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Summary. This paper considers the incentives confronting agents who face the
prospect of being matched by some sort of random stable mechanism, such as
that discussed in Roth and Vande Vate (1990). A one period game is studied in
which all stable matchings can be achieved as equilibria in a natural class of
undominated strategies, and in which certain unstable matchings can also arise
in this way. A multi-period extension of this game is then considered in which
all subgame perfect equilibria must result in stable matchings. These results sug-
gest avenues to explore markets in which matching is organized in a decentralized
way.

1. Introduction

The empirical study of two-sided markets as matching processes has so far con-
centrated on markets in which centralized matching procedures were introduced
at some point in the market’s history. Loosely speaking, these studies suggest
that market organizers turn to centralized procedures to address certain market
failures (such as uncontrolled unravelling of appointment dates, and chaotic
recontracting), and that those centralized procedures which achieved stable out-
comes resolved the market failures that inspired them, while those markets or-
ganizeld through centralized procedures that yielded unstable outcomes continued
to fail".

' Roth (1984a) studies the American market for newly graduated physicians. Prior to 1951
that market experienced a number of failures, having to do with the difficulty of setting uniform
dates of appointment, and with the frequency with which contracts were broken. In 1951 a
centralized matching procedure that produces stable matchings was adopted, which is still in
use, and which resolved these problems. Roth (1990a, b) studies the various different entry level
markets for new physicians in the different regions of the National Health Service of the United
Kingdom. In response to similar market failures in the late 1960%s, centralized matching pro-
cedures were adopted in these markets also. But different procedures were adopted in different
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Since many entry-level labor markets and other two-sided matching situations
don’t employ centralized matching procedures, and yet aren’t observed to ex-
perience such failures, we can conjecture that at least some of these markets may
reach stable outcomes by means of decentralized decision making. And decen-
tralized decision making in complex environments will often introduce some
randomness into what matchings are achieved (for example if the order in which
offers are received depends on the vagaries of the post office, etc.). In this con-
nection, a class of random processes that converge to stable outcomes with prob-
ability one was introduced in Roth and Vande Vate (1990).

One of the clearest lessons from the empirical study of centralized (and de-
terministic) procedures is that understanding the 1ncent1ves facmg the agents is
essential for understanding the behavior of the market.” There is every reason to
believe that the same will be true for decentralized and random processes, and
the purpose of the present paper is therefore to begin to study equilibrium be-
havior for games arising from such processes.

However one of the difficulties that arises in attempting to apply theoretical
studies of equilibrium to empirical studies is that the information required for
agents to implement some kinds of equilibrium strategies frequently exceeds the
information that agents can reasonably be thought to have. One potential course
of action is to model such markets as games of incomplete information (see Roth
1989), but as an attempt to model observable markets this has problems of its
own, because of the difficulty of observing agents’ prior probability distributions.
In the present paper we shall instead adopt the tactic of concentrating on a class
of plausible, informationally parsimonious strategies that agents can employ even
when they know only their own preferences, and that they have been observed
to employ in at least one empirical study (namely Mongell and Roth 1990).

It is already known (Roth 1982) that no revelation mechanism both yields a
stable matching with respect to the stated preferences and makes it a dominant
strategy for all agents to state their true preferences. However it is also known
(Roth 1984b) that the mechanism that always yields the optimal stable matching
for one side of the market has the property that, although agents may have an
incentive to misrepresent their preferences, every equilibrium in undominated
strategies will yield a matching that is stable with respect to the true preferences”.
That such a strong result can be obtained is due in large part to the fact that the
restriction to undominated strategies has considerable force in that case. But for

markets, and those which produce stable matchings have succeeded in resolving the failures,
and remain in use, while in all but the smallest markets those which did not produce stable
matchings continued to experience the same problems as when the markets were decentralized,
and these centralized schemes were ultimately abandoned. See also Mongell and Roth (1990)
for a study of the preferential bidding system used by American sororities. See Crawford and
Knoer (1981) and Kelso and Crawford (1982) for theoretical studies emphasizing the connection
between two-sided matching models generally and labor markets.

2 For example one of the matching procedures employed to match graduating medical students
to jobs in some regions of the United Kingdom, analyzed in Roth (1990b), gave participants
an incentive to pre-arrange matches in a certain way (and thus circumvent the procedure). Over
80% of the matches in one region were observed to be pre-arranged in this way prior to the
abandonment of the procedure.

