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This article examines the behavioral implications and empirical testability of
the game-theoretic models of bargaining that follow in the tradition begun by
Nash. The classical game-theoretic models are reviewed with particular atten-
tion to the assumptions they make concerning the kinds of information shared
by the bargainers. The experimental literature concerned with testing these
models is also reviewed, with particular attention to the extent to which these
experiments have conformed to the assumptions of the models they are de-
signed to test. Some of the principal differences between the theoretical predic-
tions and the results reported in these experiments seem to be due to questions
concerning the information shared by the bargainers. A new game-theoretic
model is presented, based on assumptions about information that more closely
correspond to the conditions under which many of these experiments have been
conducted. An experiment manipulating the appropriate kind of information
supported the hypothesis that Nash’s bargaining model has predictive value in
situations that conform to its assumptions about information, but the results
also suggest that only a relatively narrow range of situations may conform

completely to these assumptions.

Bargaining is a pervasive and important
social phenomenon that has been studied from
a multitude of perspectives by investigators
from a variety of disciplines. The primary
purpose of this article is to examine the be-
havioral implications and empirical testability
of the game-theoretic models of bargaining
that follow in the tradition begun by Nash
(1950) and that provide the theoretical basis
for much of the work on bargaining done by
economists. These models are intimately as-
sociated with expected utility theory, and
they present formidable obstacles to labora-
tory experimentation. Largely for this reason,
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these models have not entered into the main-
stream of bargaining research conducted by
social psychologists. For instance, this family
of models is not mentioned at all in the ency-
clopedic survey of experimental bargaining
research by Rubin and Brown (1975), whereas
Chertkoff and Esser (1976) stated that

although these models may have been ignored to a
certain extent because many social psychologists are
not mathematically inclined, there are undoubtedly
other reasons. First, the theories contain constructs,
like utility, that are difficult to measure. Second, the
models usually deal with broad concepts, like the
utility of payoffs, without specifying in any detail
what variables are related to them, and in what
way. (p. 460)

Morley and Stephenson (1977) go one step
further, and state that ‘“these theories not
only have not been subject to empirical tests
but also do not have any obvious behavioral
implications.” (p. 86):

This article begins with a review of the
classical game-theoretic models of Nash (1950)
and Raiffa (1953) with particular attention
to the mathematical condition specifying the
kind of information that the models assume
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can potentially influence the outcome of
bargaining. Included in this review are recent
mathematical results emphasizing the extent
to which the predictions of the models depend
on this informational condition.

The experiments that have been conducted
to test these models are then reviewed, with
particular attention to the degree to which
the conditions of the models have been suc-
cessfully implemented and to the kinds of
information that the various implementations
make available to the bargainers. Although
the game-theoretic models are defined in
terms of the expected utility of the bar-
gainers, the experiments designed to test
these models have usually equated utility
payoffs with monetary payoffs. We argue
that bargaining situations in which the players
have common knowledge of one another’s
monetary payoffs make available a different
quality of jointly shared information than
situations in which the players have common
knowledge of one another’s utility payoffs.
This is because the players’ utility payoffs
are uniquely defined only up to independently
normalized interval scales, whereas monetary
payoffs are defined on a common absolute
scale.

Situations in which the players know one
another’s monetary payoffs permit them to
make comparisons that they otherwise could
not make. A new mathematical result is
presented, characterizing a model of bargaining
that differs from the classical models in its
. assumptions about information. This new
model reflects the comparisons that can in-
fluence the outcome of bargaining when players
know one another’s monetary payofs.

A new experiment is then reported, which
is designed to investigate the effect of this
difference in the quality of the shared in-
formation. This experiment permits both the
expected utility available to the players and
the information they share as common knowl-
edge to be controlled and manipulated. The
(preliminary) results suggest that Nash’s
classical game-theoretic model is a good pre-
dictor of behavior in bargaining situations
that make available precisely the right kind
of information to the bargainers. These results
also suggest, however, that relatively few
bargaining situations provide precisely this
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information, and that the classical models
require modification in situations that make
available either too little or too much of
various kinds of information.

