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Theoretical work on two-sided matching markets has focussed on the stable out- 
comes that are optimal for one side of the market. An innovative exception is a 
paper by Rochford, who shows how to identify a nonempty set of interior points of 
the core of the assignment market first studied by Shapley and Shubik. We 
strengthen Rochfold’s results, by showing that such a set of fixed points must reflect 
the same kind of polarization of interests that characterizes the core, and generalize 
these results to a wider class of markets, via a powerful algebraic fixed point 
theorem of Tarski. Journal of Economic Literature Classification Numbers: 
022, 026. r!” 1988 Academic Press. Inc. 

1. INTRODUCTION 

There has been a good deal of recent progress made in understanding 
two-sided matching markets, which model agents as belonging to one of two 
exogenously specified disjoint sets, say P and Q (e.g., firms and workers), 
and engaging in bilateral transactions (i.e., if worker i works for firmi then 
firm -j employs worker i). Such models seem to capture some important 
features of labor markets, and recent progress has been made in applying 
them to the study of particular markets (see [24, 291). A wide variety of 
different models of such markets have been shown to possess a number of 
striking properties not shared by general markets (see, e.g., [ 12, 30, 6, 15, 
24, 25, 91; see [27] for a survey). 

In each of these models, the set of stable outcomes (which essentially 
coincides with the core of such markets) is always nonempty and reflects a 
polarization of interests between the two sides of the market. Associated 
with each side of the market, there is an optimal stable outcome that is the 
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stable outcome most preferred by every agent on that side of the market 
and least preferred by every agent on the other side of the market. That is, 
there is a P-optimal stable outcome such that all agents in P (weakly) 
prefer it to every other stable outcome, and all agents in Q (weakly) prefer 
any other stable outcome to it, and there is a Q-optimal stable outcome 
with the symmetric properties. The best mathematical explanations found 
to date for this phenomenon have to do with the algebraic structure of the 
set of stable outcomes, which has been shown to be a complete lattice in 
almost all of the models exhibiting this polarization of interests (see [ 16, 
30, 3, 4, 14, 26, 281). 

Theoretical work has tended to focus on the P- and Q-optimal stable 
outcomes, in part because there has been no conceptual framework that 
easily allowed other stable outcomes to be distinguished. Rochford [ 193 
takes an important step in remedying this situation. In the context of the 
simple “assignment market” first examined by Shapley and Shubik [30], 
she defines a “rebargaining” process by which agents (re)negotiate the 
terms of their contracts in light of the contracts negotiated by all other 
agents. This rebargaining process takes stable outcomes into other stable 
outcomes and has as its fixed points what Rochford calls “symmetric 
pairwise-bargained” (SPB) allocations, which are stable outcomes that are 
generally different from the P- and Q-optimal stable outcomes. Rochford 
proves (using Brouwer’s fixed point theorem) that the set of SPBs is always 
nonempty in this model, and that if the rebargaining process starts at either 
the P- or the Q-optimal stable outcome, then it will converge to an SPB. 

The present paper has three goals. First, we will strengthen Rochford’s 
results and show that the set of SPBs also reflects the polarization of 
interests exhibited by the set of stable outcomes, so that there is a 
P-optimal SPB such that all agents in P (weakly) prefer it to every other 
SPB, and all agents in Q (weakly) prefer any other SPB to it, and there is a 
Q-optimal SPB with the symmetric properties. Furthermore, Rochford’s 
rebargining process converges to the P-optimal SPB when it starts from the 
P-optimal stable outcome, and to the Q-optimal SPB when its starts from 
the Q-optimal stable outcome. 

Second, we will generalize these results and show how they can be exten- 
ded to any market whose set of stable outcomes is a complete lattice. This 
program will be carried out here for the model of Demange and Gale [9], 
which substantially generalizes the assignment model of Shapley and 
Shubik [30]. 

Finally, we will show how these results are tied together by the lattice 
structure of the set of stable outcomes. Indeed, the set of SPBs is itself a 
lattice, and this follows from a powerful algebraic fixed point theorem (in 
contrast to topological fixed point theorems, such as Brouwer’s) due to 
Alfred Tarski [31], which states the following. 



TWO-SIDED MATCHING MARKETS 87 

THEOREM 1. Let C be a complete lattice with respect to some partial 
order 2, and let a be an increasing (order-preserving) function from C to C. 
Then the set of fixed points of a is nonempty and is itse[f a complete lattice 
with respect to the partial order 2. 

Overall the results of the paper suggest that since the polarization of 
interests found in the core persists for (at least) certain classes of subsets of 
core outcomes, the problem of finding “fair” outcomes in games of this type 
may be intractable. 

2. THE MARKET MODEL 

There are two disjoint, finite sets of agents: P = (p,, . . . . p,) and 
Q = (q,, . . . . q,,}, called P-agents and Q-agents, respectively. An outcome of 
the market matches P-agents with Q-agents. 