* This result apphes to models of one-to-one matching of the kind considered here. The situation
is more complex in models of many-to-one matching (see Roth 1985; and Roth and Sotomayor
1990, Chap. 5).
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the class of random matching mechanisms considered here, we will see that
relatively few strategies are dominated.

This paper is organized as follows. Section 2 presents a simple matching model,
and describes a class of random mechanisms that, for any (stated) preferences
converge to a matching that is stable with respect to those preferences. Section 3
then considers a one period revelation game with random stable matching, and
observes that very few strategies are dominated. We then turn our attention to
a class of plausible and informationally parsimonious undominated strategies
called truncation strategies, and show that every stable matching can be achieved
as an equilibrium in truncation strategies. Section 4 then considers a simple dy-
namic game in which every subgame perfect equilibrium yields a stable matching.

2. Random matching in the basic marriage model

We follow Gale and Shapley (1962) in considering the simplest two-sided match-
ing model, known as the marriage problem, with equal numbers of agents on
each side of the market*. The two sets of agents are M={m,,...,m,} and
W= {w,...,w,}, called “men” and “women”, and each agent has a complete and
transitive strict preference ordering over the n agents on the other side of the
market. The preference ordering of a man m, for example, will be a permutation
P(m) of w, through w,: if man m prefers w; to w; then w; appears earlier in the
list P(m) than does w;. Let P={P(m,),..., P(m,), P(w,),...,P(w,)} denote the
preference lists of all the agents, so a particular instance of the marriage model
is specified by (M, W, P).

An outcome is a matching of men to women, i.e., a one-to-one function u
from MU W to itself, such that for each m in M and w in W, u(m)=w if and
only if u(w)=m, and if u(m) is not contained in W then u(m)=m, and similarly
u(w)=w if u(w) is not contained in M. (If u(m)=w then man m is matched to
woman w, and if u(m)=m then man m is single, or “unmatched”.) For a given
matching ¢, 2 man m and a woman w are said to form a blocking pair if they are
not matched to one another (u(m)#w) and if they each prefer one another to
their mates at u (w prefers m to u(w) and m prefers w to u(m)). A matching u is
stable if there are no blocking pairs®. Note that at a stable matching of this very
simple matching model no man or woman is left unmatched.

Gale and Shapley (1962) proved that, for any preferences of the agents, the
set of stable matchings is non-empty. Knuth (1976) however, constructed an
example in which there are cycles of blocking pairs, so that the process of sat-
isfying blocking pairs in the following way may not lead to a stable matching.
If (m’, w’) is a blocking pair for a matching u, we say that a new matching v is
obtained from u by satisfying the blocking pair if m’ and w’ are matched to one
another at v, their mates at 4 (if any) are unmatched at v, and all other agents
are matched to the same mates at v as they were at 4. That is, v(m’)=w’, and

* There is now a large literature concerning this and many much more general models of two
sided matching. See Blair (1988) for one of the most general of these, or see Roth and Sotomayor
(1990) for a comprehensive account.
* In this simple model the set of stable matchings coincides with the core of the game. However
we refer to stable matchings rather than core outcomes because in more general matching
models this exact coincidence is lost.
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for all m in M distinct from m’ and u(w’), v(m)=u(m), and if u(w’y=m for
some m in M, v(m)=m. So Knuth’s example showed that, starting from a given
matching u, a sequence of matchings {u such that y,,, is obtained from u; by
satisfying some blocking pair for u; may cycle rather than converge to a stable
matching,.

Knuth’s example raised the question of whether at least one path generated
by satisfying blocking pairs exists from any matching to a stable matching, for
any preferences of the agents. Roth and Vande Vate (1990) resolved this question
in the affirmative. They went on to consider a random process which begins by
selecting an arbitrary matching u, and then proceeds to generate a sequence of
matchings 4= u,, u,..., where each y; 4, is derived from g; by satisfying a single
blocking pair, chosen at random from the blocking pairs for y,. We assume the
probability that any particular blocking pair (m, w) for the matching u; will be
chosen to generate 4, is positive, and bounded away from zero (i.e. this prob-
ability may be a function of the sequence up to i as well as of the matching u = u;
itself, but it does not go to zero as i goes to infinity®. Let R(u) be the random
sequence generated in this way from an initial matching . The family of random
processes beginning from an arbitrary matching and selecting a blocking pair at
random to create a new matching will eventually reach a stable matching with
probability one.

