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Abstract

This article presents some new, intuitive derivations of several results in the bargaining literature.
These new derivations clarify the relationships among these results and allow them to be understood in
aunified way. These results concern the way in which the risk posture of the bargainers affects the out-
come of bargaining as predicted by Nash’s (axiomatic) solution of a static bargaining model (Nash,
1950) and by the subgame perfect equilibrium of the infinite horizon sequential bargaining game
analyzed by Rubinstein (1982). The analogous, experimentally testable predictions for finite horizon
sequential bargaining games are also presented.

This article has two primary purposes. The first is to present some new derivations
of several results in the bargaining literature. These deviations clarify the rela-
tionships among these results and allow them to be understood in a unified and
intuitive way. These results concern the way in which the risk posture of the
bargainers affects the outcome of bargaining as predicted by Nash’s (axiomatic)
solution of a static bargaining model (Nash, 1950) and by the subgame perfect
equilibrium of the infinite horizon sequential bargaining game analyzed by
Rubinstein (1982). The second purpose of the article is to derive the similar predic-
tions for finite horizon games, and to consider how these might be experi-
mentally tested.
The three results from the literature, informally stated, are that

1. Nash’s solution predicts that risk aversion is disadvantageous in bargaining
(Roth 1979; Kihlstrom, Roth, and Schmeidler, 1981).

2. The subgame perfect equilibrium predicts that risk aversion is disadvantageous
in bargaining (Roth, 1985).

*This work has been partially supported by a grant from the Russell Sage Foundation. I have also
received helpful comments from Ken Binmore, Ariel Rubinstein, Asher Wolinsky, and (especially)
Shmuel Zamir.
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3. In the limit as the costliness of waiting an additional period goes to zero, the
subgame perfect equilibrium of the sequential bargaining model converges to
Nash’s solution of the static model (or to an asymmetric Nash solution, when
the bargainers have different costs) (Binmore, 1987a; MacLennan, 1982;
Moulin, 1982).

It will be seen that each of these results is a simple consequence of the
relationship of the risk postures of the bargainers at Nash’s solution of the static
game, and at the perfect equilibrium of the sequential game. Indeed, the analysis
will emphasize the similarity of the two solutions in this respect: Nash’s solution
selects the unique point at which the bargainers have equal willingness to bear a
certain kind of infinitesimal risk, and perfect equilibrium of the sequential game
selects the unique pair of proposals with respect to which the bargainers have
equal willingness to bear the same sort of risk. (This latter point of view will also
suggest a new proof of Rubinstein’s result that a unique stationary perfect equilib-
rium exists.")

It should again be emphasized that, while some of the subsidiary results presen-
ted in deriving these theorems in sections 2-4 are new, these three results them-
selves are already known. However, the new proofs establish connections among
these results that had not been at all apparent. It is these new connections, which
highlight the central role played by the risk posture of the bargainers, that are the
main content of sections 2-4. Section 5 considers finite horizon sequential games,
in connection with the issues that arise in designing experimental tests of these
predictions.

1. The basic models

Since the purpose of this article is to establish connections between different
results, a very simple model will be presented that allows these connections to be
made most clearly. The conclusion of section 4 will briefly consider more
general models.

To this end, consider bargaining over the division of a fixed quantity Q of a
single commodity (e.g, money), by two bargainers who have expected utility
functions u, and u,, defined on the real numbers. The initial wealth of each
bargainer is normalized to be 0, and similarly u,(0) = 0 for i = 1,2. Any nonnega-
tive division is feasible if both bargainers agree; otherwise, they each receive 0. The
utility functions u; are increasing and concave.

Then the static model to which Nash’s solution applies is represented by the set
of feasible utility payoffs and disagreement utility given by the pair (Sd), where

S = {(u(c))uxca))le) + ¢, < Q, e1,¢, > 0},

d = (u,(0),u5(0)) = (0,0).