The Classical Game-Theoretic Models!

Before entering into a discussion of the
bargaining models, we briefly consider the
elements of expected utility theory on which
these models depend. (The new experimental
design presented later also depends critically
on the elements of utility theory reviewed
here.) von Neumann and Morgenstern (1944)
were the first to demonstrate conditions on
an individual's preferences which are suffi-
cient so that the individual’s choice behavior
over risky events is the same as if the indi-
vidual were maximizing the expected value
of a real valued function called this indi-
vidual’s utility function? Given sufficient in-
formation about an individual’s preferences,
a corresponding utility function can be con-
structed, although this function is uniquely
defined only up to an interval scale.

For simplicity, consider the case in which
the set of Alternatives A contains elements
a and ¢ such that, for any Alternative b in
the set A, the individual in question likes
Alternative ¢ at least as well as b and b at
least as well as ¢. Then if # is a utility func-
tion representing this individual’s preferences
over the set of alternatives A, it must have
the property that #(a) > u(b) > u(c). Since
% is defined only up to an interval scale, we
may arbitrarily choose its unit and zero point,
and in particular we may take #(e¢) = 1 and
#(c) = 0. The problem of determining u(b)
then becomes the problem of finding the ap-
propriate value between 0 and 1 so that all

' A more complete and technical account of this
subject is to be found in a recent monograph (Roth,
1979).

2 Although there is experimental evidence (e.g.,
Tversky, 1969) that individuals’ preferences may not
always obey the conditions necessary for them to be
modeled by a utility function, these conditions still
retain normative significance. Furthermore, the viola-
tions of these conditions have generally been observed
in multiattribute decision situations, rather than in
decisions involving a single commodity (e.g., money)
of the sort involved in the experiments to be con-
sidered here.
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those lotteries over alternatives that the indi-
vidual prefers to & have a higher expected
utility, and all those lotteries to which & is
preferred have a lower expected utility. If we
denote by L(p) = [pa; (1 — p)c] the lottery
that with probability p yields Alternative a
and with probability (1 — p) yields Al-
ternative ¢, then the utility of participating
in the lottery L(p) is its expected utility,
pu(a) + (1 — p)u(c) = p. If p is the proba-
bility such that the individual is indifferent
between b and L(p), then their utilities must
be equal, and so, u(d) = p. Thus when we
say that the utility of Alternative b to a given
individual is known, we mean that the proba-
bility p is known such that the individual
is indifferent between having Alternative b for
certain or having the risky alternative L(p).

For instance consider an individual who is
faced with a choice of receiving half a million
dollars for certain or participating in a lottery
that will yield a million dollars with proba-
bility p and otherwise yield zero dollars. Then
if we set the individual’s utility function for
zero dollars at 0 and set the utility for a
million dollars at 1, determining the indi-
vidual’s utility for half a million dollars means
determining the probability p that would
leave this individual indifferent between the
lottery and the half-million dollars. Most of
us would require p to be considerably greater
than' one-half before we would take the
lottery over the assured half million, which
is. to say that our utility function is not
linear in money, and our utility for half a
million dollars is more than half-way between
our utility for zero dollars and our utility for
a million- dollars. In what follows, when we
say that one individual knows another’s
utility for a given event (e.g., a particular
reward), we are not requiring that he or she
know any utility tkeory, but rather that the
individual has sufficient knowledge of the
other’s preferences to be able to determine
an equivalent lottery of the sort just de-
scribed. (For a more complete discussion, see
Herstein & Milnor, 1953; Krantz, Luce,
Suppes, & Tversky, 1971; von Neumann &
Morgenstern, 1953.)

Following Nash (1950) we can now define
a pure bargaining game between two players
as a situation in which there is a set of fea-

ALVIN E. ROTH AND MICHAEL W. K. MALOUF

sible outcomes, any one of which will be the
final outcome of the game if it is agreed to
by both players. In the event that they fail
to reach agreement, some fixed disagreement
outcome becomes the final outcome of the
game. That is, the rules of the game give
each player a veto over any outcome other
than the disagreement outcome. The players
are assumed to be fully informed both about
the rules of the game and about the set of
feasible outcomes.