DEFINITION 1. A matching p is a bijection of Pu Q onto itself of order 
two (that is p 0 p = identity) such that if p or q is not unmatched (p(p) =p 
or ,a(q) = q) then p(p) is in Q and ,a(q) is in P. 

Each agent is endowed with preferences on agents of the opposite set. 
These preferences are given by compensation functions f,, and gpy, defined 
as follows: f,,(u) is the amount of money p must receive in order to achieve 
utility u if he is matched with q; g,,(v) is analogously defined for q in Q. 
The fs and g’s and their inverses are continuous and strictly increasing 
functions from R to R. We suppose that for each p and q the utility of 
being unmatched is given by numbers r,, and sy. We will denote the set of 
functions ,J,, and g,, by f and g. The market is then M = (P, Q;f, g; r, s). 

DEFINITION 2. A feasible payoff (u, v) of M consists of a vector U, 
indexed by the components of P, and a vector u, indexed by the com- 
ponents of Q, such that there exists a matching p with the properties 

up = rp (0, = sy ) if p(q) is self matched (1) 

fpy(~p)+&&/Ko~ if Ap)=q. (2) 

Condition (2) is the requirement that the compensation to the two mem- 
bers of a matched pair is in fact a transfer, what one partner gains, the 
other loses. We say that the matching .a is compatible with the payoff (u, u). 

DEFINITION 3. The feasible payoff (u, II) is stable if it is individually 
rational, that is, if 

up2rp, uy2sy (3) 
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and if 
fp,(f$) + g/Jo,) 2 0 for all (p, q) in P x Q. (4) 

If condition (4) did not hold then, since f,, and g,, are continuous 
and increasing, we could choose ub > lip and vi>uq such that 
&,,(ub) + g,,($,) d 0, producing a feasible payoff and giving higher utility to 
both p and q; so the pair (p, q) would block the payoff (u, u). 

The set of all stable payoffs will be denoted by C, since it equals the core 
of this market M when the rules of the market are that any P-agent and 
Q-agent who both agree may conclude a match, and each agent has the 
right to remain unmatched. U will denote the set of vectors u such that 
(u, u) is in C for some u. Quinzii [IS] and Gale [ 111 present general 
results that show that C is always nonempty. Consider now the partial 
order on payoffs x = (u, u) and x’ = (u’, u’) defined by x > p x if up > ~4; for 
all p in P. It is shown in [9] that the core is a compact lattice under this 
partial order. (Since C is contained in R” fn, and the partial order b p is 
the natural order on Rm+“, the fact that C is a compact lattice implies that 
it is a complete lattice, so that Tarski’s theorem will apply.) Further, if 
x2.x’ then x’bo X, meaning that uy < uk for all q in Q. These obser- 
vations are also contained in [9]. As a corollary, since every compact lat- 
tice has a smallest and a largest element, there is a P-optimal stable payoff 
(U, _v) with the property that for any stable (u,u), U B u and _o < o. There is 
also a Q-optimal stable payoff (u, 6) such that for any stable (u, u), u < u 
and V>v. 

We will denote by C, the set of stable payoffs that are compatible with p, 
and by Z the set of matchings p that are compatible to some stable payoff. 
If p is in Z we will call p a stable matching. Similarly, U,, denotes the 
payoffs to P-agents compatible with a stable matching p. 

The assignment market [30] is the special case of this market (up to 
renormalization of the right hand side of Conditions (2) and (4)) that 
arises when the functions f,,, and g,, are all linear and of the form 
f,,(u) = u -spy and gpy( u) = v + bpy , for nonnegative spy and b,,. In the 
assignment market, if a matching p is compatible to some stable payoff, 
then it is compatible to every stable payoff. This is no longer true in the 
more general market considered here (see the Appendix for an example). 
The fact that multiple stable matchings must be considered will be the 
source of most of the technical difficulties encountered in generalizing 
results from the assignment market. 

Except for Proposition 5, the results presented in the remainder of this 
section are mostly special cases of results proved in [9]. We will state them 
without proofs. 

PROPOSITION 1. Let (u, u) and (u’, ~1’) be stable payoffs with matchings ,U 
and p’. Let P’= {PEP; ub>up>, P2= (pEP;up>ub}, PO= {PEP; 
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up = ub}. Define Q’, Q2, and Q” analogously (i.e., Q’ = {q E Q; u> > uy >, 
etc.). Then p’(P’)=u(P’)=Q’ andu’(P2)=p(P2)=Q1. Furthermore, every 
agent in P” who is matched (under either u or u’) is matched with an agent in 
QO, and vice versa. 

The proposition states that everyone who prefers one of two stable 
outcomes is matched (at either outcome) with someone who prefers the 
other outcome. 

COROLLARY 1. If p (q) is unmatched under some stable matching u, then 
for every stable payjoff (u, u) we have that up = rp (vy = sy). 