Theorem 1 (Roth and Vande Vate 1990). For any initial matching u, the random
sequence R(u) converges with probability one to a stable matching.

3. Strategic considerations

With the exception of the impossibility result to be described in Proposition 37,
theoretical investigations of strategic considerations in two sided matching have
concentrated on deterministic processes, in which either some central clearing-
house arranges the matches, or else they are arranged by the agents acting ac-
cording to some rigid set of rules designed to achieve a particular stable matching
(typically the optimal stable matching for one side of the market)®. Similarly, the
comparative ease of gathering reliable information about the “rules of the game”
when the game involves a centralized matching process has made these the starting
point of empirical work (see footnote 1). In contrast, it may be impossible to
determine similarly exact rules for markets in which matching is conducted in a
decentralized way, even though the behavior of many such markets suggests they
achieve stable matchings. And decentralized decision making in complex envi-
ronments presumably introduces some randomness into what matchings are
achieved. We therefore turn to the general class of random processes discussed
in Theorem 1. The idea is that the randomness arises from unmodelled (and

¢ The probability that a particular blocking pair (m, w) for a matching g will be chosen might
reflect, for example, factors such as the likelihood that individuals m and w would meet, and
the number of other blocking pairs. If, for example, this probability were the same every time
the matching u arises in the sequence of matchings, the necessary condition would be met.

? Which has rather general implications, because of the “revelation principle”, which states
that equilibria of any mechanism can be achieved by revelation mechanisms.

8 A notable exception is Kamecke (1989), who studies a decentralized “demand game* version
of a matching model in which there is a continuously divisible commodity.
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perhaps inherently uncertain) details of the way the game proceeds. For example,
randomness might arise from details of the way in which players communicate
with one another: there may be randomness in whether a player receives the next
proposal someone is planning to make to him before he is able to deliver the
next proposal he is otherwise planning to make.

To fix ideas, it may be helpful to think of the strategic decisions of the players,
and the random process which follows, as being a model of the sorting process
that precedes the actual signing of contracts. For example, workers make strategic
decisions about which firms to apply to, and firms about which applicants to
interview. The sequence of matchings that arise from the random processes of
Theorem 1 can then be thought of as preliminary matchings (i.e. which firms
would hire which workers if the negotiating process were arbitrarily stopped at
different points in time) which converge to a final stable matching that would be
the observable outcome. So for given (true) preferences of the agents, they are
each faced with the strategic question of what (revealed) preferences to act on,
when the final outcome will be a randomly selected matching that is stable with
respect to the revealed preferences.

To consider strategic games in which players may choose not to reveal their
true full preferences, we need to slightly generalize our definition of stability to
include cases in which players may not reveal that other players are acceptable
mates. That is, a player p with true preferences P(p) may choose to behave as if
his or her preferences were Q(p)#P(p), and Q(p) may not contain as many
elements as P(p). (For example, if m does not appear on w’s preference list, w
has stated that she prefers to remain unmatched rather than be matched to m.
Formally, for every player p, the implicit last element of any preference list o)
is assumed to be p.) We say that a matching 4 is individually rational with respect
to some (stated) preferences Q =(Q(m,),..., Q(m,), Qw,),..., Q(w,)) if for every
m and w such that u(m) = w, w appears on m’s preference list Q(), and m appears
on w’s preference list Q(w). A matching is stable if it is individually rational and
there are no blocking pairs.

We will also need the following facts about stable matchings of a marriage
problem (M, W, Q) with general strict preferences of this kind’.

Proposition 1. For any (M, W, Q) the set of stable matchings contains a matching
U that is optimal for the men in the sense that no other stable matching v gives
to any man m a mate v(m) that he prefers to u(m). Similarly, it contains a stable
matching Uy that is optimal for the women.

Proposition 2. For any (M, W,Q) any player who is unmatched at some stable
matching is unmatched at every stable matching.

Proposition 3. No revelation mechanism which chooses a stable matching in terms
of stated preferences makes it a dominant strategy for all agents to state their true
preferences. However the mechanism which chooses the optimal stable matching for
one side of the market makes it a dominant strategy for agents on that side of the
market to state their true preferences.