Nash (1950) modeled such a game by a pair
(S, d), where S is a subset of the plane which
contains d. He further required that the set S
be compact and convex, and that it contain
at least one point x such that x> d (ie.,
x1 > dy and x; > dy).

The interpretation Nash (1950) gave is that
the set S is the set of feasible expected utility
payoffs available to the players; that is, if
the players agree on a point x =. (%1, 42) in S,
then Players 1 and 2 receive a utility of x;
and x,, respectively, whereas d = (d,, d;) de-
notes the utility payoffs to the players in the
event of disagreement. Thus, according to
Nash’s interpretation, the assumption that
the players know the set of outcomes means
that they know one another’s utilities for
each potential agreement.? The condition that
S'is convex is thus appropriate if, for instance,
any lottery between feasible agreements is
also a feasible agreement.* The condition that
S is compact is justified if, for instance, the
set of feasible outcomes consists of a finite
number of distinct alternatives and the lot--
teries between them, whereas the requirement
that S contains at least one point x such
that x > d ensures that both players prefer
some feasible agreement to the consequences
of failing to reach agreement. That is, this
latter requirement confines our attention to
games in which both players can gain from
reaching an agreement.

3 This is a standard assumption in game theory, re-
ferred to as the assumption of “complete information.”

4 A convex set of vectors in one that contains any
weighted average of any two elements. Since the
utility of a lottery is its expected utility (i.e., the
weighted average of the utilities over which the lottery
is conducted), S is convex if lotteries are feasible.
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Having thus modeled the bargaining sifu-
ations to which his theory is addressed, Nash
modeled the bargaining precess by a function
(called a solution) that selects a feasible
outcome for every bargaining game. That is,
letting B denote the class of bargaining games
(and R? denote the plane), then a solution is
a function f: B — R? such that for every game
(S, d), f(5,d) is an element of .S. Thus a
solution models a bargaining process by speci-
fying its outcome. Nash proposed that a solu-
tion should possess the following properties:

Property 1. Pareto optimality: 1f (S, d) = 3z,
then the set S contains no element x distinct
from z such that x > z.

The first property specifies that the bar-
gaining process will not yield any outcome
that botk players find less desirable than some
other feasible outcome.

Property 2. Symmeiry: If f(S,d) = z and
if (S, d) is a symmetric game (i.e., if d; = d»
and if for every (%1, x2) in S, (x3, x;) is also
contained in S), then z; = 2.

The second property specifies that if the
game (S, d) makes no distinction between the
players, then neither should the solution.

Property 3. Independence of irrelevant alter-
natives: If (S, d) and (7, d) are bargaining
games such that § contains 7', and if f(S, d)
in an element of T, then f(T, d) = f(S, d).

The third property can perhaps best be
understood to specify that the bargaining
process in question vields, in some sense, the
“best” outcome z in the feasible set .S, and
that the best outcome in § would also be the
best outcome in any smaller set 7.

The fourth property relates to the fact that
the game (S, d) is interpreted in terms of the
expected utility functions of the players,
which are defined only up to an interval
scale, that is, only up to an arbitrary choice
of origin and unit. It states that if a game
(8, &) is derived from (S, d) by transforming
the utility functions of the players to equiva-
lent representations of their preferences, then
the same transformations applied to the out-
come of the game (S, d) should vield the
outcome selected in (S”, d’). That is, it states
that the solution should depend only on the
preferences of the players, and not on any
arbitrary features of the utility functions that
represent these preferences.
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Property 4. Independence of equivalent utility
representations: If f(S,d) = 3, and (S, d) is
a bargaining game related to (S, d) by the
transformations d' = (aidy + by, auds + by),
S = {(dlxl -+ bx, asts + by ! (xl, x-z) I~ S},
where a:, a; > 0, then f(S',d') = (a121 + by,
% + bz)-

Sometimes Property 4 goes by the alternate
name independence of positive linear irans-
formations of the payoffs. Since the choice of
origin and scale for each player’s utility func-
tion is unrelated to that of the other player’s,
this property essentially specifies that the
numerical levels of utility assigned to each
outcome have no standing in the theory, and
no compariscns of the numerical utility payoffs
received by the two players can play any role
in determining the outcome of bargaining.