PROPOSITION 2. The set U is a compact lattice 

PROPOSITION 3. The set C, forms a compact lattice. 

COROLLARY 2. The set U, is a compact lattice. 

Define u(r) = inf{ u E U; u b r}, for all r in [_u, U]. Since U is a compact 
lattice, u(r) is in U. 

PROPOSITION 4. The function u(r) is an increasing function of r. 

The following is an unpublished result of D. Gale, and will be proved in 
the Appendix. 

PROPOSITION 5. The function u(r) is a continuous function of r. 

3. SYMMETRICALLY PAIRWISE-BARGAINED OUTCOMES 

In this section we define, for the model considered above, the bargaining 
and rebargaining functions introduced by Rochford [ 191, which determine 
the set of symmetrically pairwise-bargained outcomes. Rochford defines 
SPBs to be core outcomes that are fixed points of a bargaining process in 
which each agent’s payoff is determined by a symmetric bargaining solution 
(see [22]) when the “threats” (or disagreement payoffs) are determined by 
the payoffs of the other agents. 

For convenience we will use the notation h, =f,; ’ ( -g,), so h,(u,) = ui is 
the utility of agent i when matched to agent j with a money transfer that 
givesj a utility of vj. 
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DEFINITION 4. The threats of p in P and q in Q at x = (u, u) in C, are 

That is, each agent’s threat at an outcome x with matching p is the 
maximum utility he could receive if he were matched with another agent, 
with a money transfer that would maintain that agent’s current utility. The 
stability of x= (u, u) implies that up 3 t,(x, ,u) and II,> 2,(x, II); i.e., no 
agent’s threat at a stable outcome x exceeds his current utility. 

The bargaining model is simple: if p and q are matched at x E C, then 
they split equally the surplus that remains after each of them receives his 
threat utility. (This surplus is always nonnegative, since no agent’s threat 
exceeds his current utility.‘) Agent p, for example, would receive the sum of 
f,,(t,(x)), which is the monetary compensation he needs to maintain his 
threat utility when matched to q, and one-half of the surplus 
L&(u) +g,,(v) - C.&(f,(x)) +g,,(t,(u))l). But fJ~) +gJu) = 0, so this 
leads to the following definition. 

DEFINITION 5. A symmetrically pairwise-bargained (SPB) payoff is a 
stable payoff x = (u, u) (with compatible matching p) such that up = b,(x) 
and v, = h,(x), for all (p, q) in P x Q, where 

b,(-x) =f,i;’ Cfp,(fp(x)) - i (fpy(fp(x)) +g,,,(f,(x)))l, if P(P)= q, and 
h,(.r) = rp if p is self matched. 

b,(x) =gpy’ Cg,,(t,(-u)) - iU&(tJx)) +g,,(t,(x)))l, if p(q) =P, and 
h,(x) = s,, if q is self matched. 

The following proposition says that the threats do not depend on the 
particular matching p. This implies that b,(x) and b,(x) do not depend on 
the particular matching p which is compatible with x = (u, v). The set of 
SPB payoffs can therefore be defined simply as SPB G {x E C: up = b,(x), 
v, = b,(x), for all (p,q) c P x Q}. 

’ For our purposes here, this simple bargaining model can be regarded as a representative 
of any bargaining process in which the bargaining responds positively to the threats of the 
players, and in which the threats of a player vary inversely with the fortunes of his potential 
alternative partners. For a family of bargaining models in which the threats are formulated in 
a more consistent manner, see [I]. For a discussion of bargaining environments in which a 
player’s bargaining outcome might nor respond to his threats, see the illuminating discussion 
presented in [2]. 
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PROPOSITION 6. Let x = (u, u) be in C, n C,.. Then 

(a) t,(x, p) = t&x, 11’) = t,(x), for all p in P, and t,(x) = up if 

P’(P) f P(P). 
(b) t&x, ,u)= t&x, p’)= t,(x), for all q in Q, and t,(x)=v, if 

P’(4) f P(4). 

Note that the proposition also states that an agent’s threat equals his 
payoff when there is a choice of partners with whom he can receive the 
payoff at a stable match. 

Proof We will prove (a). The proof of (b) is analogous. There are two 
cases: 

Case 1. p’(p) = p(p). The result follows directly from Definition 4. 

Case 2. p’(p) # p(p). Then, 

up 2 C&G P) 2 h,,~~,,(u,~,,,) = up (5) 

and 

up 2 f,(x, $12 h,,,~,,(~,~,,) = up. (6) 

By (5) and (6) it follows that u,, = t,(x, p’) = t,(x), and the proof is 
complete. 

Two of our main results can now be stated. 

THEOREM 2. SPB#& 

THEOREM 3. SPB forms a complete lattice under the partial order ap 
whose sup is P-optimal and whose inf is Q-optimal. 

Outline of the proof Following [ 191, we will introduce a “rebargaining 
function” a to assist in the proof. Theorems 2 and 3 will follow immediately 
from Tarski’s theorem once we establish that the function a has the follow- 
ing properties. 

