.

1https://github.com/cvxgrp/CuClarabel
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The relative performance profile denotes the fraction of problems solved by solver s within a
factor τ of the solve time of the best solver, which is defined as f r

s : R+ 7→ [0, 1]

f r
s (τ) =

1

N

∑
p

I≤τ (up,s),

where I≤τ (u) = 1 if τ ≤ u and I≤τ (u) = 0 otherwise. We also compute the absolute performance
profile fa

s : R+ 7→ [0, 1], which denotes the fraction of problems solved by solver s within τ
seconds and is defined as

fa
s (τ) =

1

N

∑
p

I≤τ (tp,s).

We showcase plots of performance profiles and tables of shifted geometric means for different
classes of problems supported in the Clarabel solver. We included further detailed numerical
results for all solvers in §D, including the iteration counts and the total time.

4.2 Quadratic programming

We first present benchmark results for QPs. Note that in this setting, the set K in (P) is
restricted to the composition of zero cones, i.e., linear equality constraints, and nonnegative
cones, i.e., linear inequality constraints. We consider two classes of problems, the portfolio
optimization problem and the Huber fitting problem.

Portfolio optimization, a problem arising in quantitative finance, aims to allocate assets in a
manner that maximizes expected return while keeping risk under control. We can formulate it
as

maximize µTx− γxTΣx
subject to 1Tx = 1,

x ≥ 0,

where x ∈ Rn (the variable) represents the ratio of allocated assets, µ ∈ Rn is the vector of
expected returns, γ > 0 is the risk-aversion parameter, and Σ ∈ Sn

+ the risk covariance matrix
which is of the form Σ = FF⊤ +D with F ∈ Rp×n and D ∈ Rp×p diagonal. We set the rank p
to the integer closest to 0.1n, and vary n from 5000 to 25000.

Huber fitting is a version of robust least squares. For a given matrix A ∈ Rm×n and vector
b ∈ Rm, we replace the least squares loss function with the Huber loss. The Huber loss makes
the penalty incurred by larger points linear instead of quadratic, thus outliers have a smaller
effect on the resulting estimator. Precisely, the problem is stated as:

minimize
m∑
i=1

ϕh

(
aTi x− bi

)
where a⊤i is the i-th row of A and the Huber loss ϕh : R → R is defined as

ϕh(t) =

{
t2 |t| ≤ T

T (2|t| − T ) otherwise
.

We set m to the nearest integer of 1.5n and vary value of n from 5000 to 25000.

Results for large QP tests are shown in Figure 2. We benchmark ten different examples from two
classes above and set the time limit to 1h. We compare our GPU implementation ClarabelGPU
with ClarabelRs, the Rust version 0.9.0 version of Clarabel equipped with the faer multithreaded
linear system solver; and two commercial solvers, Gurobi and Mosek. ClarabelGPU is the fastest
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Figure 2: Performance profiles for the large QPs problem set

(a) Relative performance profile (b) Absolute performance profile

ClarabelGPU ClarabelRs Gurobi Mosek
Shifted GM Full Acc. 1.0 11.29 2.13 4.18

Low Acc. 1.0 11.29 2.13 4.18
Failure Rate (%) Full Acc. 0.0 20.0 0.0 0.0

Low Acc. 0.0 10.0 0.0 0.0

(c) Benchmark timings as shifted geometric mean and failure rates

solver on these problems, and it has the lowest per-iteration time for almost all examples. Since
most of time of an interior point solver is spent on factorizing and solving a linear system in
QPs, we can say that ClarabelGPU benefits from the use of the CUDSS linear system solver
and it is more than 2 times faster than Gurobi, about 4 times faster than Mosek and 10x times
faster than the existing Rust implementation with the multithreaded faer linear system solver.

4.3 Second-order cone programming

We next consider the second-order cone relaxations of optimal power flow problems [55] from the
IEEE PLS PGLib-OPF benchmark library [2], using the PowerModels.jl package [56] for mod-
eling convenience. Note that only second-order cones of dimensionality 3 or 4 are used in these
second-order cone relaxations, which satisfies our assumption in §3.2: that the dimensionality of
each cone is very small.

We compare our GPU implementation with the CPU-based Clarabel solver and Mosek solver.
We also include results of the Mosek solver with pre-solve for comparison, which is denoted as
Mosek* in the plots. The maximum termination time is again set to 1h. We benchmark the
second-order cone relaxations of 120 problems from the PGLib-OPF library, where the number
of second-order cones exceed 2000.