® Proposition 1 is adapted from Gale and Shapley (1962), and Propositions 2 and 3 from Roth
(1982). See Roth and Sotomayor (1990) for a full discussion.
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We begin by considering the simple case of a one-period game of complete
information'®, played by players M U W with (true) preferences P, in which every
player p states a preference list Q(p) over players on the other side of the market,
and then a matching stable with respect to the stated preferences Q is selected
at random, with every stable matching having positive probability. So the strategy
set of a player p in this game is the set of all possible preference lists, i.e. the set
of all ordered lists consisting of between 0 and n players on the other side of the
market.

Observe first that any matching u can be achieved by an equilibrium in which
each player p states the preference list Q(p) that consists of the single element
4(p). But, unless u(p) happens to be player p’s first choice in his or her true
preferences P(p), this is a dominated strategy for each player. We can state this
formally as follows.

Lemma 1. For any player p, the strategy of stating a preference list Q(p) consisting
of a single element u(p) is a dominated strategy unless u(p) is p’s true first choice
(i.e. unless u(p) is the first element in the true preferences P(p)).

Proof. Since the model is symmetric between men and women, it is sufficient to
prove the lemma for p=w in W. Let m, be the first choice of woman w, and let
Q(w) consist of the single element m #m,. We will show that the strategy Q(w) =m
is dominated by the strategy Q’(w)=m,,m, i.e. the strategy of listing both m,
and m. Let Q_,, denote the set of preferences stated by all players other than w.
We need to show that for no preferences Q_,, will w ever do worse by stating
Q' (w) instead of Q(w), and for some preferences Q_,, she will do better.

Proposition 2 implies that when a matching is selected at random from those
stable with respect to stated preferences Q =(Q-,,, Q(w)), player w either will be
unmatched with certainty, or matched with man m with certainty. If w is un-
matched at Q then she can certainly do no worse by stating Q ' (w), so suppose
w is matched at Q, i.e., suppose that w is matched to m at every stable matching
with respect to Q. Then (again by Proposition 2) the only way that w could do
worse by stating Q ' (w) instead of Q(w) would be if w were unmatched at every
stable matching with respect to Q' =(Q_,,, @’ (w)). But in this case w would be
unmatched at the W-optimal stable matching with respect to Q’, and Proposition
3 implies that this is not the case, since if it were then it would not be a dominant
strategy for a player w whose true preferences were Q(w) to state them when
the W-optimal stable matching would be chosen (i.e. such a player would prefer
to state Q(w)). So there exists no Q_,, such that w does worse by stating O’ (w)
than by stating Q(w).

To see that there exist some Q_,, for which w does strictly better by stating
Q' (w) rather than Q(w), suppose Q(m,)=w, i.e., man m, lists only woman w.
Then at Q’w is matched to her true first choice with certainty, but at Q she
has zero probability of being matched with him. This completes the proof of
Lemma 1.

10 Looking at the complete information case will allow us to separate the unavoidable strategic
questions from the further complications which arise in the case of incomplete information. In
matching with incomplete information, the strong impossibility results obtained in Roth (1989)
via the revelation principle show that the situation will necessarily be more complex than the
one we explore here.
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Although Lemma 1 establishes that a class of equilibrium strategies is dom-
inated, the next lemma shows that, in contrast to the stable mechanisms consid-
ered in Proposition 3, when we consider random stable mechanisms there are
very few dominated strategies.

Lemma 2. For any player p, the strategy Q(p) is undominated if the first element
in Q(p) is player p’s true first choice (i.e. the first element of P(p)).

Proof. As in the previous lemma, it is sufficient to prove the lemma for some
woman w. We need to show that if Q(w) is a stated preference list that lists w’s
first choice, m,, first, and if O’ (w) # Q(w) is any other preference list, then there
exist preferences Q_,, for the other players such that w prefers the lottery that
results from Q =(Q-,, Q(w)) to that which results from Q' =(Q_,, Q' (w)). We
will consider three cases.

Case 1. Q' (w) doesn’t list m, first. Then suppose man m#m, is listed first in
Q' (w), and let Q_,, be such that Q(m,;)=Q(m)=w,w’ for some woman w’,
and Q(w’)=m, m,. Suppose further that no other men list w or w’, and no other
women list m or m,. Then it is straightforward to verify that w is matched to m,
with probability one when the stated preferences are Q, and that she is matched
to m with probability one when they are Q’, so she does better by stating Q(w).