Nash (1950) proved the following remark-
able theorem.

Theorem 1: There is a unique solution that
possesses Properties 1-4. It is the solution
f = F defined by F(S,d) = z such that z > d
and (Zl et d]) (22 - d'z) > (xl - dl) (x2 - d;)
for all points x in § distinct from z such
that x > d.

That is, in the region of S yielding positive
gains to both players, Nash’s solution D
selects the unique point z that maximizes the
geometric average (i.e., the product) of the
gains available to the players, as measured
against their disagreement payoffs. Further-
more, the solution F possesses Properties 1-4,
and it is the only solution that does.

Although the four properties that Nash
considered are sufficient to characterize the
solution F, there are, of course, other proper-
ties of the solution that may be useful to
consider. One of the most elementary of these
is that, as we have noted, Nash’s solution
always yields each player a positive gain over
the disagreement point; that is, it possesses
the foilowing property.

Property 5. Strong individual rationality:
f(S,d) > d. This property is elementary in
the sense that it might reascnably be expected
to be descriptive of any bargaining process
that results in agreement, since neither player
has any incentive to accept an agreement
that does not yield the player a higher utility
than can be achieved without agreement.
(Recall that the payoffs are assumed to be in
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terms of utility, which completely summarize
a player’s preferences.)

It has recently been shown (Roth, 1977b,
1978) that if Property 5 is incorporated into
the characterization of a solution, then the
elimination of Property 1 causes no change
in Nash’s conclusion, whereas the elimination
of Property 2 leads to a straightforward gen-
eralization of Nash’s result. Specifically, we
have the following two theorems.

Theorem 2: Nash’s solution F is the unique
solution that possesses Properties 2-5 (Roth,
1977b).

Theorem 3: Any solution that possesses
Properties 3-5 is of the form f(S,d) =z
such that z>d and (21 — d1)?(z2 — d2)?
> (x1 — d1)?(x2 — d2)? for all points x in §
distinct from z such that x > d, where p
and q are fixed positive numbers that sum to 2
(Roth, 1978).

Theorem 3 states that if we drop the re-
quirement of symmetry, then the resulting
solution must be one that maximizes the
weighted geometric average of the gains avail-
able to the players, with weights p and gq.
Thus the only role of symmetry in Nash’s
theorem is to set p = ¢ =1, causing the
solution to weight equally the gains of both
players. Dropping symmetry permits the solu-
tion to reflect factors such as differential
bargaining ability between players that are
outside the formal description of the game,
but it leaves the form of the solution un-
changed. (Asymmetric Nash solutions are also
considered, from somewhat different perspec-
tives, by Harsanyi and Selten, 1972; and
Kalai, 1977a.)

Taken together, Theorems 2 and 3 indicate
that Nash’s result depends hardly at all on
Pareto optimality or symmetry but relies
almost entirely on Properties 3 and 4, the
two independence properties. It is therefore
toward these two properties that we will
direct our attention.

As already noted, Property 4, independence
of equivalent utility representations, specifies
that the solution may not make use of any
information about the payofs, to the players,
which depends on the origin or unit of those
payoffs. The other independence property,
independence of irrelevant alternatives, im-
poses restrictions of a different sort. Rather
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than reflecting limitations on the information
contained in the payoffs, it restricts the kinds
of comparisons that the bargaining process
may employ. Given a fixed disagreement
point, a bargaining process that possesses
Property 3 essentially proceeds by establishing
a means to make binary comparisons between
pairs of alternatives and choosing the “best”
alternative, in terms of this comparison, from
any feasible set. That is, the comparison
between any two particular alternatives is
determined independently of the feasible set
in which they are contained.