Results for these problems are shown in Figure 3. Both ClarabelGPU and ClarabelRs are faster
and more numerically stable than Mosek even with the presolve step. Moreover, the GPU
implementation can solve 118 out of 120 examples within an hour, while the Rust version of
Clarabel can solve 104 out of 120 examples within the same time limit. In contrast, Mosek with
presolve fails on about 40% of the optimal flow problems, and the one without presolve fails on
over 90% of the problems.

Overall, the GPU solver is several times faster than Rust-based CPU solver. However, note
that ClarabelGPU fails on two examples that ClarabelRs successfully solves. This highlights the
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Figure 3: Performance profiles for the large OPF SOCPs problem set

(a) Relative performance profile (b) Absolute performance profile

ClarabelGPU Mosek* ClarabelRs Mosek
Shifted GM Full Acc. 1.0 6.63 3.62 34.33

Low Acc. 1.0 7.02 2.99 36.36
Failure Rate (%) Full Acc. 1.7 39.0 13.6 90.7

Low Acc. 0.0 39.0 3.4 90.7

(c) Benchmark timings as shifted geometric mean and failure rates

different numerical performance of the linear system solvers between CUDSS and faer.

4.4 Exponential cone programming

We benchmark two classes of exponential cone programming problems with varying dimension-
ality, the logistic regression and the entropy maximization problems [13].

Logistic regression is a classical machine learning model for binary classification. Given a feature
matrix A ∈ Rm×n and a vector of labels b ∈ Rm such that bi ∈ {0, 1}, we formulate the sparse
logistic regression problem as:

minimize
m∑
i=1

(
log
(
1 + exp

(
xTai

))
− bix

Tai
)
+ λ∥x∥1,

where x is our variable and aTi is the i-th row of A. Note that this is the sparse logistic regression
problem due to the ℓ1-norm penalty on x. Indeed, when λ = 0, we recover the classical logistic
regression problem.

Each entry of A is generated via Aij ∼ N (0, 1). The label b is generated following the same
method in [57, 13]. We set m = 5n and vary value of n from 2000 to 10000.

The entropy maximization problem aims to maximize entropy over a probability distribution
given a set of m linear inequality constraints, which can be interpreted as bounds on the expec-
tations of arbitrary functions. The problem is formulated as

maximize −
∑n

i=1 xi log xi

subject to 1Tx = 1,
Ax ≤ b,
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Figure 4: Performance profiles for the exponential cone programming problem set

(a) Relative performance profile (b) Absolute performance profile

ClarabelGPU Mosek* ClarabelRs Mosek
Shifted GM Full Acc. 1.0 1.47 8.42 1.58

Low Acc. 1.0 1.47 8.42 1.58
Failure Rate (%) Full Acc. 0.0 0.0 40.0 0.0

Low Acc. 0.0 0.0 20.0 0.0

(c) Benchmark timings as shifted geometric mean and failure rates

Each element of A is generated from the distribution Aij ∼ N (0, n). Then, we set b = Av/1⊤v
where v ∈ Rn is generated randomly from vi ∼ U [0, 1], which ensures the problem is always
feasible. We set m to the nearest integer of 0.5n and vary value of n from 2000 to 10000.

The benchmark results for these two problems with varying dimensionality are shown in Figure 4.
From §D, even though the GPU acceleration of Clarabel is offset by nearly doubled number of
iterations compared to Mosek, we can still achieve more than 2 times of acceleration for the
overall time. That is to say we can possibly achieve more acceleration in ClarabelGPU if we
can improve the numerical stability to the same level of Mosek on exponential cone programs.
Compared to ClarabelRs, we find ClarabelGPU can benefit from GPU computation up to 20x
times faster on logistic regression problems.

4.5 Mixed precision

In the implementation of the mixed precision setting, as described we only set the data type of
the CUDSS linear system solver to Float32. Since the use of mixed precision accelerates the
numerical factorization rather than the symbolic factorization within a factorization method, we
only record the computational time for an interior point method without the setup time.