Case 2. Q' (w) contains a different set of men than does Q(w). If there is a man
m in Q(w) but not in Q”’(w), then let Q_,, be such that Q(m)=w and no other
man lists w. Then w is matched to m at Q, but unmatched at Q. If there is a
man m in Q' (w) but not in Q(w), let Q_,, be such that Q(m,)=w’, w for some
woman w’, Q(m)=w,w’, and Q(w’)=m, m,. Then it is straightforward to show
that w is matched to m, at every matching stable with respect to Q but is matched
to m at the M-optimal stable matching with respect to Q’, so that when w states
Q(w) she is certain to be matched to her first choice, but has a positive probability
of doing worse when she states O (w). :

Case 3. Q' (w) contains the same elements as Q(w), but in a different order.
Then there exits m and m’ such that m is preferred to m’ according to ow),
but m’ is preferred to m according to Q’(w). Let Q_,, be such that there is
a woman w’ having preferences Qw’)=m’,m;,m, and P(m)=
w’,w; P(m)=P(m’)=w,w’; and no other agents list w,w’,m, m’ or m,. Then
it is straightforward to show that w is matched to m, under every stable matching
with respect to Q. But the M-optimal stable matching with respect to Q’ matches
w tom’. So when w states Q(w) she is certain of being matched to her true first
choice, but when she states Q ’ (w) she has a positive probability of being matched
to a less preferred choice. This completes the proof.

Lemma 2 implies that quite complex strategies may be undominated, so that
concentrating on equilibria in undominated strategies does not rule out equilibria
in which, say, every agent lists all the agents in the opposite set, but in an order
quite different from their true order. Thus random stable matching mechanisms
present technical difficulties of a kind not found in the strategic analysis of the
(deterministic) mechanisms which select the optimal stable matching for one side
of the market, in which case only one side of the market has many undominated
strategies (cf. Gale and Sotomayor 1985; Roth and Sotomayor 1990, Theorem
4.21). But even if a complicated equilibrium Q of this sort exists, it is difficult
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to imagine in most applications that any player p would have sufficient infor-
mation about the preferences Q_, of the other players to know that a strategy
of this form would be a best response. And complex strategies are unlikely to be
best responses to a wide range of possible preferences Q_ » that other players
might state.

However we can identify a class of undominated strategies for each player,
called truncations, with the property that for any strategies of the other players,
each player will always have a truncation as a best response. Define a truncation
of a player p’s true preference list P(p) to be a list Q(p) containing k elements
(for k between 0 and #) such that the k elements of Q(p) are the first k elements
of P(p), in the same order. (Of course if k=0 the strategy is dominated.) Trun-
cations are plausible kinds of strategies, that have been observed in practice'’.
We show next that truncations have the best response property mentioned above.

Theorem 2. For any collection of stated preferences Q_ p for players other than an
arbitrary player p, player p always has a best response that is a truncation of P(p).

Proof. Let Q(p) be an arbitrary preference list for player p (not necessarily a
truncation) and let x4 be the optimal stable matching with respect to
Q=(Q(p), Q) for players on p’s side of the market. Let Q *(p) be the truncation
of P(p) whose last element is #(p). Then for no matching u* that is stable with
respect to Q* = (Q*(p), Q_,) is u(p) preferred to u*(p). (This follows since oth-
erwise p must be unmatched at some stable matching of Q*, and hence at every
stable matching by Proposition 2. But then an agent whose true preferences were
Q*(p) could do better by stating Q(p) than by stating Q*(p) when the optimal
stable matching for players on his side of the market will be chosen, which
contradicts Proposition 3.) So any lottery over the matchings stable with respect
to Q* gives player p at least as good a final mate as any lottery over the matchings
with respect to Q. Since Q is arbitrary, this completes the proof.

For the game at hand, we can state the following results concerning truncation
strategies.

Theorem 3. i. Any stable matching can be achieved by equilibrium in undominated
Strategies via truncation strategies.

ii. No equilibrium in truncation strategies will have more than one stable matching
in stated preferences.

ili. No set of truncation strategies can result in an unstable matching at which
everyone is matched.

Iv. But unstable matchings having some players unmatched can arise at equilibria
in truncation strategies.