Of the four properties that Nash suggested,
Property 3 has been the subject of the most
criticism and discussion (Luce & Raiffa, 1957;
Roth, 1977a). Other solutions have been pro-
posed that possess all of Nash’s properties
with the exception of Property 3, and of these
alternative solutions, the one that has received
the most attention is one of several originally
proposed by Raiffa (1953). Raiffa’s solution G
is defined as follows:

For any game (S,d), let the ideal point
I(S,d) = £ = (%1, T2) be defined by & =
max{xi|x > d and x = (%, %;) is contained
in S}, & = max{x.|x > d and x is contained
in S}. Then #; and Z, represent the maximal
payoffs available to Players 1 and 2, respec-
tively, in the individually rational region of S.
The solution G selects the maximal feasible
point on the line joining d to Z; that is,
G(S, d) = z is the Pareto optimal point such
that (Zl - dl)/(22 — dz) = (.2_11 - dl)/(.’l-‘,z — dy).
That is, the solution G chooses the point 3z
that maximizes the gains of the players sub-
ject to the restriction that the players’ actual
gains are in the same proportion as their
maximum potential gains. It is easy to verify
that the solution G possesses Properties 1, 2,
and 4 but does not possess Property 3. That is,
the feasible points that determine I(S, d) are
not “irrelevant” to Raiffa’s solution in the
sense in which they are to Nash’s solution.

Kalai and Smorodinsky (1975) characterized
G as the unique solution that possesses Prop-
erties 1, 2, 4 and an additional property called
individual monotonicity. The solution G has
also been independently proposed and studied
by other investigators; for example, Crott
(1971) anticipated the solution on the basis
of an experimental study (reviewed later),
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and Butrim (1976) studied the solution axio-
matically. Unlike Nash’s solution, which can
be generalized in a straightforward way to
the case of pure bargaining games among more
than two players, it can be shown (Roth, in
press) that the solution G does not generalize
to the case of more than two players.

Before proceeding to a review of the ex-
perimental literature concerning these models,
it should be mentioned that subsequently
Nash (1953) and Raiffa (1953) also analyzed
certain specialized two-stage bargaining situ-
ations, in which it is possible in the first
stage for bargainers to choose threats and
make irrevocable commitments that bind them
to carry out their threats should no agreement
be reached in the second stage. The analysis
of these “variable-threat” situations concen-
trates on the question of what threats should
be chosen by the players in the first stage,
under the assumption that these threats will
determine the disagreement outcome in the
second stage for a bargaining process of the
kind we have already considered, modeled by
Nash’s (or Raiffa’s) solution. The conclusions
reached concerning the optimal choice of
threats in such situations depend critically
on the assumption that the commitment to
carry out a threat is irrevocable, as well as
on the assumption that bargaining in the
second stage can be modeled by the solutions
considered earlier in this section. The pure
bargaining games we have been considering
are often called ““fixed-threat” games, to dis-
tinguish them from the two-stage variable
threat situations by indicating that the dis-
agreement outcome is fixed.

Previous Experimental Research

The scope of this review is limited to in-
vestigations that explicitly sought to test
propositions based on one of the game-
theoretic models of bargaining we have been
considering. It does not include results of
experiments that were conducted without any
reference to game-theoretic models but that
nevertheless might have some relevance to
them. Most of the experiments considered
here have not previously been considered in
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reviews either of the more general literature
on bargaining (Chertkoff & Esser, 1976;
Morley & Stephenson, 1977; Rubin & Brown,
1975) or of game-theoretic models in general
(Murnighan, 1978).

Although a number of the experiments
testing game-theoretic models of bargaining
have been concerned not only with the origi-
nal fixed-threat pure bargaining games but
also with the variable-threat games, we will
concentrate on the former models only, for
two reasons. First, the fixed-threat models
are more basic than the variable-threat models,
since the latter models depend in a critical
way on the validity of the former. Second,
most of the experiments devoted to testing
the variable-threat models do not implement
any procedures to make threats irrevocable
in the required way, and so these experiments
tend not to be closely related to the theo-
retical models they are designed to test.