We test the mixed precision setting on QPs, including portfolio optimization and Huber fitting
problems from §4.2. We compare it with the standard GPU implementation of Float64 data
type. The results in Table 1 show that the use of mixed precision strategy can reduce the solve
time up to a factor of 2. This will be beneficial to problems like the parametric programming,
where the setup is needed only once and the symbolic factorization structure can be reused
repeatedly later on [58]. However, we also notice that the mixed precision may not be sufficient
for conic optimization problems where the Hessian block H in (7) is ill-conditioned, especially
for the exponential cone that the exponential component causes huge variation in the magnitude
of different entries.
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Table 1: Solve times and iteration counts for the mixed precision QP test

iterations total time (s)

Problem Full Mixed Full Mixed

portfolio optimization n 10000 19 19 0.729 0.631
portfolio optimization n 25000 19 21 7.08 4
portfolio optimization n 20000 19 23 3.91 2.54
huber fitting n 5000 9 9 2.61 1.32
huber fitting n 25000 10 10 143 58.3
huber fitting n 10000 10 10 12.6 5.76
portfolio optimization n 5000 17 18 0.196 0.259
huber fitting n 15000 10 10 34.9 15.1
portfolio optimization n 15000 19 19 1.88 1.18
huber fitting n 20000 9 9 69.8 29.1

5 Conclusion

We have developed a GPU interior point solver for conic optimization.2 We propose a mixed
parallel computing strategy to process linear constraints with second-order cone, exponential
cone and power cone constraints. The GPU solver shows several times of acceleration compared
to state-of-the-art CPU conic solvers on many problems to high precision, including QPs, SOCPs
and exponential programmings.

We also note that some initialization steps, such as population of the KKT matrix and matrix
equilibration, take non-negligible time for large problems. We will also move the setup steps
onto a GPU in our future development. The proposed mixed parallel computing strategy for
GPU implementation is also applicable for conic solvers based on first-order operator-splitting
methods.
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Jerzy Waśniewski, editors, Parallel Processing and Applied Mathematics, pages 681–689,
Berlin, Heidelberg, 2012. Springer.

[36] Nvidia Inc. CUDSS, 2023. https://developer.nvidia.com/cudss.

[37] François Pacaud, Sungho Shin, Alexis Montoison, Michel Schanen, and Mihai An-
itescu. Condensed-space methods for nonlinear programming on GPUs, May 2024.
arXiv:2405.14236 [math].

[38] Ahmad Abdelfattah, Hartwig Anzt, Erik Boman, Erin Carson, Terry Cojean, Jack Don-
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A Supported cones in Clarabel and CuClarabel

We support the following atomic cones in our GPU solver:

• The zero cone, defined as

{0}n = {x ∈ Rn | xi = 0, i = 1, . . . , n} .

The dual cone of the zero cone is ({0}n)∗ = Rn.

• The nonnegative cone, defined as

Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n} .

The nonnegative cone is a self-dual convex cone, i.e.,
(
Rn

+

)∗
= Rn

+.

• The second-order cone Kn
soc (also called the quadratic or Lorentz cone), defined as

Kn
soc =

{
(t, x)

∣∣ x ∈ Rn−1, t ∈ R+, ∥x∥2 ≤ t
}
.

The second-order cone is self-dual, i.e., Ksoc = K∗
soc.

• The exponential cone, a 3-dimensional cone defined as

Kexp =

{
(x, y, z)

∣∣∣∣ y > 0, y exp

(
x

y

)
≤ z

}
∪ {(x, 0, z) | x ≤ 0, z ≥ 0},

with its dual cone given by

K∗
exp =

{
(u, v, w)

∣∣∣ u < 0, − u exp
(v
u

)
≤ exp(1)w

}
∪ {(0, v, w) | v ≥ 0, w ≥ 0}.

• The 3-dimensional power cone with exponent α ∈ (0, 1), defined as

Kpow,α =
{
(x, y, z)

∣∣ xαy1−α ≥ |z|, x ≥ 0, y ≥ 0
}
,

with its dual cone given by

K∗
pow,α =

{
(u, v, w)

∣∣∣∣∣ (uα)α
(

v

1− α

)1−α

≥ |w|, u ≥ 0, v ≥ 0

}
.

B Barrier functions for different cones

For cones introduced in §A, the corresponding logarithmically-homogeneous self-concordant bar-
rier functions with degree ν are given by:

1. Nonnegative cone Rn
+ of degree n:

f(z) = −
∑
i∈JnK

log(zi), z ∈ Rn
+.

