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NOTICE

1. INTRODUCTION

Starting with Nash [1950], axiomatic models of bargaining have by and large made
only indirect use of the theory of rational individual choice under uncertainty,
in spite of the fact that a bargaining problem is usually defined in terms of

the expected utility functions of the bargainers. The only property of an indi-
vidual's utility function of which Nash makes explicit use is that it is uniquely
defined only up to order-preserving linear transformations. Here we consider

the effect on various solutions to the bargaining problem of an individual's

aversion to risk, as expressed in his utility function.

Following Nash, we will consider two-player bargaining games defined by a pair
(s,d), where d is a point in the plane, and S s a compact convex subset of
the plane which contains d and at least onme point x such that x > d. The
interpretation is that S is the set of feasible expected utility payoffs to the
players, any one of which can be achieved if it is agreed to by both players. [f

no such agreement is reached, then the disagreement point d is the result.

We will consider games which arise from bargaining over the set L of all lot~
. . n

teries defined on some convex, compact set of certain alternatives CcR, by

individuals with concave utility functions u, and uy- The feasible set of

utility payoffs is the convex set

(1 S = {(x],x2)1x] = u‘(l) and x, = uz(%) for some & in L} ,
and the disagreement point d is

(2) d = (Ul(-C_)v Uz(-a)

where ¢ e C is the alternative which results in the case of disagreement.

Denote the (strong) Pareto optimal subset of S by P(S), and note that each
point of P(S) is of the form (x], xz) = (u](c),uz(c)) for some c € C. (This

follows from the concavity of e and u, and the convexity of C.) Let X

and ;1 denote the minimum and maximum values of x; on the set P(S). Then

65
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there exists a monotonically decreasing concave function ¢ defined on the inter-
val Lﬁl,;é] such that (x],xz) e P(s) if and only if x,= ¢(x]). That is,
the Pareto optimal set P(S) consists of points of the form (x],¢(x])).

We can now consider the effect of replacing player 1 in a bargaining game (s,d)
with a more risk averse player. Since our results will be independent of i, we

can take i = 2 in what follows, without loss of generality.

let (S,d) be defined as in (1) and (2), with u, = w. Let w be a utility

function which is more risk averse than w, i.e. w(c) = k(w(c)) for all ¢ in

C, where k is an increasing, concave function (c.f. Arrow [1965], Pratt [1964],

or Kihlstrom and Mirman [1974]). Consider the game (5,d) derived from (s,d)

by replacing individual w with the more risk averse individual w. Any outcome

¢ e C which is Pareto optimal in (S,d) is also Pareto optimal in (5,d), so

P(g) consists of points of the form (x]{;(x])), where %(x]) = k(¢(x])). We {
can now proceed to study the effect of such a change on the predictions made about

the outcome of bargaining by alternative models of the bargaining process.
2. NASH's SOLUTION

Nash proposed that bargaining between rational players be modelled by means of a
function called a solution, which selects a feasible outcome for every bargaining
game. That is, if we denote the class of all bargaining games by B, a solution
is the function f: B~ R2 such that f(S,d) is an element of S. Nash further
proposed that a solution should possess the properties of Pareto optimality,
symmetry, independence of irrelevant alternatives, and independence of equivalent
utility representations, all of which have been amply described elsewhere (c.f.
Nash [1950], Luce and Raiffa [1957], Harsanyi [1977] and Roth [1979]). Note that
only the last of these properties, stated below, deals at all with the cardinal 4

properties of utility functions.

Independence of equivalent utility representations:

If (S,d) and (§,3) are bargaining games such that

12 3%, * bz)Kx],xz) € S} and

d = (a]d] + by, ayd, + bz) where aj, a,, b; and }

>

S = {(a]x] + b

>

bZA are numbers such that a; >0 and a, > 0, then

(5,d) = (a;f;(s,d) + by, a,fy(S,d) +b,).
Nash showed that there is a unique solution which possesses Properties 1-4. It is
the solution F defined by F(S,d) = x such that x > d and (x] - d))(x, - d2)>
(YI - d])(yz - dz) for all y in S such that v # x and y > d. We can state
the following well-known alternative characterization of Nash's solution. (For

simplicity, we state the following lemma for the case that ¢ is differentiable.)
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Lemma 1: F(5,d) = (x],q;(xl)) is the point such that (¢(x])—d2)/(x]-d])= -qb'(x]).
We can now state the following results which strengthens a result of Kannai [1977].

Theorem 1: The utility which Nash's solution assigns to a player increases as

his opponent becomes more risk averse. That is, FI(S,d) > F](S,d), where (§,&)

is obtained from (S,d). by replacing player 2 with a more risk averse player.