RISK AVERSION IN SEQUENTIAL BARGAINING 355

In the sequential bargaining model, time is divided into periods, and in odd-
numbered periods ¢ (starting at an initial period ¢ = 1) player 1 may propose to
player 2 any division (c¢;, Q — c,). If player 2 accepts this proposal, then the game
ends and player 1 receives a utility of (8, Yu,(c,) and player 2 receives a utility
(82 PuQ — c,), where §; is a number between 0 and 1 reflecting player /s cost of
delay. If player 2 does not accept the offer, then the game proceeds to period ¢ + 1,
and the roles of the two players are reversed. Following Binmore, Rubinstein, and
Wolinsky (1986), we consider a model in which the cost of delay arises from a
probability ¢ that each period will be the last, so that the bargainers have equal
discount factors §; = 8, = (1 — ¢). That is, after any rejection, and before a new
proposal can be made, there is a probability ¢ (0 < ¢ < 1) that the game will end
and that each bargainer will receive 0 dollars. So if the bargainers adopt strategies
that taken together have the effect that all offers made before time ¢ will be rejected,
and at time ¢ the division (c,,c,) will be accepted (if the game has not ended before
time 7), the expected utility of bargainer i is (1 ~ g)¢"Pu(c,). Strategies in which no
offer will ever be accepted give each bargainer a utility of 0.

2. Nash’s solution of the static model

For pairs (S,d) such that S is a compact convex set containing d and having some x
> din S, Nash’s (1950) solution to the bargaining problem is the point F(S,4) = z in
S that maximizes the product (z; — d,)(z, — ). Since we are here taking d = (0,0),
Nash’s solution is the point z in S with maximum z,z,. That is, Nash’s solution to
the game considered here is the utility payoff vector z corresponding to the divi-
sion (a,,Q — a,) that maximizes the product u,(a)u(Q — a,).

A notion of risk aversion that captures the information needed to determine
Nash’s solution here is the concept of boldness introduced by Aumann and Kurz
(1977ab). Player i’s boldness with respect tf) a division (c,c,) is defined to be
the quantity

bi(c)) = ui(c)/(uilc;) — u(0)) = ul(c;)/uc;).

To see what is going on, suppose player i has been offered c;, and now considers
a gamble that risks his entire gain ¢; against the possibility of a small additional
gain 4. The maximum probability g; of receiving 0 for which player i is willing to
accept the gamble can be considered a measure of his boldness. It turns out that
b{c) equals the maximum probability of getting 0 that player i will accept, per
dollar of additional gains, for very small potential gains. That is, b{c,) equals the
limit as A—0 of g;/h.

To see this, observe that g; is the probability such that u(c) = qui0) +
(1 = g)ufc; + h) = (1 — gulc; + h). Consequently,

[uiei + B) — ui(c)]/h
uc; + h) ’

g _
h
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and so

lim-q1=u—'!((i)=b,. ¢
P ui(c;) ()

Aumann and Kurz observed that Nash’s solution can be characterized as select-
ing the point z in § at which the players are equally bold.

Lemma 1. F(Sd) = z = (u(a}), uxa¥)) such that af + a¥ = Q and b,(a}) =
by(a?).

Proof: Nash’s solution picks the point that maximizes the product A(c;) =
u(c)uQ — ¢). Setting dd/de, = 0 yields —uy(Q — a¥)u(a}) + ui(auQ — a¥) =
0, which gives the required result.

The assumption that utility functions for money are increasing and concave im-
plies that a player’s boldness is a decreasing function of his gains. That is,

Lemma 2. If x < y, b/(x) > b(y).

Proof: db,(c;)/dc; = [u;(c)ui(c;) — (uj(c))})/[u:i(c))? < 0, since the denominator
is always positive, and the numerator negative.

We can use the characterization of Nash’s solution in terms of the bargainers’
boldness to give a proof of the first result discussed in the introduction, that is dif-
ferent from the proofs of Roth (1979) and Kihlstrom, Roth, and Schmeidler (1981).
Let player 2 be a more risk-averse individual than player 2, i.e., such that us(a) =
k(uy(a)) for all a > 0, where k is an increasing, concave function (see Yaari, 1969;
Kihlstrom and Mirman, 1974; Roth, 1979). (If k is strictly concave, player 2 will be
said to be strictly more risk-averse than player 2.) We begin by showing that player
3 is everywhere less bold than player 2.