Proof. Part (i): Let u be any stable matching for (M, W, P), and let Q be the
vector of truncations in which each player p reveals his preferences down to up)
(i.e. Q(p) contains x(p) but does not contain any less preferred matches). Then
u is the unique stable matching with respect to Q. To see that Q is an equilibrium,
we need to show that no player p can profitably state Q’ (p) different from o(p)
(where Q' (p) need not be a truncation). But if v is a stable matching with respect

' See Mongell and Roth, 1990, in which agents had an incentive to truncate after their first
choice, and in which very high percentages of submitted preferences were observed to contain
only a single choice.
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to Q" =(Q"(p), Q-}) then the stability of # with respect to P and the fact that
Q- are all truncations imply that v(p) is not preferred to u(p), since otherwise
(», v(p)) would have formed a blocking pair for u. So Q is an equilibrium.

Part (ii). Suppose u and v are both stable with respect to Q, with u(p)#v(p) for
some player p Then player p faces a lottery which gives positive probability to
both u(p) and v(p). But if he stated a truncation Q' (p) which ended at the
optimal stable matching with respect to Q for agents on p’s side of the market,
he would face a lottery all of whose outcomes are at least as preferred as the best
outcome from Q. So Q is not an equilibrium.

Part (iii): Suppose Q is a vector of truncations, and u is a stable matching with
respect to Q, and all players are matched at 4. Then every player p has listed
u(p) in Q(p), together with all preferred players. So u is stable with respect to
P, since any blocking pair under preferences P would also be a blocking pair
under Q.

Part (iv): Consider the example in which n=2 and the preferences are
P(m)=w,, Wa; P(m,) = wy, W} P(w)=m,,my; P(Wy)=m,,m,. Let Q be the
vector of stated preferences at which each player states only his or her first
choice. Then the only stable matching with respect to Q is the matching
u=[(wy,m,), (wp, w,), (m,, m,)] that leaves w, and m, unmatched. Yet Q is an
equilibrium, since w, cannot do better by listing m, so long as m, doesn’t list w,,
and vice versa.

Part (iv) of Theorem 3, and its proof, suggest that it is the one period nature
of the decentralized game under consideration that permits some unstable match-
ings to arise at equilibrium'?. If, after stating truncated preferences and finding
themselves unmatched, as in the proof of part (iv), agents had a further oppor-
tunity to extend their preferences, this kind of instability might be avoided. We
turn now to consider such a multi-period game.

4. A simple dynamic model

Here we consider a multi-period analog of the above game. It can be thought of
as a simple model of a situation in which players make proposals to each other,
and rearrange themselves into potential matchings which are stable with respect
to the preferences revealed by the proposals, until no player wishes to make any
new proposals, at which point the last potential matching under consideration
becomes the actual matching. The rules of the game are as follows.

The game begins with every player p declaring a list of mates he or she is
willing to accept, by announcing a preference list Q(p). This preference list must

? The parallel result (Roth, 1984b) for the centralized game which selects one side‘s optimal
stable matching in terms of the stated preferences is that every equilibrium in undominated
strategies yields a stable matching with respect to the true preferences (see also Roth and
Sotomayor 1990).
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be a truncation of the player’s true preference list'>, When all players have de-
clared their acceptable mates in this way, a potential matching u is selected, by
the random process of Theorem 1. So the potential matching y is stable with
respect to the revealed preferences Q =(Q(m,),..., Q(m,), Q(wy),..., O(w,)).

Following the selection of a potential matching u, an order of all the players
is selected at random, and the players have the opportunity, in order, to extend
their revealed preference list to include one or more additional players to whom
they are now willing to be matched. (Again, their extended preference list must
be a truncation of their true preferences.) If no player wishes to extend his list,
the game ends, and u becomes the final matching of the game. If some player
extends his revealed preference list, then a new potential matching is immediately
chosen, by randomly choosing blocking pairs, starting from the matching x, and
stopping when the process converges to a matching v that is stable with respect
to the current set of revealed preferences. The game then continues according to
the rules laid out in this paragraph. (Note that the game must stop in a finite
number of moves, since each player can extend his preferences at most » times.)