(1) a:C+C 

(2) a(x) =x if and only if x is an SPB 

(3) a is an increasing function (i.e., order-preserving in the partial 
order > p). 

(Rochford [ 193 established properties 1 and 2 as well as the continuity 
of a for the simple assignment market, in order to apply Brouwer’s 
Theorem. In that market, property 3 is almost immediate. In the more 
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general market considered here, the problem of establishing property 3 will 
be considerably harder, because of the need to consider multiple stable 
matchings.) 

It will be simplest to first define the rebargaining function a, and then to 
explain the recursion on which it depends. Fix the order of the P-agents to 
bv, , . . . . p,. For all i = 1, . . . . mletSj={p,EP;j<i}andletx=(u,u)bein 
C,. Define 

q,,(x, CL) = b,,,(.v’ ‘lx, ~1) and 

~~(p,)(x~ PI = h,,,,b” ‘(x. P)) 
a&x, p) = S, if q is self-matched, where 

v;; ‘(x, p) = up,(x, p) if pi is in Si, and 

yj,; ‘(x, p) = uj, otherwise. 

v;,- ‘(x, p) = a,(~, p) if qj is in p(Si), and 

y;; ‘(x, p) = u,, otherwise. 

This rebargaining function generalizes to this market the one defined in 
the assignment market by Rochford, who described it as follows. 

the components of the image vector of .Y are determined two at a 
time, and are based on the components already determined. Specifically, 
the components representing the incomes of the spouses of the first 
marriage are given to be the symmetrically bargained solution to the 
problem of how the output from their marriage is to be divided, where 
their threats are based on the partial allocation given by the vector x 
omitting the first two components. The next two components of the 
image of x, representing the incomes of the spouses in the second 
marriage, are likewise given to be the bargained distribution of income. 
where the threats are based on the partial allocation given by the com- 
ponents of .Y representing the incomes of the spouses in the third and 
higher-numbered marriages and the newly determined incomes of the 
spouses in the first marriage. The remaining components of the image of 
x are similarly determined. 

The chief technical problem involved in establishing the required proper- 
ties of the function a is to show that it does not depend on ,u, i.e., to show 
that it is a function (only) of x. This is done in Proposition 7, which will be 
proved in the Appendix. 

PROPOSITION 7. Zf x = (u, u) is in C,, n C, then 

(a) a,(~, p) = u,(x, p’) = u,(x), for all p in P. 

(b) a,(.~, p) = a,(~, p’) = u,(x), for all q in Q. 

The following proposition shows that the range of a is contained in the 
core. Furthermore, the image of x under a is compatible with the same 
matching(s) as x. 
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PROPOSITION 8. [fx=(u, v) is in C,, then a(x, p) is in C,,. 

ProoS. We will show that for any k = 2, .,., m, if yk ~ ’ = yk - ‘(x, p) is in 
C,, then yk = yk(x, 11) is in C,, where we define y” z a(x, p). Let yk- ’ be in 
C,. If pk is self-matched then y k-1 = yk and there is nothing to prove. 
So assume that pk is matched under p. Set p(pk) = qk. !hCC 

fkk(a,,(.~. p)) +gkk(a,,(& p)) =0 from the definition of a, it is enough to 
prove that 

(a) $, 3 i1klf yk,,)? for all q j  # qk 

(b) y$ 3 I’,, ‘(.$,), for all p, #pk. 

We know that yz, ’ 3 rpk( y” ’ ) and ytpm ’ > I~,( yk- ‘), sof,,( lpli( yk - ’ )) + 
gkk( ty,( y” .- ’ )) <fkk( 4’: ’ ) + g,,( yzk- ’ ) = 0, where the last equality follows 
from the stability of yx ‘. The fact that the first sum above is nonpositive 
(i.e., that there is a nonnegative surplus for the bargainers to divide) 
implies, via the definition of a and the monotonicity of fkk and g,,, that 
u&, p) 2 $,(Yk ~ ’ 1 and a,,(-~, PL) 2 b/,(.Yk ~ ’ ). But yik = u,,(x, p), 

tk ’ - ysk = a&, p), and I; - -J ;” ’ . Now use the definition of t and get (a) and 
(b). With an analogous argument we can show that y’ is in C,. Then yk is 
in C,, for all k, which concludes the proof. 

We next show that a is an increasing function of X. We will need the 
following lemma 

LEMMA I. Let Y = (u, u) and x’(u’, II’) be in C, t&h x ap x’. Then 
u(x) 3 p a(Y). 