Lemma 3. For any ¢ > 0, by(c) < by(c), with strict inequality if player 2 is strictly
more risk-averse than player 2.

Proof: Without loss of generality, choose a normalization of u5 such that us(0) =
u(0) = 0 and us(c) = u,(c). Then us'(c) < uj(c), since k is concave, with strict ine-
quality if k is strictly concave. So bs(c) = us'(c)/us(c) < uy(c)/uLc) = byc).

Theorem 1. Let F(Sd) = z = (u)(a})ux(a})) and F(Sd) = 2 = (u,(a}), us(ad)),
where (S) and (S,d) are the bargaining games that arise between players 1 and 2
and players 1 and 2, respectively, where player 2 is more risk-averse than player
2. Then a¥< a¥, with strict inequality if player 2 is strictly more risk-averse than
player 2.
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Proof: By lemmas 1 and 3, b(af) = b,(a}) > bs(a}). Again by lemma 1, 4* is the
point such that ¥ + a3 = Q and b,(4}) = bs(a}). But since both b, and b, are de-
creasing (lemma 2), this implies 4} > af and 4 < af, again with all inequalities
strict if k is strictly concave.

3. Subgame perfect equilibrium of the sequential game

Rubinstein (1982) observed that a stationary subgame perfect equilibrium of the
sequential game must specify the division c* that player 1 will propose in the sub-
games in which player 1 proposes, and the division e* that player 2 will propose in
the subgames in which player 2 is the proposer. Such a pair of proposals ¢* and e*
are supported by a perfect equilibrium if and only if

uy(et) = (1 = Quy(ch),
uy(c?) = (1 = guy(e?).

That is, each player must be indifferent between accepting the other bargainer’s
equilibrium proposal or having a (1 — ¢g) chance of receiving his own equili-
brium proposal.2

Define for any quantity a > 0 the risk premium of player i to be the quantity A{(a)
such that

ufa) = (1 - q)ula + hi(a)).
That is, hf(a) is the (minimum) premium in excess of the amount a that player i
would have to be guaranteed in period ¢ + 1 in order to be willing to reject an offer

of a in period ¢ (and bear the risk of getting 0 with probability g).
Note that, if ¢* and e* are equilibrium proposals for players 1 and 2, then

ct = et + hi(e}),
e¥ = c¥ + hy(c}).
Since cf + ¢} = e} + e = Q, this implies that

hi(e?) = h3(c}).

So, loosely speaking, where Nash’s solution picks a division with equal g/h for
small 4 (and small g), the perfect equilibrium picks a pair of divisions which, for
fixed g, have equal h = h{(e}) = hi(c¥). The following new proposition makes pre-
cise the relationship between a bargainer’s risk premium and his boldness, both in
the limit (part (a)), and for the discrete case. This relationship (particularly part
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(a)) is at the heart of the connection between Nash’s solution and the perfect
equilibrium division of the sequential game.

Proposition 1. For all agents ili, and for all g > 0,‘ 7

a) linol q/hi(a) = by(a), and
q—

a+hf(a) a+hf(a)
b) f+ b,.(x)dx=f T b dx = —In(1 - g)

Proof: For any a > 0, and any agent i, u{a) = (1 — q)ufa + h{(a)). To prove part
(a), note that

g _ [ufa + hi(a)) — ufa)l/hi(a)
hi(a) ufa + hi(a)) ’

and lim_, hf(a) = 0, so

q =u'(a)= .
M hi@) @ @

To prove part (b), note that for any agent i, ua)/ufa + hi(@)) = 1 — q, SO
a+hi(a) a+hf(a)
-In(1-¢)= f ui(x)/u(x)dx = f by(x) dx.