The game is played under perfect as well as complete information: i.e. all
moves, including chance moves, become common knowledge as soon as they
occur. Players® preferences for outcomes of the game depend only on the final
matching, not on the path by which it was reached. (Thus a given strategy 2n-
tuple determines a lottery over final matchings, and at each point in the game
players can evaluate alternative decisions in terms of the expected utility of the
resulting lotteries.) Players may condition their decisions at subsequent stages of
the game on any of the events that precede their decision, starting from the
beginning of the game as described above.

It turns out that for any marriage problem (M, W, P) as described in Sect. 2,
only stable matchings can arise as subgame perfect equilibria of the game just
described. That is, we have the following result.

Theorem 4. In the dynamic game played by players M W with preferences P,
only stable matchings u can arise with positive probability as the final outcome of
a subgame perfect equilibrium.

The proof of Theorem 4 will proceed by a series of lemmas.

Lemma 4.1. For a given (M, W, P), if a matching u arises as stable with respect to
the revealed preferences at any stage of the dynamic game, u is stable with respect
to P if and only if no player is unmatched at .

Proof. If u leaves any players unmatched, then it is not stable with respect to P,
since there are equal numbers of men and women, all of whom are mutually
acceptable. So suppose u leaves no player unmatched, and let Q be the set of
preferences revealed by the players. Then since u is stable with respect to Q,
every player p has included u(p) in his or her revealed preference list Q(p). But
since Q(p) is a truncation of P(p) it coincides with P(p) for the mates player ¥4
prefers to u(p), and so the fact that there are no blocking pairs for u with respect
to Q implies that there are none with respect to P, and so u is stable with respect
to P.

¥ So truncated strategies enter this game as part of the rules, and the results would be different
if we allowed players to announce more complicated misrepresentations of their preferences
(see e.g. footnote 14). This can be regarded as an attempt to model the information that the
players have through a restriction on the complexity of the strategies they can effectively employ.
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Lemma 4.2. If Q is a set of truncated preferences, u is a stable matching with
respect to Q, and the set of unmatched players is non-empty, then there must be
an unmatched player p who has not fully revealed his or her preferences, i.e. for

whom Q(p)+ P(p).

Proof. Suppose the lemma is false, so that Q(p) = P(p) for every player p who
is unmatched at u. Since there are equal numbers of men and women, there are
the same number of unmatched men as unmatched women. But any unmatched
m and w form a blocking pair for u, since P(m) contains w and P(w) contains
m. This contradicts the stability of u.

Lemma 4.3. If u is the final matching resulting from some subgame perfect equi-
librium, then u leaves no player unmatched.

Proof. Starting from the end of the game, suppose the preferences revealed so
far are Q, u is the matching that will occur if no player extends his preferences,
and there is exactly one unmatched player who has not fully revealed his pref-
erences, player p. Then it is not a subgame perfect equilibrium for every player
to refuse to extend his preferences, since if player p were to extend his preference
list from Q(p) to P(p) then he or she would be matched at the final outcome,
which is preferable to being unmatched. (This follows since Lemma 4.2 implies
that player p will be matched at the new matching, v, which is stable with respect
to the true preferences, by Lemma 4.1. Since strategies must be truncations, no
blocking pairs can appear at any subsequent stage of the game, so v must be the
final outcome of the game.)

Now suppose, inductively, that it has been shown that if there are exactly k
unmatched players who have not fully revealed their preferences, then there is
no subgame perfect equilibrium at which every player will refuse to extend his
preference list, and consider the case when there are exactly £+ 1 such players.
Then at a subgame perfect equilibrium it cannot be that no player will extend
his preferences, since the inductive hypothesis insures that if one of them did, he
would eventually be matched. This completes the proof of the lemma.

The proof of Theorem 4 is now immediate from Lemmas 4.1. and 4.3.

An open question that remains about the dynamic game described above is
whether every stable matching can be achieved with positive probability as the
outcome of a subgame perfect equilibrium. One reason that this seems to be a
difficult question to settle is that best response strategies can be complex.

Consider the following example, with n=3;

P(mx)':Wl,Wsts;P(mz) =Wz, Wi, W3; P(m3) =ws, w,w,
P(w,) =m2,m1,m3;P(w2)=m1,m2,m3;P(w3)=m3, my,ms.