Note that there is no ambiguity about the meaning of the comparison of Fl(s’d)
and F](S,d) made in the theorem, since both quantities are payoffs defined by

the same utility function of the same individual (over the same set of events).

Proof: Since F is independent of equivalent utility representations, it will be
sufficient to prove the lemma for the case when d = 5 =0, where 0 denotes the
origin (i.e. 0= (0,0)). So let z = F(5,0) and 7 = F(g,'ﬁ); we want to show
that ;] > ). Since Nash's solution selects the point in S which maximizes the
geometric average of the gains, it will be sufficient to show that the geometric

average A(y]) = k(zb(y]))y] has a positive first derivative at z;. But
AI(Zl) = k'(¢9(z )¢ (z9) 2y + k(8(zy)) ,

and by Lemma 1, ¢'(z])z] = —¢(z]), so
AI(Z]) = ‘kl(¢(Z]))¢(Z]) + k(¢(zl))

k(zz)

&)

The concavity of the function k implies that (k(zz)/zz) Z_k'(zz), while the

>0, so A'(z])_>_0, as

= K'(zy)z, + kiz,y) = zy[k'(z,) + ]

individual rationality of Nash's solution implies z,

required. | | l |

In Roth [1978], it was shown that Nash's solution could be interpreted as the
utility function for a certain kind of individual, reflecting his preferences for
bargaining in different games. Interpreted in this way, Theorem 2 states that
such a player prefers to bargain against the more risk averse of any pair of

possible opponents.

3. RISK POSTURE AND OTHER SOLUTIONS

Another solution for two-person bargaining games, axiomatized by Kalai and

Smorodinsky [1975], responds to changes in risk posture in qualitatively 'the same

way as Nash's solution. For any game (S,d), let the ideal point I(S,d)=xI=(X§,x§)
be defined by x¥
and let G be the solution such that G(S,d) selects the maximal feasible point
on the line joining d to XI. That is, G(S,d) = x is the Pareto optimal point

“in S such that (x1 - d])/(x2 - dy) = (x¥ - dl)/(xi - dy).

= max{x]|x €S and x > d} and xi = max{lex €S and x >dl,
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The solution G shares with Nash's solution the properties of Pareto optimality,
symmetry, and independence of equivalent utility representations. It also shares
with Nash's solution a sensitivity to changes in risk posture, which permits us

to state the following parallel to Theorem 1.

Theorem 2: The utility which the solution G assigns to a player increases as

his opponent becomes more risk averse. That is, G (s,d) > 6, (s, d), where (S,d)

is obtained from (s,d) by replacing player 2 wnth a more I‘lSk averse player.

Proof: Let (§,3) be derived from (S,d) by replacmg the utlllty function w
of player 2 with the more risk averse function w such that w(c) k(w(c)) for
all ¢ in the underlying set of sure alternatives C. Since the solution G is
mdependent of equivalent utility representations, we can choose any normalization
for w, and hencehfor k. So let k(dz) d, and k(x) = xé. (This is equiv-
alent to letting w(c) = w(c) = d2 and w( ) = w(mz) = x2, where ¢ is the
disagreement outcome and m, the outcome WhICh yields player 2 his maximum pay-

off in the Pareto set of the set §@ = {x e S|xi d . Let m; be the lottery

which yields player 1 his maximum payoff in P(S+). (Then u(m]) x{).

Note that w(mz) > w(m ) > w(c), and so there exists some number o between 0

and 1 such that w(m ) aw(c) + (l-a)w(m2)~,. Consequently, the concavity of k
implies that

vhv(m]) 2w(my)

since

w(m) = klw(my)) > ak(w(c)) + (1-a)k(w(my)) = w(m)
Consequently ¢(x ) > ¢(x and so the fact that (u(m )) = (t)(u(mz)) implies
that ¢(x) > ¢(x) for aH X € [u(m ), XI]’ since ¢ is a concave transformation
of ¢. That is, every point in the Pareto set of s* is Iess than or equal to

some point in the Pareto set of ST. Since I(S+,d) I(S ) and d = d, it
therefore follows that G(S,d) = G(S+,d) _>_G(S+,d) = G(S,d), and, in particular,
G (s,d) > 6,(s,d), as required. |[]|

A third solution to the Nash bargaining problem has recently been proposed by

Perles and Maschler [1980]. This solution is called the super-additive solution

and is obtained by replacing Nash's independence of irrelevant alternatives axiom

with super-additivity and continuity axioms.