In order to prove the existence of a unique pair of stationary perfect equilibrium
proposals c* and e*, and to study some of the properties of perfect equilibrium, it
will be convenient to define the following two functions that will let us look at
some of the above relationships for nonequilibrium divisions ¢ and e. For any
nonnegative division e = (e,e,) define c(e) = (c,(e),c,(e)) by

ci(e) = e, + hi(ey),

cxe) = Q — cy(e).
That is, c(e) is the division® that makes player 1 indifferent between getting e, at
time ¢, or getting c,(¢) at ¢ + 1 with probability (1 — g).

Similarly, for any nonnegative division e, define H(e) to be the division

H(e) =c¢ such that hi(e,) = hi(c,).
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Thatis,c = H(e) is the division* such that player 2’s risk premium at ¢ equals player
I’s risk premium at e. So ¢ is the division with the property that the premium re-
quired by player 1 to turn down e equals the premium required by player 2 to turn
down c.

In terms of the functions c(e) and H(e), lemma 4 summarizes the conditions for
c* and e* to be perfect equilibrium proposals.

Lemma 4. ¢* and e* are perfect equilibrium proposals if and only if ¢* =
c(e*) = H(e*).

Before proving that there exists a unique pair of perfect equilibrium proposals
c* and e*, we show that the risk premium is an increasing function. (Note the
parallel with lemma 2, which shows that boldness is a decreasing function, since b,
is related to g/h{.)

Lemma 5. If a < b, then hf(a) < hi(b).

Proof: By proposition 1,
a+hi(a) b+h(b)
j bix)dx = I b(x)dx.
a b

Ifa + hj(a) <b, then lemma 2 implies that the integrand on the right is everywhere
smaller than the integrand on the left, so the interval of integration must be longer,
i.e, h{(b) > hi(a).Ifa + hi(a) > b, then the interval [b,a + A¥(a)] can be deleted from
both integrals, and the remaining interval on the right must again be longer than
that on the left, i.e., b + h{(b) — (a + hi(a)) > b — a, which again implies h/(b) >
hi(a). This completes the proof.

Now we can prove the following.

Theorem 2. There is a unique pair of stationary perfect equilibrium divisions c*
and e*.

We will first show that a pair of perfect equilibrium divisions exist, and then show
that there is only one such pair.

Proof of existence: Since we are considering c* and e* together, and are hence
treating players 1 and 2 symmetrically, we can without loss of generality suppose
h{(Q/2) > h3(Q/2). Consider the (nonequilibrium) division e = (0,Q). Then

ci(e)=e + hi(e)) =0<Q =He) since H(e) = (Q,0).
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Now consider the (nonequilibrium) division e = (972, Q/2). Then
ci(e) = ey + hi(e)) = Q/2 + h{(Q/2) > Q/2 > Hy(e).

(The last inequality follows from 4{(Q/2) > h%(Q/2). To see this, let ¢’ = H(e), so
hi(c;) = hi(e,) = h{(Q/2). But by lemma 5, 4{(Q/2) > h3(Q/2) implies ¢; > Q/2, so Hy(e)
= ¢; <Q/2.) But the continuity of the implies that the functions c(e) and H(e) are
both continuous, and so there exists an e in the interval (Q/2, Q) such that¢,(e*) =
H(e*), ie., such that the divisions e* and c* are the required equilibrium
divisions.?

Proof of uniqueness: We have just shown that there exists a pair of divisions e*
and c* such thatc* = ¢(e*) = H(e*). To see that there cannot be another paireandc
with this property, we will show that, as e moves away from e*, ¢(e) and H(e) move
in opposite directions from each other, so there is no e different from e* for which
they coincide.

As e, increases, h(e,) increases, by lemma 5. So if ¢ = H(e), h(c,) increases (since
ha(c2) = hi(e), which implies that c, = H(e) increases. But as e, increases, c,(e) = ¢,
+ hi(e;) increases, 5o c(e) decreases. This completes the proof.

Next we consider how the perfect equilibrium divisions ¢* and e* react to
changes in the risk aversion of the bargainers. Suppose that player 2, say, is
replaced by a more risk-averse bargainer, player 3, ie., by a player 2 whose utility
for money is given by us(a) = k(uy(a)) for all a > 0, where k is an increasing concave
function. Then we can give the following parallel to lemma 3.