2. Second order cone Kn
q of degree 1:

f(z) = −1

2
log

(
z21 −

n∑
i=2

z2i

)
, z ∈ Kn

q .
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3. Dual exponential cone K∗
exp of degree 3:

f(z) = − log

(
z2 − z1 − z1 log

(
z3
−z1

))
− log(−z1)− log(z3), z ∈ K∗

exp.

4. Dual power cone K∗
pow of degree 3:

f(z) = − log

((z1
α

)2α( z2
1− α

)2(1−α)

− z23

)
− (1− α) log(z1)− α log(z2), z ∈ K∗

pow.

C Scaling matrices

The scaling matrix H in (6) is the Jacobian from the linearization of the central path (5). We
set H = 0 for the zero cone and choose the NT scaling [51] for nonnegative and second-order
cones, which are both symmetric cones. The NT scaling method exploits the self-scaled property
of symmetric cone K where exists a unique scaling point w ∈ K satisfying

H(w)s = z.

The matrix H(w) can be factorized as H−1(w) = W⊤W , and we set H = H−1(w) in (6). The
factors w,W are then computed following [47].

For exponential and power cones that are not symmetric, the central path is defined by the set
of point satisfying

Hz = s, H∇f ∗(s) = ∇f(z),

where f ∗ is the conjugate function of f , and the symmetric scaling from [59, 50] is implemented.
We define shadow iterates as

z̃ = −∇f(s), s̃ = −∇f ∗(z),

with µ̃ = ⟨s̃, z̃⟩/ν. A scaling matrix H is chosen to be the rank-4 Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update as in a quasi-Newton method,

H = HBFGS = Z(Z⊤S)−1Z⊤ +Ha −HaS(S
⊤HaS)

−1S⊤Ha,

where Z = [z, z̃], S = [s, s̃] and Ha = µ∇2f(z) is an estimate of the Hessian as in [50].

Algorithm 1 shows how to update the scaling matrix H at iteration k + 1:
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Algorithm 1 Update the scaling matrix H

1: Input: the scaling matrix Hk at iteration k
2:

3: Update Hk+1
1 // Zero cone

4: Update Hk+1
2 // Nonnegative cone

5:

6: @sync for t = 3 to i // Second-order cones
7: Hk+1

t = soc update H(Hk
t )

8: end
9:

10: @sync for t = i+ 1 to j // Exponential cones
11: Hk+1

t = exp update H(Hk
t )

12: end
13:

14: @sync for t = j + 1 to p // Power cones
15: Hk+1

t = pow update H(Hk
t )

16: end
17:

18: return Hk+1 // Output the new scaling matrix Hk+1

D Detailed benchmark results
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Table 2: Solve times and iteration counts for the large LPs problem set

iterations total time (s)

Problem vars. cons. nnz(A) nnz(P) ClarabelGPU Mosek ClarabelGPU Mosek

qap15 28605 22275 117225 0 22 16 4.72 3.6
brazil3 62488 23968 181026 0 20 15 0.66 1.53
ex10 104968 17680 1197360 0 13 16 5.75 14.7
neos 5052403 cygnet 104004 32868 4964040 0 23 12 7.66 4.86
supportcase10 195224 14770 584622 0 35 20 9.6 5.65
square41 164591 62234 13690857 0 28 12 8.39 28.5
chromaticindex1024 7 215039 73728 417780 0 9 10 1.8 6.4
neos 3025225 231263 69846 9497642 0 28 19 50.4 19.9
rmine15 443271 42438 964608 0 55 29 41.2 14
physiciansched3 3 417922 79555 1214174 0 452 284 251 174
neos 5251015 486996 136971 1955853 0 - 9 - 22.6
graph40 40 566100 102600 1466100 0 11 - 3.36 -
datt256 lp 535365 262144 2028020 0 10 5 7.52 223
s250r10 557246 273142 1864891 0 103 32 29.3 6.56
s100 743567 364417 2506751 0 92 33 96.1 9.42
savsched1 877295 328575 2351813 0 28 16 10.9 85.8
woodlands09 958865 382147 3410269 0 - 8 - 344
scpm1 1005000 500000 7250000 0 27 24 24.4 13.2
bharat 2030687 590519 4296196 0 67 - 67.3 -
tpl tub ws1617 2649817 747601 6215769 0 141 63 110 133
fhnw binschedule1 3056177 1141653 10894631 0 49 - 232 -
supportcase19 2868909 1429098 7145290 0 64 17 56 12.5
s82 3469140 1690631 10403870 0 - 71 - 235
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Table 3: Solve times and iteration counts for the QPs problem set

iterations total time (s)