There are two stable matchings, u, = [(my, wy), (mz, w,), (m3,w3)]  and
Uw=[(my, w,), (ny, w)), (M3, w3)]. We assume that the order in which players are
given the opportunity to extend their preferences is chosen independently at each
stage of the game, with positive probability for each ordering, so subgame perfect
equilibria will give positive probability to both stable matchings. Note that if m
and m, both extend their preferences to include their first two choices before wy
and w, do, the game will end with uy,, while if w, and w, reveal their first two
choices before m, and m,, then the final matching will be u,,. Suppose now that
at some stage k of the game m, has revealed his first two choices and all other
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players have revealed only their first choice, so that the potential outcome is
M= [(m1, w5), (my, my), (3, w3), (W,, w,)] which leaves m, and w, unmatched.
Suppose the random order selected for players to have the opportunity to extend
their preferences is wy, w,, wy, ms, m;, m,. If no player has extended his preferences
when m,’s turn comes, his best response will be to extend, and the game will end
with the woman optimal stable matching u, ., =u,,'*. So if no player has extended
when m,’s turn comes, his best response will be to extend, which will yield
Mi+1= My and a new random ordering, since this will leave a positive probability
that the game will terminate in the man optimal stable matching.

Thus this example shows that it may be an error to be too choosy (by not
extending your preferences soon enough), just as it can be an error not to be
choosy enough. Consequently the strategic problems facing players in decen-
tralized two-sided matching games are complex, even when those games are
played under conditions that tend towards stability.

5. Concluding discussion

To put these results in perspective it may help to consider their relation to some
of the prior work concerning centralized and deterministric matching mecha-
nisms. In view of the impossibility result contained in the first part of Proposition
3, a question arose in explaining the observed success of stable matching mech-
anisms in comparison with unstable mechanisms in the various empirical studies
already referred to. Specifically, the fact that a mechanism produces stable match-
ings with respect to stated preferences does not necessarily imply that the match-
ing it produces will be stable with respect to the true Preferenccs, since agents
may have an incentive to misrepresent their preferences'®. But if the matching is
unstable (with respect to agents’ true preferences) then some agents would still
have an incentive to arrange their matches by circumventing the matching mech-
anism, just as in the case of the unstable mechanisms which have failed in the
face of the problems this creates. Nevertheless, the stable mechanisms observed
in practice have not been observed to fail'®,

The paper of Roth (1984b) provided a direction in which an answer to this
puzzle might be sought, since it showed (for a simple matching model of the kind
considered here) that at equilibria in undominated strategies, even though the
stated preferences might differ substantially from the true preferences, the re-
sulting matching would be stable with respect to the true preferences, when the
optimal stable mechanism for one side of the market is employed. Thus stability
could be achieved not only by straightforward behavior on the part of the agents,
but also by sophisticated strategic behavior, and this suggested that stability in
the actual markets studied might therefore be robust to a range of plausible
behavior.

! Note that if the rules of the game allowed m, to state something other than a truncation, he
could extend his stated preference to Q(m,)=w,, w; without causing the game to end, and
leaving a positive probability that the man optimal stable matching would be chosen.

" And the incentive to misrepresent is endemic: it exists whenever there is more than one stable
matching (Roth and Sotomayor 1990, Theorem 4.6).

' The particular stable mechanisms observed to date all chose the optimal stable matching for
one or the other side of the market. )
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The results presented in this paper can be similarly interpreted, in connection
with decentralized mechanisms that might give rise to the kind of random match-
ing process considered here. That is, as particular observable markets in which
matching is decentralized are studied, it will be necessary to model the matching
process, either in detail as an extensive form game (which will very likely include
random elements), or more abstractly. In either case, the nature of the outcomes
that result from straightforward play and from sophisticated strategic play will
have to be analyzed. Our results suggest that, although straightforward play will
rarely be in equilibrium, there may continue to be a strong observed connection
between the stability of a mechanism with respect to straightforward behavior
and the observed stability of its market outcomes'”.

In closing, and in order to put the first step taken here in the context of the
further work that suggests itself, it may be helpful to review the assumptions
made in the simple models we have explored. The assumptions we have made
about complete information are perhaps not quite as strong as they appear, in
view of the fact that truncation strategies can be implemented even in low in-
formation environments. But by modelling decentralized matching as the kind
of random process of Theorem 1, we are implicitly making strong assumptions
about low transaction costs and speedy formation of blockin% pairs'®, together
with a limit on how the process may be history dependent'®. Since these as-
sumptions influence both the random process and the strategic problems facing
the players, it remains important to analyze models in which they are relaxed.
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