Lemma 6. For any ¢ > 0, h3(c) > hj(c), with strict inequality if player 3 is strictly
more risk-averse than player 2.

Proof: Normalize u;3 5o that uy(0) = u,(0) = 0 and us(c) = uy(c). Then us(c + h3(c))
< uy(c + h¥(c)) with strict inequality if player 2 is strictly more risk-averse than
player 2, so (1 ~ q)us(c + h3(c)) < uxc) = us(c), so hg(c) > hi(c).

The following, alternate proof of lemma 6 shows how it follows directly from
lemma 3 and proposition 1.

Alternate proof of lemma 6. If player 3 is more risk-averse than player 2, proposi-
tion 1 implies '

athi@) a+hi(a)
J’ bs(x)dx = f b,(x)dx.

Since bj(x) < by(x) for all x > 0 (lemma 3), it follows that hg(a) > hi(a).
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We can now give the following proof of the second result stated in the
introduction.’

Theorem 3. Let c* and e* be the perfect equilibrium proposals of playersAl and 2,
and let ¢* and é* be the perfect equilibrium proposals of players 1 and 2, where
player 2 is more risk-averse than player 2. Then éf <e¥ and é¥ < ¢}, with strict in-
equality if player 3 is strictly more risk-averse than player 2.

Proof: Assume that player 2 is strictly more risk-averse than player 2. It will be
clear where strict inequalities must be replaced by weak inequalities in the other
case. Define the function H(e) = ¢ such that hf(e;) = hi(c,). Let ¢ = H(e*). Then
hg(éz) = hi(e}) = hY(c¥), which implies that ¢, < ¢¥ (by lemmas 6 and 5) and thus ¢,
> ct. So c/(e*) < ¢, = H,(é). Since ci(e) is an increasing function of ¢; and A(e)isa
decreasing function of ¢, (see the proof of uniqueness for theorem 2), this implies
that the unique pair of equilibrium proposals &*, ¢* are such that &t > ef and (con-
sequently) & = &F + h{(é}¥) > c¥, which imply the conclusion of the theorem.

Theorem 3 shows that the qualitative effect of risk aversion predicted by the sub-
game perfect equilibrium of this sequential bargaining model is the same as that
predicted by Nash’s solution when bargaining is over the (riskless) division of a
commodity.” The next result® presents a stronger connection: it shows that as the
probability ¢ that each period will be the last becomes small, the perfect equilib-
rium divisions c* and e* both converge to the division corresponding to Nash’s
solution for the corresponding game.

Theorem 4. lim_(ck.c}) = lim,_q(e¥.e¥) = (ata¥) such that F S = (uyah),
“uy(az)).

Proof: Since hi(e}) = hi(c¥), q/hi(et) = q/h¥(c}), and so proposition 1 implies that
as g goes to 0, by(ef) goes to by(c¥). But c* and e* both converge to a single division
a*, and so by lemma 1 this is the division corresponding to Nash’s solution.

We conclude this section by remarking on directions in which these results, and
the connections between them, can be generalized beyond the simple model con-
sidered here. As mentioned earlier, the decision to model the initial wealths of the
players asw, = w, = 0, and to set 1,(0) = u,(0) = 0, are both simply normalizations.
Nothing essential would change for arbitrary w; and u{w,), except that in many
calculations terms of the form u{c;) would be replaced by terms of the form
ll‘l(cl') - ui(wi)'

Similarly, it is not necessary to suppose that the bargaining is over the division
of a fixed quantity of a single commodity. The same kind of analysis can be per-
formed for appropriately smooth utility frontiers however they arise (see,.e.g., Bin-
more (1987b) for a discussion of perfect equilibrium of sequential bargaining in
this way, and Harsanyi (1956) for a discussion of Nash’s solution). Indeed, the
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maximum probabilities g; that we considered here play a similar role in Harsanyi’s
(1956) treatment, which considers proposals made in terms of utility payoffs. Har-
sanyi shows that Zeuthen’s (1930) analysis of the bargaining problem, in terms of
the maximum risk of conflict a player is willing to face, leads to the same con-
clusions at Nash’s. For those familiar with that work, the connection to the present
discussion is most easily seen by noting that if c* and ¢* are equilibrium proposals
for the sequential game considered here, it follows that u,(ef)u,(e¥) = u(c¥)u(c?).
That is, both e* and ¢* correspond to the same Nash product, and we have seen
why in the limit as ¢ goes to zero they converge to the division that maximizes that
product and yields Nash’s solution.