Proof. Since up > U; for all p in P, we have from Proposition 1 that 
tly f ub for all q in Q. Then, suppose U,,(X) 2 a,,(~‘) for all pi in Sk, where 
Sk = {pi E P; i < k} and k 2 2. We claim that u,,(x) > u,,(Y). We only need 
to consider the case in which pk is matched, since otherwise the assertion 
clearly holds by definition of a. Let y = yk- ‘(x, p) and y’ = yk- ‘(x’, cl). 
Then y ap y’, so hkj( y,) >, hk,(yk,), for all q, # ,u(pk), by Proposition 1 and 
the monotonicity of h,. Hence tpa( y) 2 fpL( y’). Analogously we show that 
fiitp4’( y’) 3 t,,,,,(y). Now we can write 

Since the function fs and g’s are strictly increasing, it follows that 
upk(x) 3 a,,(~‘). By a similar argument it can be shown that u,,(x) > a,,,(~‘). 
By induction a,(x) >, a,(~‘) for all p in P, which completes the proof. 

PROPOSITION 9. The function u is an increasing function of x. 

Proof Let x = (u, a) and x’ = (u’, u’) be in C, with x >p x’. If x and x’ 
have a common compatible matching, we can apply Lemma 1 and obtain 
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that a(x) >p a(~‘). Otherwise, let x’ be in C,, and x be in C,,. To show that 
a(x) >p a(.?) we show that there exists a set of stable payoffs 
x’=x’<p.~‘<p... 6 p xk = x such that xi and ?ci + ’ have a common com- 
patible matching, for all i= 1, . . . . k - 1. Lemma 1 then implies that 
u(x’) Gp u(x’) Gp. .’ Gp u(x), which proves Proposition 9. This is 
equivalent to showing that there exists a set {u’, u*, . . . . u”} in U, where 
u’ = u’ < u2 < . . < uk = u and such that ui and u’+ ’ have a common com- 
patible matching, for all i= 1, . . . . li - 1. The proof is based on the existence 
of an increasing and continuous path ~1: [0, l] -+ U, from u’ to u. Assume 
for the time being that such a path exists. 

Set u’ = u’ in U,, . Since c1 is continuous and increasing and U,, is a com- 
pact lattice it follows that {a(r); a(t) E U,,, t E [0, 1 ] } is a compact lattice. 
Hence sup(a(t); a(t)EU,,, t~[0, l]j=u*-a(t,) is in U,,, where 
t,=sup a-‘(d). Then u1 <u2. Now we will show that u2 is in I-J,, for 
some p2#p1. Let fn-+t2, when n-co; 1>tt,>t2 for all n. Then 
a(t,) > a(t2), for all n, by the definition of t2 and the monotonicity of a. So 
a(t,) is in Ui,’ U,, which is closed since it is a finite union of closed sets, 
so a([,) is in Ui,, U,,, since a(t,) + a(t2). Then u* =a(t2) is in U,,, for 
some ,u2#hI. If pz#p, take sup{a(t); a(t)EU,,, t~[O,l]}=u~. By a 
similar argument to the one used above we can show that u3 = a(t3) is in 
U,,, where t3 = sup a-‘(u3) an d u3 > u2 2 u’. Furthermore, if p3 #p, u3 is 
in U,, for some p3 4 {p, , p2}. Since we have a finite number of matchings 
and u = a( 1) is in U,,, for some k, in a finite number of steps we will reach 
u. So we will get a set u’, . . . . uk such that u’ d u2 d I.. d uk as required. 

It remains to show the existence of a. Let y: [0, l] -+ [u, ii], where 
y(f) = tu + (1 - t) u’. Then y is continuous, and, since u > u’, y is increasing. 
Delinea: [0, l]-Ubya(t)=_u(y(t)), where_u(r)=inf{uEU;u>r},forall 
Y in [u, U]. From Propositions 4 and 5 we have that a has the desired 
properties, which concludes the proof. 

It remains to prove that SPB is the set of fixpoints of a. 

PROPOSITION 10. x is in SPB if and on/y if a(x) = x. 

Proof: Let .Y = (u, u) E C,. If x is in SPB, suppose that a,,(.~) = ui for all 
i < k. Since u(x) is in C, (Proposition 8) and h is one-to-one, it follows that 
u,(x) = u, for all qi in p(S,). Then yk- ‘(x) =x and upk(x) = b,(?r) = uk. By 
a similar argument we show that u,,(x) = ul . Then u,,(x) = ui for all p, in P 
and consequently u,,(x) = ui for all qi in p(P). Since u,,(x) =sy, if qi is 
unmatched, u(x) = x. In the other direction, if u(x) = x, yip i(x) = .Y for all 
i= 1 2 . . . . m, so the result follows directly from the definition of a. 

Our last result is that the rebargaining function a converges to the 
P-optimal SPB when it starts from the P-optimal stable outcome, and to 
the Q-optimal SPB when it starts from the Q-optimal stable outcome. 
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THEOREM 4. Let X and J be the P-optimal and Q-optimal stable out- 
comes, respectivelv. Then a”(2) + sup SPB and a”(x) + inf SPB, when 
n-rm. 

We will need to show that a is continuous. 

PROPOSITION 11. The function a is a continuous function of x. 