Problem vars. cons. nnz(A) nnz(P) ClarabelGPU ClarabelRs Gurobi Mosek ClarabelGPU ClarabelRs Gurobi Mosek

portfolio optimization n 5000 5501 5500 1259971 5500 15 15 17 9 0.442 7.9 0.9 2.65
portfolio optimization n 10000 11001 11000 5022139 11000 18 18 19 7 1.67 57.1 4.53 10.7
portfolio optimization n 15000 16501 16500 11282198 16500 18 18 18 8 4.16 165 10.4 28.7
portfolio optimization n 20000 22001 22000 20040608 22000 17 17 18 8 8.06 372 22.3 63.1
huber fitting n 5000 22500 27500 4725756 7500 8 8 13 15 4.24 68.7 6.53 10.3
portfolio optimization n 25000 27501 27500 31300056 27500 18 18 20 9 14.7 600 44.2 124
huber fitting n 10000 45000 55000 18826645 15000 8 8 11 17 18.7 636 39.7 77
huber fitting n 15000 67500 82500 42304462 22500 8 8 11 18 48.6 2.18e+03 110 383
huber fitting n 20000 90000 110000 75138584 30000 8 - 14 20 99.2 - 269 1.21e+03
huber fitting n 25000 112500 137500 117388752 37500 8 - 11 19 180 - 400 2.31e+03
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Table 4: Solve times and iteration counts for the large OPF LP problem set

iterations total time (s)

Problem vars. cons. nnz(A) nnz(P) ClarabelGPU ClarabelRs Mosek ClarabelGPU ClarabelRs Mosek

case10192 epigrids 92051 27914 180020 697 17 17 35 0.742 0.533 0.764
case10192 epigrids api 92051 27914 180020 697 17 17 28 0.706 0.526 0.627
case10480 goc 99926 29816 196673 276 20 20 27 0.82 0.712 0.701
case10480 goc api 99926 29816 196673 276 18 18 31 0.806 0.666 0.75
case13659 pegase 120495 38218 230046 0 122 107 81 2.21 3.29 2.69
case13659 pegase api 120495 38218 230046 0 15 15 59 0.876 0.648 1.82
case20758 epigrids 182928 56275 355508 1881 18 18 32 1.43 1.43 1.28
case20758 epigrids api 182928 56275 355508 1881 18 18 31 1.4 1.41 1.25
case19402 goc 184959 55077 364846 249 24 24 41 1.65 1.86 1.65
case19402 goc api 184959 55077 364846 249 25 25 38 1.72 2.03 1.59
case19402 goc sad 184959 55077 364846 249 22 - 55 1.61 - 2.09
case24464 goc 210481 63871 408258 348 22 - 26 1.82 - 1.52
case24464 goc api 210481 63871 408258 348 21 21 25 1.76 2.09 1.41
case24464 goc sad 210481 63871 408258 348 24 - 65 1.82 - 2.74
case30000 goc 213698 68919 399262 372 38 38 47 1.99 2.83 1.45
case30000 goc api 213698 68919 399262 372 30 30 39 1.91 2.54 1.34
case30000 goc sad 213698 68919 399262 372 25 25 83 1.65 1.89 2.24
case78484 epigrids 685984 211266 1334253 0 29 29 117 8.31 16.8 68.9
case78484 epigrids api 685984 211266 1334253 0 26 26 106 7.89 15.2 93.8
case78484 epigrids sad 685984 211266 1334253 0 30 30 120 8.37 17.6 68.725



Table 5: Solve times and iteration counts for the large OPF SOCP problem set

iterations total time (s)