Since any bargaining situation having a dis-
agreement outcome that each bargainer can
enforce can be described as a pure bargaining
game, the conditions of the formal models
leave room for a wide variety of experimental
implementations. However, since the bar-
gaining theories under consideration are de-
signed to model cooperative bargaining be-
havior, it seems reasonable to expect that
they would be most descriptive of the result
of bargaining conducted under conditions
that permit at least limited communication.
Indeed, with few exceptions, the experiments
designed to test these theories have been
conducted under what Chertkoff and Esser
(1976) call conditions of explicit bargaining,
in that they permit communication, com-
promise, and the exchange of provisional
offers and counteroffers.

The experiments considered in this section
involved bargaining for monetary payoffs,
sometimes through the intermediary step of
bargaining for “points” or ““chips” with mone-
tary value. These experiments will be orga-
nized here according to the information that
was made available to the bargainers: full
information to both bargainers about the
payoffs to both bargainers, or full information
to each bargainer about his or her own payoffs
and partial information about the other bar-
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gainer’s payoffs.” Most but not all of the
experiments to be considered can be classified
into one of these categories, and the excep-
tions will be noted.

Full Information

A straightforward experiment was con-
ducted by Nydegger and Owen (1975), who
proposed to test each of Nash’s properties
by observing the results of a series of simple
bargaining situations. A secondary purpose
of the Nydegger and Owen experiment was to
compare the predictive value of Nash’s solu-
tion with Raiffa’s solution. In their experi-
ment, 30 pairs of undergraduates each par-
ticipated in a single bargaining encounter
involving the distribution of monetary payoffs,
about which they were fully informed. Ny-
degger and Owen interpreted the monetary
payoffs in these games as being identical to
the utility received by the bargainers. In each
of the three conditions of the experiment,
a different game was played, chosen to test
Nash’s properties. The bargaining was con-
ducted verbally and face-to-face, with the
bargainers seated together at a table.

Nydegger and Owen interpreted their results
as supporting the proposition that bargaining
behavior is symmetric, Pareto optimal, and
independent of irrelevant alternatives while
contradicting the proposition that it is inde-
pendent of equivalent utility representations.
Specifically, in each of their games, the bar-
gainers reached agreements that gave them
cqual monetary payofis. This supports the
conclusion that in bargaining for money with
full information about payoffs, the scale of
the monetary payoffs available has an effect
on the agreements reached, and that com-
parison of the monetary payoffs received by
each player plays a role in determining the
outcome. A remarkable feature of these results
is the fact that within each condition the
identical agreement was reached by each pair
of bargainers. Even if this is primarily due
to the social forces acting on undergraduate
subjects when placed in an artificial situation
to bargain face-to-face for negligible amounts
of money, it at least indicates that the in-
formation available to the bargainers was
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sufficient to enable them to identify a particu-
lar salient outcome.

Another experiment designed to test Nash’s
properties was conducted by Rapoport, Fren-
kel, and Perner (1977). Like the previous
experiment, it was conducted for monetary
payoffs about which the bargainers were given
full information, and for which they bar-
gained face-to-face. This experiment was de-
signed to test three of Nash’s four properties:
symmetry, Pareto optimality, and independ-
ence of equivalent utility representations.
Participants were randomly paired and bar-
gained in 24 games against the same opponent
in games chosen to test the three properties.
Independence of irrelevant alternatives was
not tested. One goal of this experiment was
to consider differences between the variable-
threat bargaining situation and the classical
fixed-threat situation, but we are concerned
here only with the condition concerning the
classical bargaining situation with a fixed
disagreement outcome.

Bargaining was conducted with the bar-
gainers seated face-to-face on either side of
a partition that allowed them to see one
another and talk freely but also allowed them
to write privately. Following a period of un-
structured verbal bargaining, each bargainer
separately wrote down his or her demand.
There were two iterations of this procedure,
after which, if the demands were compatible,
each player received the weighted average
he or she had demanded. Otherwise, each
player received his or her disagreement payoff.

The principal conclusion drawn by the
authors is that the bargaining process does
not obey the property of independence of
equivalent utility representations. Rapoport
et al. (1977) stated that “invariance of the
solution with respect to positive linear trans-
formations on the payoffs is grossly violated”
(p. 89). As in the previous study, they ac-
count for this by observing that to a large
extent the bargainers make interpersonal com-
parisons of the payoffs.