The super-additive solution, to be denoted by H, has been characterized by the

following equation

H
(3) Jolv-zp'(x]) dx, = f:]v’-tb'Zx]; dx;
1

%
i
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where H] = H](S,(E)). Perles-Maschler restrict their solution to bargaining
problems in which the disagreement point d is the origin and the set S is
comprehensive in the nonnegative quadrant. For the simplicity, we will further
restrict ourselves to the case in which the weak and strong Pareto sets coincide;
i.e. X, = ¢(;]) = 0. v

The following theorem is an analog of Theorems 1 and 2 for H.

Theorem 3: The utility which H assigns o a player increases as his opponent
becomes more risk averse. That is, H](S,B) iH](S,T)'), where (S,0) is obtained

from (S,0) by replacing player 2 with a more risk averse player.

Proof: As in the proof of Theorem 2, we denote by k the concave transformation

of w which yields w. Here k is normalized so that k(0) = 0 and k(?]) = X

We now use the above characterization of the super-additive solution.

For the bargaining problem (S,0), the equality becomes

H X
j‘o KTGGDY 07T dxy = L] ATEGT ST dxgs
1

-~ ~

where H1 = Hy(S,0). In order to prove that H] 2 Hy, it suffices to show that

H X
0 [T T g < [T e e
0 H

1

First note that, because ¢ is a decreasing function and k is concave,
XSG H
implies

(5) ko) <@ kew) .

We now multiply both sides of (3) by the constant \/k'itb(H‘)) tor obtain

H X i
(6) [y T e, - fH TG H ) dxg
0 1

Finally, we replace the constant /k‘(¢(H]) by »/k'(d)(x])) in the integrals in

)
(6) and use the inequalities (5) to yield (4). |||
Note that if k is strictly concave, all of the inequalities become strict.

Thus F, G and H are all solutions which possess an intuitively plausible
sensitivity to changes in risk posture, and we can investigate this property in
the more general context of an arbitrary solution f. Specifically, we will

consider solutions f which possess the following property.
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Risk sensitivity: If a bargaining game (S,d) is transformed
into a game (S,d) by replacing player 2, say, with a more
risk averse player, then f](S,d) > f](s,d).

Any risk sensitive solution f models a bargaining process in which it is advant-

ageous to have a highly risk-averse opponent. A surprising consequence of this

property is that a solution which is both risk sensitive and Pareto optimal must

also be independent of equivalent utility representations.

then f s independent of equivalent utility representations.

Proof: |If (g,d) is derived from (S,d) by subjecting player 2's utility func-
tion to a concave transformation, then (S,d) can be derived from (S,d) by sub-
jecting player 2's utility to a convex transformation. So risk sensitivity

implies that convex transformations of one player's utility lower the other player's

payoff, just as concave transformations raise it, and so linear transformations of
one player's utility leave the other player's utility unchanged. Thus if (S,d)
and (g,:i) are related by a linear transformation k of player 2's utility, and
if f(s,d) = (x],xz) and f(§,3) = (yy,yy), then y, =x;. This, of course, is
half of independence of equivalent utility representations: the other half is that
a linear transformation of a player's utility function should change his own pay-
off. by the same transformation. But this follows from the Pareto optimality of

f, since Xy = r;(x]) and y, = ¢(Y]) = k(¢(\/])) = k(¢(X1)) = k(xz). I

This theorem is somewhat counterintuitive, since it deduces the linear invariance
of solutions from the risk sensitivity property, which is specifically concerned
with the nonlinearity of utility functions due to risk aversion. One explanation
may be that the intuitive plausibility of the risk sensitivity property derives in A
part from the feeling that the outcome of bargaining may turn out not to be Par- '
eto optimal. In particular, a disagreement may occur, and the fear of this hleps

cause a highly risk-averse player to settle for an unfavorable agreement.

Note that an immediate corollary of Theorem 4 is that risk sensitivity can replace

.

independence of equivalent utility representations in a characterization of Nash's
solution.

Theorem 4 suggests several approaches to studying risk-sensitive solutions diff-

erent from Nash's. One of these is to study risk sensitive solutions which are 1
also Pareto optimal. The theorem shows that such solutions must also be indep-

endent of equivalent utility representations, so they must differ from Nash's

solution by not being independent of irrelevant alternatives (or by not being

symmetric). Theorems 2 and 3 show that G is a solution of this kind as is H.
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Another approach will be to explore risk-sensitive solutions which need not
always yield Pareto optimal outcomes. Solutions of this sort may be able to
provide more descriptive models of bargaining in which there is a non-zero prob-

ability of ending in disagreement.
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