Finally, as noted above, Rubinstein’s original treatment of the sequential
bargaining game allows the players to have different discount factors. In the con-
text of the model of probabilistic termination discussed here, the same kind of
results, although not exactly the same arithmetic, can be obtained from a model in
which the probability that the game terminates following a rejection by player 1 is
different from the probability of termination following a rejection by player 2.

4. Finite sequential games: some experimentally testable predictions

The prediction that Nash’s solution makes about the effect of risk aversion on the
outcome of bargaining (theorem 1) is also made not only by the perfect equilib-
rium of the infinite horizon sequential game, but by a wide family of static
bargaining models different from Nash’s (see Roth, 1979; Kihlstrom, Roth, and
Schmeidler, 1981). While many of the other predictions made by these various
static models have not been supported by experimental studies (see, e.g., Roth,
1987), the prediction about risk aversion has received experimental support (see
Murnighan, Roth, and Schoumaker, 1988).

Since infinite horizon games cannot be directly implemented in a laboratory
environment, the purpose of this concluding section is to observe how the predic-
tion embodied in theorem 4 extends to the case of finite horizon sequential games,
which can be studied in the laboratory. Preliminary experimental studies focusing
on other implications of perfect equilibria in such games suggest that, as in the
case of static models, many of these implications may also not be supported by ex-
perimental data (see Ochs and Roth, 1989).° It will consequently be of consider-
able interest to see the results of studies concerned with the effect of risk aversion
on the outcome of these games.

The rules of the finite horizon game differ from those of the infinite horizon
game only in that there is some last period T, such that if the offer made in period T
is rejected, each player receives 0. Let ¢*(T) = (c¥cf) denote the perfect equilibrium
division of the finite horizon game whose last period is at time ¢ = T, and in which
player 1 makes the first proposal at time ¢ = 1. Then ¢*(T) can be computed back-
wards from the end of the game, with c*(1) = (Q,0), and ¢*(T) given by
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u(c(T)) = (1 = Quy(e3(T - 1)),
ct(T) =2 —cx(D),

where e*(T' — 1) is the perfect equilibrium division of the subgame in which player
2 makes the first proposal following a rejection of player I’s (first) offer.

For a given final period T, let player 1 be a player who is strictly more risk-averse
than player 1, and let player 2 be strictly more risk-averse than player 2. Let é(1) =
(¢1.62) denote the perfect equilibrium division when player 1 bargains with player 2,
and &2) = (¢,,¢;) denote the perfect equilibrium division when player 1 bargains
against 2. Then the finite horizon game yields the following analogue to
theorem 3.

Theorem 5. a) For T = 1, c* = &(1) = ¢2) = (Q),
b) For T = 2, ¢* = ¢(1), ¢ < ¥,
o) ForT>3,¢<c¥ fori=1.2.

The proofis not difficult (although it requires the consideration of several cases)
and will be left to the reader.

Note that, for T > 3 (i.e., for games of three or more periods), the perfect equilib-
rium division makes the same qualitative prediction as in the infinite horizon case
about the (disadvantageous) effect of risk aversion. However, when T = 1, the risk
aversion of the bargainers is predicted to have no effect, and when T = 2, only the
risk aversion of player 2 influences the perfect equilibrium division. Neither the
finite horizon game nor the infinite horizon game are symmetric between the
players, but in the infinite horizon game we could treat the players symmetrically
by considering c* and e* together, since there is symmetry between the subgames
at which players 1 and 2 propose. However, as we see when T = 2, even this sym-
metry is absent in the finite horizon case, since the initial game (in which player 1
proposes) is not the same as the subgame in which player 2 proposes, since the two
games do not have the same length. It is therefore noteworthy that the qualitative

‘predictions of theorem 5 for T > 3 are nevertheless the same as in the infinite
horizon game.