Problem vars. cons. nnz(A) nnz(P) ClarabelGPU Mosek* ClarabelRs Mosek ClarabelGPU Mosek* ClarabelRs Mosek

case2383wp k 97600 20393 155950 0 109 - 107 - 1.81 - 3.63 -
case2383wp k api 97600 20393 155950 0 21 38 23 33 0.928 1.21 1.26 1.89
case2383wp k sad 97600 20393 155950 0 99 - 99 - 1.78 - 3.48 -
case2312 goc 98556 20518 159516 0 47 151 48 - 1.35 3.98 2.05 -
case2312 goc api 98556 20518 159516 0 65 250 65 - 1.41 6.23 2.19 -
case2312 goc sad 98556 20518 159516 0 59 191 59 - 1.32 4.98 1.98 -
case2737sop k 109822 22777 176602 0 70 - 75 - 1.6 - 3.07 -
case2737sop k api 109822 22777 176602 0 71 - 73 - 1.63 - 2.99 -
case2737sop k sad 109822 22777 176602 0 72 - 73 - 1.62 - 2.92 -
case2736sp k 110022 22878 176901 0 71 - 69 - 1.63 - 2.88 -
case2736sp k api 110022 22878 176901 0 57 83 57 - 1.41 2.63 2.65 -
case2736sp k sad 110022 22878 176901 0 71 - 72 - 1.53 - 3.67 -
case2746wp k 111106 23320 178556 0 74 - 73 - 1.78 - 3.28 -
case2746wp k api 111106 23320 178556 0 31 33 32 35 1.18 1.22 1.78 2.36
case2746wp k sad 111106 23320 178556 0 74 133 74 - 1.65 4.28 3.19 -
case2746wop k 111822 23434 179829 0 64 - 64 - 1.57 - 2.8 -
case2746wop k api 111822 23434 179829 0 26 33 - 36 1.11 1.18 - 2.21
case2746wop k sad 111822 23434 179829 0 64 - 63 - 1.43 - 2.6 -
case3012wp k 120676 25202 193907 0 94 - 91 - 1.96 - 3.94 -
case3012wp k api 120676 25202 193907 0 29 53 - 48 1.2 1.98 - 3.1
case3012wp k sad 120676 25202 193907 0 89 - 91 - 1.94 - 3.92 -
case2848 rte 122708 25858 197228 0 80 177 80 - 2.15 5.3 4.75 -
case2848 rte api 122708 25858 197228 0 75 - 75 - 2.28 - 5.25 -
case2848 rte sad 122708 25858 197228 0 70 - 70 - 2.39 - 4.36 -
case2868 rte 123912 26164 198869 0 84 225 84 - 2.35 6.49 5.8 -
case2868 rte api 123912 26164 198869 0 73 258 75 - 2.11 7.53 4.96 -
case2868 rte sad 123912 26164 198869 0 79 288 79 - 2.24 8.31 5.24 -
case3120sp k 124354 25856 199827 0 79 - 75 - 1.77 - 3.4 -
case3120sp k api 124354 25856 199827 0 87 - 92 - 2.02 - 4.14 -
case3120sp k sad 124354 25856 199827 0 99 - 100 - 2.03 - 4.4 -
case2853 sdet 128886 27445 206896 0 102 269 103 - 2.1 8.51 4.34 -
case2853 sdet api 128886 27445 206896 0 122 309 121 - 2.43 9.57 5.12 -
case2853 sdet sad 128886 27445 206896 0 101 276 101 - 2.1 8.64 4.33 -
case3022 goc 134780 28060 217434 0 41 174 - 139 1.52 6.16 - 9.67
case3022 goc api 134780 28060 217434 0 58 202 - 177 1.84 6.88 - 12.9
case3022 goc sad 134780 28060 217434 0 42 177 - 142 1.51 5.82 - 9.91
case3375wp k 139126 29112 223999 0 101 - 89 - 2.14 - 4.04 -
case3375wp k api 139126 29112 223999 0 146 - 151 - 2.81 - 6.84 -
case3375wp k sad 139126 29112 223999 0 103 - 92 - 2.17 - 4.25 -
case2869 pegase 143608 30153 236217 0 53 235 53 - 2.03 8.56 4.44 -
case2869 pegase api 143608 30153 236217 0 50 264 50 - 1.88 9.44 4.4 -
case2869 pegase sad 143608 30153 236217 0 48 278 48 - 1.86 9.99 4.08 -
case2742 goc 144110 29856 236467 0 110 119 109 - 3.89 4.9 9.42 -
case2742 goc api 144110 29856 236467 0 104 127 102 129 3.46 5.25 8.19 10.4
case2742 goc sad 144110 29856 236467 0 107 119 106 - 3.83 4.94 9.09 -
case4661 sdet 198498 41599 320728 0 140 - 137 - 4.23 - 11.2 -
case4661 sdet api 198498 41599 320728 0 125 - 125 - 3.94 - 10.2 -
case4661 sdet sad 198498 41599 320728 0 139 - 134 - 4.37 - 10.9 -
case3970 goc 205819 42789 337328 0 140 154 143 - 4.94 9.11 15.6 -
case3970 goc api 205819 42789 337328 0 109 136 115 - 4.85 8.04 15.1 -
case3970 goc sad 205819 42789 337328 0 142 169 144 - 5.07 10.2 16.2 -
case4020 goc 216455 44877 355706 0 181 194 186 - 6.86 12.1 25.1 -
case4020 goc api 216455 44877 355706 0 101 144 101 - 4.77 9.28 15.4 -
case4020 goc sad 216455 44877 355706 0 183 178 185 - 6.71 13.2 24.4 -
case4917 goc 218213 45522 352833 0 52 164 - 147 2.99 8.63 - 16.7
case4917 goc api 218213 45522 352833 0 62 260 60 - 3.27 13.4 7.7 -
case4917 goc sad 218213 45522 352833 0 47 184 - 166 2.91 10.1 - 18.8
case4601 goc 225588 46885 368445 0 179 192 180 - 5.98 11.5 21.8 -
case4601 goc api 225588 46885 368445 0 103 147 109 162 4.66 8.99 15.6 20.5
case4601 goc sad 225588 46885 368445 0 180 191 177 - 5.94 12.2 20 -
case4837 goc 240160 49855 392884 0 139 152 137 - 7.18 10.6 24.3 -
case4837 goc api 240160 49855 392884 0 122 177 124 - 5.95 12.1 19 -
case4837 goc sad 240160 49855 392884 0 136 161 130 - 7.05 11 23 -
case4619 goc 254753 52616 419210 0 145 153 144 - 7.98 11 26.8 -
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Table 5: Solve times and iteration counts for the large OPF SOCP problem set