Proof It is enough to see that a I=,: C, -+ C, is continuous, for all 
p E Z, since C is the union of a finite number of closed sets C,. Suppose 
that for all p, in Sk and q, in p(Sk) the functions a,,,(x) and a,(x) are con- 
tinuous in x, where k E (2, . . . . n}. Then ykp r(x) is continuous in x. Now 
observe that the functions t,,(yk- ‘(x)) and t,~,,~(y”- ‘(x)) are continuous 
for they are maxima of continuous functions. From the continuity of the 
functions J g, f-r, and g--l it follows that apk(x) and a,+,,)(x) are 
continuous. By a similar argument we obtain the result for p1 and p(P,), so 
a,,(x) and a,(x) are continuous for all pI in P and qj in p(P). Since 
a,(x) = si if qi is unmatched, this concludes the proof. 

Proof of Theorem 4. Since a is increasing and .U > p a(,?), it follows 
that ~~.a”(~~)~.a”+‘(.~)~.x f or all n. That is (a;(Z)>,,({a;(,i!)}n) 
is a decreasing (increasing) and bounded sequence of real numbers, for 
all p in P (q in Q). So a;(.?) -+ wp and a;(.?) + wg when n + CO, for some 
numbers ~1~ and wg, for all (p,q) in P x Q. Then an + w  when n -+ ~0, and 
M’ is in C, since C is closed. On the other hand, u’= lim a(a”(x)) = a(w), by 
the continuity of a, so w is in SPB. Now suppose that 2 is in SPB. Then 
;bpZ. SO w=lim a”(Z)>, lim a”(z)=z. Hence ~~=sup SPB. The other 
part of the theorem follows dually. 

4. DISCUSSION 

We have shown how to capitalize on the lattice structure of the core of a 
two-sided matching market, to draw conclusions about certain fixed points 
within the core. On a technical level, the advantage of using Tarski’s 
theorem rather than a topological result like Brouwer’s fixed point theorem 
to prove existence is that it permitted us also to draw conclusions about 
the structure of the set of fixed points.’ In economic terms, this structure 
permitted us to make welfare comparisons between different outcomes, e.g., 
to observe that there is a P-optimal SPB that is simultaneously the best for 
all the P-agents and the worst for all the Q-agents. Thus the set SPB of 

2 Although the mathematical tools used in game theory and mathematical economics are 
much more often topological rather than algebraic in nature, this paper is by no means the 
first use of such tools in game theory. Tarski’s theorem itself has been used to study the 
equilibria of noncooperative games in 1321 and [33], and algebraic fixed point theorems 
closely related to Tarski’s theorem ([20, 51) were used in cooperative game theory in [21]. 

WI’45 1-7 



96 ROTH AND SOTOMAYOR 

fixed points, which is a subset of the core, exhibits the same polarization of 
interests that characterizes the core. Again on a technical level, this 
suggests that many of the properties of the core of such a market are 
intimately connected to its lattice structure.3 

Since this lattice structure appears to be characteristic of two-sided 
matching markets, the techniques used in this paper can be applied to any 
such market. What is needed is to construct an order-preserving function a 
from the core to itself, whose fixed points are of interest.4 If the function u 
is also continuous, convergence results of the kind obtained in Theorem 4 
will also apply. 

In terms of practical importance, these results suggest some avenues by 
which to address the issues of equity and distribution that arise in markets 
of this kind by virtue of the polarization of interests that exists in the core. 
For example, it is shown in [24] that the labor market for residency 
positions in American teaching hospitals is administered in such a way as 
to result in the hospital-optimal stable outcome. At the same time, there 
are concerns in the medical community about the distribution of certain 
kinds of resident physicians to certain kinds of hospitals (see, e.g., [29]). It 
seems plausible that particular concerns of this type could be formulated in 
terms of a “redistribution function” whose fixed points would be core 
outcomes with respect to which no further redistribution would achieve the 
desired goals. What the kind of results presented here suggest is that, while 
such redistribution may move the outcome to an interior point of the core, 
some polarization of interests among the fixed points of the redistribution 
process will remain, unless there is a unique fixed point. In this sense, the 
polarization of interests that exists in the core of two-sided matching 
markets may be even more fundamental than previous results have 
suggested. 

I. APPENDIX: EXAMPLE 1 AND PROOFS OF PROPOSITIONS 7 AND 5 

1.1. Example 1 

The following example shows that not every stable matching need be 
compatible with every stable outcome. 

3 However, not all of the distinctive properties of such markets will be explainab4e in terms 
of the lattice structure of the core. For example, core outcomes in a wide variety of matching 
markets involving one-to-one matching have been shown to share some striking incentive 
properties (see, e.g., [IO, 23, 8, 17, 13, 9]), but these have been shown [28] not to generalize 
to the case of many-to-one matching, even though the lattice structure persists in these more 
general models. 