However, as noted above, recent experiments have raised a number of questions
about the descriptive accuracy of other predictions of perfect equilibrium in games
of this sort. When more such experiments have been done, the situation may come
to resemble in this respect that of the various static models that have been subjec-
ted to experimental investigation, which were also found to lack descriptive ac-
curacy in some important respects. It proved necessary, in designing experiments
concerning the predicted effects of risk aversion in these models, to take account of
some of the systematic but unpredicted effects observed in previous experiments
(Murnighan, Roth, and Schoumaker, 1988). Similarly, it seems likely that per-
suasive experimental tests of the perfect equilibrium predictions about risk aver-
sion in the sequential games considered here will have to wait until there is a better
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understanding of the descriptive accuracy of other predictions of perfect equilib-
rium in sequential games of this kind.

Notes

1. Rubinstein (1982) also showed that there is no nonstationary perfect equilibrium of the game in
question. The present argument is thus not an alternate proof of his result.

2. If either player preferred the other bargainer’s proposal to a 1 — ¢ chance of receiving his own, the
proposals could not be supported by a subgame perfect equilibrium because at such an equilibrium the
player cannot credibly threaten to refuse a smaller offer. If either player preferred a 1 — ¢ chance of
receiving his own proposal, which is accepted at equilibrium, then again no subgame perfect equilib-
rium can support the two proposals, since now it is in the player’s interest to reject the other bargainer’s
proposal, and hence in the other bargainer’s interest to make a larger offer. However, when both
bargainers are indifferent, the strategy pair in which each player always refuses any offer that is less
than the other bargainer’s indicated proposal, and accepts any offer of at least as much, and in which
each bargainer proposes the indicated proposal, is a subgame perfect equilibrium.

3. Note that cy(¢) may be negative.

4. Note that c; = H|(e) may be negative.

5. Note that while c(e) and H(e) need not be nonnegative for arbitrary e, ¢* = ¢(e*) = H(e*) must be,
since-¢;(e) and H(e) are positive for positive e.

6. As with theorem 1, the result here is stated in terms of players 2 and 2, but the symmetry of the
problem (since each subgame has the same structure as the original game) ensures the symmetric result
(with the same proof) if these were everywhere exchanged for players 1 and 1.

7. Of course, in the sequential bargaining model, we have interpreted ¢ as a probability that the
game will end, so risk is explicitly present in the model. However, the same result would of course apply
if we interpret ¢ as the (common) discount factor of the players, unrelated to any probabilistic risk. In
that case the theorem continues to state that risk aversion is disadvantageous in bargaining. I find this
an intuitive result, even though the underlying agreements are themselves riskless, since it is arguably
the risk of disagreement or delay that forces bargainers to come to a particular agreement, and so a
more risk-averse bargainer can be expected to offer better terms to reduce this risk, etc. However, note
that not all researchers agree: Binmore, Rubinstein, and Wolinsky (1986) state simply (p. 179) that
‘... there is no apparent reason that a party’s attitudes toward risk should affect his bargaining posi-
tion in a riskless environment.” My own feeling is that this is best treated as an empirical issue. When
concave transformations of utility are interpreted as changes in risk aversion, testable predictions
result, and their truth or falsity is an empirical matter that can be addressed, for example, with experi-
mental methods. Of course, as Binmore et al. emphasize, changes in concavity can be given other inter-
pretations as well, so when the utility functions are not expected utility functions, theorem 3 can be in-
terpreted differently.

8. This was originally proved independently by Binmore (1987), MacLennan (1982), and Moulin
(1982), using arguments different from one another and from the argument that follows. For another
proof, see Binmore, Rubinstein, and Wolinsky (1986).

9. For some related studies that reach a variety of conclusions on these matters, see Binmore,
Shaked, and Sutton (1985), Guth, Schmittberger, and Schwartz (1982), Guth and Tietz (1987), and
Neelin, Sonnenschein, and Spiegal (1988).
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