iterations total time (s)

Problem vars. cons. nnz(A) nnz(P) ClarabelGPU Mosek* ClarabelRs Mosek ClarabelGPU Mosek* ClarabelRs Mosek

case4619 goc api 254753 52616 419210 0 130 161 130 - 6.85 11.9 21.4 -
case4619 goc sad 254753 52616 419210 0 151 150 151 - 8.17 11.2 27 -
case5658 epigrids 282180 58620 461724 0 150 181 143 - 9.01 13.8 28.4 -
case5658 epigrids api 282180 58620 461724 0 164 202 159 - 10.8 15 34.9 -
case5658 epigrids sad 282180 58620 461724 0 156 221 158 - 8.82 16.6 29.1 -
case6468 rte 286248 59396 463599 0 104 250 101 - 5.5 16.1 17.7 -
case6468 rte api 286248 59396 463599 0 88 292 88 - 5.43 18.4 17.2 -
case6468 rte sad 286248 59396 463599 0 93 254 99 - 5.2 16.5 17.5 -
case6470 rte 287806 60144 465757 0 122 319 109 - 6.14 20.3 21.9 -
case6470 rte api 287806 60144 465757 0 86 330 85 - 5.22 21.4 17.2 -
case6470 rte sad 287806 60144 465757 0 102 350 99 - 5.49 22.2 17.5 -
case6495 rte 288050 60099 465939 0 112 329 115 - 6.07 21.3 20.1 -
case6495 rte api 288050 60099 465939 0 102 349 95 - 5.61 22.3 16.6 -
case6495 rte sad 288050 60099 465939 0 112 344 108 - 5.64 22.1 18.7 -
case6515 rte 288710 60239 466922 0 97 299 95 - 6.3 19.1 17.7 -
case6515 rte api 288710 60239 466922 0 81 332 81 - 5.29 21.7 15.8 -
case6515 rte sad 288710 60239 466922 0 86 327 84 - 5.24 21.4 15.6 -
case7336 epigrids 358450 74618 585766 0 156 196 154 - 11.6 18 47.8 -
case7336 epigrids api 358450 74618 585766 0 150 214 152 - 10.5 19.9 43.6 -
case7336 epigrids sad 358450 74618 585766 0 155 186 156 - 11.5 17.3 50.2 -
case10000 goc 440997 92799 712177 0 - 86 - - - 10.3 - -
case10000 goc api 440997 92799 712177 0 62 206 - - 6.91 21.1 - -
case10000 goc sad 440997 92799 712177 0 90 152 - - 7.44 16.4 - -
case8387 pegase 459046 96351 750588 0 139 - 138 - 9.19 - 30.3 -
case8387 pegase api 459046 96351 750588 0 140 - 140 - 10 - 34.3 -
case8387 pegase sad 459046 96351 750588 0 134 - 134 - 9.01 - 29.8 -
case9591 goc 495073 102120 811889 0 226 - 229 - 21 - 85.7 -
case9591 goc api 495073 102120 811889 0 149 159 149 - 15.1 25.5 58.6 -
case9591 goc sad 495073 102120 811889 0 228 200 228 - 21.3 31.5 86.8 -
case9241 pegase 502110 104741 827419 0 70 - 66 - 6.83 - 20.3 -
case9241 pegase api 502110 104741 827419 0 67 - 70 - 6.61 - 20.6 -
case9241 pegase sad 502110 104741 827419 0 70 389 68 - 6.73 58.4 20.5 -
case10192 epigrids 529695 109758 866501 0 96 113 96 - 10.6 17 36 -