4 Obviously such a function a may arise in ways entirely removed from the kind of bargain- 
ing considerations that led to the particular function considered in this paper. Conversely, 
notions of bargaining equilibrium need not be confined to the core: see e.g., [7] for discussion 
of such a formulation. 
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Let the agents be P= { pI,pz} and Q = (ql, q2}, with “reservation 
prices” Y, = r2 = 0, and s, = s2 = -4x. The compensation functions are 

fiI(u)=u-sin(u), g,,(u) = u + sin(u) 

fp,(fd) = u if (p,q)#(L 1) 

g,,(u) = ” if (P, 4) f (2,2). 

There are only two possible matchings. These are p and ,u’ given by 
P(PJ=~~, P(P~)=~~; and P’(PA=~~~PJ=~~. 

The payoffs 

and 

x = (u, u) = (7r/2, 7t/2 + 1, 1 - rq2, -x/2), 

x’ = (u’, II’) = (31.~12, 1 + 3n/2, - 1 - 3x12, - 37112) 

are stable with matchings p and p’, respectively. However ~1 is not com- 
patible with x’, and ,u’ is not compatible with x. 

1.2. Proof of Proposition 7 

The proof of Proposition 7 will be accomplished in parts, by proving 
Lemmas 2, 3, and 4 below. 

We will assume that x= (u, u) is in C,,n C,. Let z=a(x, p), 
z’= a(x, cl’), PO= {pi P; z,,=zb}, and Q”= {qE Q; zy =z;}. We need to 
show that P” = P and Q” = Q, i.e., that every agent is indifferent between z 
and z’. 

LEMMA 2. Let P’={p~P~;z~=u~) and Q’={q~QO;~,=v,}. Then 
for all p in P’, 

(a) ’ zP(P) = zPIP) = vfo) if p is matched by p. 

(b) zF’(P) = 4m = ufl.(P) if p is matched by p’. 

and for all q in Q’, 

(cl zP,(Y) = z;,Y) = u,k/) if q is matched by p, 

Cd) z~~(~, = z;,,,,, = upC4, if q is matched by p’. 

Proof: We will prove (a) and (b). The proof of (c) and (d) is analogous. 
From the stability of x, z and z’ (Proposition 8) we have that 

u~p) = h;fph) = h,f&p) = “p(p) 

v/c(p) = h,!,,,(u,) = h,!,,,(z;) = &,) 

The result now follows from Proposition 1. 
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Note that Corollary 1 implies that any agent who is unmatched at either 
p or p’ is indifferent between z and z’. 

LEMMA 3. rfp(p)#p’(p) then 

(a) zP=zb=up 

(b) zP(P) = z;m = UP(P) if p is matched by p, 

(c) =p,lP) = zlp,p, = up’(p) if p is matched by p’. 

Proof: Let p, be such that p(p,) # p’(p,). If pi is self-matched under p or 
$ the result follows directly from Corollary 1. Then we will assume that pi 
is matched under p and $. Now, construct a graph whose vertices are 
P u Q. We say that p and q are connected by an arc if either p(p) = q or 
p’(p) = q. Let P u & be all vertices which can be reached by a path starting 
from p,. Since pi is matched under p and ,u’, p is nonempty and IQ1 2 2. 
Suppose Lemma 3 is true for all p, in P such that j < k and pk is in H. We 
will show that it is true for pk. In fact, if pk is self-matched under p or p’ we 
do not have anything to prove, by Corollary 1. So suppose pk is matched 
under P and $. We have that p(pk) #p’(pk), since otherwise (pk, I) 
would be an isolated component of the graph, which contradicts the fact 
that lQ[ 3 2 and p u Q is connected to pi. So let p(pk) = qi and $(pk) = qj 
for some qi # qi. By Lemma 2 we need only consider the case where there 
are some p, and p, such that p’(q;) =p,,, and p(qj) =p,. Then p, and pm are 
in P, p, #pk and pm #pkS since 101 > 2. There are three cases: 

Case 1. l<k. 

Then, z,~~,,~ = z~ccpkj = uprfpk), by assumption, since p( p,) = qj = p’( pk) # 
p’(p,). Then, qj is in Q’ by the inductive hypothesis, and from Lemma 2 it 
follows that zPk = zbk = uk. But then pk is in P’ and from Lemma 2, again, 
we get the assertion (b). 

Case 2. m < k. 

Then zPo,kj = z& = uPo,kj by assumption, since p’(p,) = qi = p(pk) # 
b(p,,). The argument follows analogously to Case 1. 

Case3. l>k and m>k. 

Let y = yk-‘(s, p). Since p(pI) = p’(pk) +! p(S,) and pm $ Sk, we have that 
Y Ir’(Pk) = ‘d(Pk) and yPm = u,. Then, from the definition of t we have that 

uk 2 t,,(Y) 2 hkp.mt,(V,,,,,,) = uk 

V P(Pk) b tP(fU.)(Y) 2 h,;(,,,(u,) = vP(Pk) 
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since p’(p,,) = qi = p(pk). So t,,(y) = uk and t,o,,,(y) = u,(~~). From this it 
fOllOWs that zp, = tik and z,(,,) = upo,kJ. 

Now, let y’ = yk- ‘(x, p’). By a similar argument we have that zb, = uk 
and 4i,Pk, = UP7Pk)~ which completes the proof that Lemma 3 is true for pk. 
Analogously we prove that it is true for pi,, where i, is the minimum index 
for the p’s in P. Then by induction we get that Lemma 3 is true for all p in 
p, and in particular for pi. 

LEMMA 4. Zf p(p) = p’(p) then 

(a) zP=zb 

(b) z~,(~) = =I(,,. 

Proof: Let P’= {PEP; ~c(P)=~‘(P)j=(Pil,Piz,...IP;,}, where 
i, <i,... < i,. Define S: = (POE P’;j< i}. We claim that Lemma 4 is true 
for allp in Sk+,, for all k = 1, . . . . r. In fact, if we suppose it is true for all p in 
S,, then, using Lemma 3 we can write: 

,v~,~l(x,~)=y~,-‘(x,)(I’)=zp,, ifp, is in S:.,; and = ui, otherwise 

ygx, p)=Jy’(x, p’)=zq,, if q.i is in p(Si,); and = ay,, otherwise. 

Then y'k- ‘(x, p) =yikp ’ (x, p’). Now use the definition of a and get the 
assertions (a) and (b) for all p in S,+ , . 

By an analogous argument we can see that (a) and (b) hold for pi,. Then 
the result follows by induction. This completes the proof of Lemma 4, and 
of Proposition 7. 

1.3. Proof of Proposition 5 

We will need Lemmas 5 and 6. Lemma 5 will be only stated; its proof 
can be found in Demange and Gale [9]. 

LEMMA 5. Zf IQ1 < IPI then there exists some p in P such thar up(r) = rp. 

Lemma 6 and Proposition 5 are due to D. Gale (personal com- 
munication). In order to simplify our notation, we will write the vector 
inequality u < U’ to signify that up d $, for all p in P and up. < u;, for some 
p’ in P. 

LEMMA 6. Letu<u’inUandletP’=(p;u~>u,}.Chooseu<F<u’so 
that up < F,, < u; for all p in P’. Then there is some (ii, i7) stable for 
M( 7) = M( P, Q, f, g, ?, s) such that ii, = Fp for some p in P’. 

Proof Let p and p’ be compatible matchings for u and u’, respectively. 
By Proposition 1, p(P’) = ,u’(P’) = Q’. Let (_u”, 6”) be the Q-optimal payoff 
for M(P’, Q2, f, g, ?, s). Now define (17, I?) to agree with (g”, 6”) on P’ and 
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Q2, and with (u, u) on P - P’ and Q - Q2, and let b be the corresponding 
matching. By Lemma 5 $ = FP for some p in P’. It remains to show that 
(ii, 6) is stable for M(7). Consider a possible blocking pair (p, q). If p is in 
P’ and q is in Q - Q2, then iiP 2 F,, > up, so if (p, q) blocks (_u, i7) it would 
also block (u, u), contradicting stability of (u, u). Now for q in Q*, 
&/=U$>t(/, since (u’, 0’) is stable in M(P’, Q’; r”). Hence if p is in P- P1, q 
is in Q2, and (p, q) blocks (ii, i?), it would also block (u’, a’), contradicting 
the stability of (u’, 0’). 

Proof of Proposition 5. If u(v) were discontinuous at Y, since U is com- 
pact, there would be a sequence F --+ Y, when n -+ co, r” in [g, U], such that 
g(f) -+ u’ #g(r). Since g(F) b r”, it follows that u’> r, so u’ > g(r), since u’ 
is stable. Let P’ and ? be as in Lemma 6: i.e., g,,(r) < fp < ub for all p in P’, 
and _up(r) = FP = $ for all p in P - P’. Then, for n sufficiently large we must 
have: 

(a) rn <F, since r” -+ r when n + CO, and r 6 g(r) < P; and 

(b) gp(rn) > F,,,, for p in P’, since g(F) + u’ when n + CO, and ub > FP. 

But from Lemma 6 there is a stable payoff (ii, r7) for M(7) with ii, = FP, 
for some p in P’. Every agent in P’ is matched under fi so if p’ is self- 
matched under j2 it follows that p’ is in P- P’, so it is self-matched under 
,u. By Corollary 1 this means that up. = UP. = rp. which implies that 
r,“, = rpT = FP, for all n, since r” is in [_u, 171. Then ii,,, = r,“,. Since, from (a), 
rn < F, we can conclude that (fi. f7) is stable for M(P, Q; rn), so 
FP = ii, 2 up t”), by definition of g(F). But this contradicts (b) above, and 
completes the proof. 
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