case10192 epigrids api 529695 109758 866501 0 91 113 91 - 10.4 17.4 35.3 -
case10192 epigrids sad 529695 109758 866501 0 109 - 107 - 11.9 - 41.5 -
case10480 goc 573754 118760 943278 0 164 - 162 - 18.2 - 76.2 -
case10480 goc api 573754 118760 943278 0 136 217 - - 16.2 40.5 - -
case10480 goc sad 573754 118760 943278 0 164 242 164 - 18.3 43.6 77.4 -
case13659 pegase 662910 140961 1081042 0 83 - 82 - 11.8 - 42.9 -
case13659 pegase api 662910 140961 1081042 0 78 - 78 - 11.4 - 39.9 -
case13659 pegase sad 662910 140961 1081042 0 78 329 - - 11 60 - -
case20758 epigrids 1048059 218151 1709288 0 122 - 123 - 27.5 - 99.1 -
case20758 epigrids api 1048059 218151 1709288 0 154 - 155 - 39.9 - 150 -
case20758 epigrids sad 1048059 218151 1709288 0 137 - 135 - 30.3 - 111 -
case19402 goc 1064421 219911 1753874 0 256 - 251 - 45.9 - 221 -
case19402 goc api 1064421 219911 1753874 0 212 - 216 - 39.3 - 193 -
case19402 goc sad 1064421 219911 1753874 0 257 - 258 - 46 - 232 -
case30000 goc api 1195834 249462 1921390 0 150 - - - 24.6 - - -
case24464 goc 1202964 248644 1983519 0 230 - - - 39.4 - - -
case24464 goc api 1202964 248644 1983519 0 213 - 214 - 33.4 - 149 -
case24464 goc sad 1202964 248644 1983519 0 - - 224 - - - 169 -
case78484 epigrids 3904758 811998 6389202 0 401 - - - 260 - - -
case78484 epigrids api 3904758 811998 6389202 0 400 - 401 - 320 - 1.65e+03 -
case78484 epigrids sad 3904758 811998 6389202 0 408 - - - 263 - - -
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Table 6: Solve times and iteration counts for the exponential cone programming problem set

iterations total time (s)

Problem vars. cons. nnz(A) nnz(P) ClarabelGPU Mosek* ClarabelRs Mosek ClarabelGPU Mosek* ClarabelRs Mosek

entropy N 2000 11001 4000 258917 0 23 15 21 10 0.548 0.506 3.05 0.565
entropy N 4000 22001 8000 1019263 0 24 16 20 9 1.87 2.29 14.2 2.22
entropy N 6000 33001 12000 2278947 0 26 16 22 9 3.56 6.09 45.1 5.85
entropy N 8000 44001 16000 4037959 0 27 16 22 10 6.2 12.3 107 12.6
entropy N 10000 55001 20000 6297376 0 27 16 22 10 9.96 22.6 235 40.1
log reg n 2000 94002 34001 1320255 0 57 38 121 37 4.13 3.96 107 5.43
log reg n 4000 188002 68001 5205338 0 68 47 - 47 17.4 16.4 - 21.6
log reg n 6000 282002 102001 11529263 0 72 49 - 51 40.9 67.7 - 59.8
log reg n 8000 376002 136001 20589037 0 73 48 - 50 77.5 135 - 105
log reg n 10000 470002 170001 31904473 0 84 54 - 58 150 372 - 336
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