® The distinction between “full” and “partial” in-
formation made here should not be confused with
the technical game-theoretic terms “complete” and
“incomplete” information (cf. Footnote 3) or “perfect”
and “imperfect” information.
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Another conclusion drawn from this study
is that the bargaining process shows ““signifi-
cant departures from Pareto optimality.” The
difference between this and the previous study
in this respect may be primarily due to the
different procedure by which agreements were
reached. Although both studies permitted
unrestricted verbal bargaining, the actual final
demands in this study were made independ-
ently. This seems to have resulted in an
increase both in the number of disagreements
and in the amount of hedging of demands to
ensure compatibility, both of which contribute
to departures from Pareto optimality.

Some departures from symmetry were ob-
served as well, although these did not reach
significance. As an ordinal measure, it was
found that Nash’s solution was a good pre-
dictor of which player would come out ahead
in a given game, even though the agreements
reached could be quite far from those pre-
dicted by Nash’s solution.

The results of this study are consistent
with others conducted by Rapoport and his
colleagues, reported in Rapoport and Perner
(1974), and Rapoport, Guyer, and Gordon
(1976). These studies differed from Rapoport
et al. (1977) in that they did not attempt to
test Nash’s properties separately, nor did they
employ actual monetary rewards. Also, the
rules under which bargaining was conducted
were somewhat more restrictive than in the
study just considered. However, players in
both studies were given full information about
the payoffs. The principal conclusion of these
studies is that the outcome of bargaining is
heavily influenced by various salient outcomes
involving interpersonal comparisons, and that,
although Nash’s solution is useful as a pre-
dictor of which player gets the larger payoff,
there is a strong tendency for agreements to
be closer to an equal division than would be
predicted by Nash’s solution.

Both the procedures used and the conclu-
sions reached in the studies by Rapoport and
his colleagues are similar to those in the study
conducted by O’Neill (Note 1), who also
investigated both fixed- and variable-threat
bargaining without, however, attempting to
test Nash’s properties separately. In O'Neill’s
study, participants played 11 games against
the same opponent, all involving the division
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of a fixed sum of money, with full informa-
tion. In each game a 3-minute period of face-
to-face negotiation was allowed, after which
the players separately wrote down their bids.
Comparison of the bids for compatibility fol-
lowed, with the players each receiving either
their share of the sum to be divided if agree-
ment had been reached or receiving their
disagreement payoff. O’Neil concluded that the
Nash solution is highly correlated with the
outcome of these games, so that it serves as a
good predictor of the relative advantage that a
player enjoys in one game as opposed to
another. However, as in the previous studies,
O’Neill (Note 1) also noticed “a systematic
shift for all games toward the equal-split
outcome” (p. 100).

Other studies have observed the same kind
of shift in bargaining over monetary payoffs
with full information. For instance, in a
famous series of experiments in which the
amount of information available to the players
was an experimental variable, Siegel and
Fouraker (1960; see also Fouraker & Siegel,
1963) found that agreements in a bilateral
monopoly (one buyer, one seller) tended
toward equal profit, with agreements ap-
proaching equality most closely under the
conditions of fullest information about payofis.
Their studies (concerned only incidentally
with Nash’s solution) involved bargainers
trying to reach price and quantity agreements
on the sale of some commodity, communicating
via written numerical bids under conditions
of full information, partial information, or
asymmetric information (one player informed,
one uninformed) about the monetary payoffs
that each player would receive from any
agreement. A similar conclusion about the
effect of varying the amount of available
information was reached by Crott and Mont-
mann (1973) and by Felsenthal (1977), who
studied a bargaining situation in which there
was a discrete (rather than a convex) set of
feasible monetary payoffs. Messé (1971) also
considered bargaining with full information
over a discrete set of feasible monetary payoffs,
and in the symmetric condition of his ex-
periment, he found a strong tendency toward
equal payoffs. Komorita and Kravitz (1979)
reached a somewhat similar conclusion in a
study in which experimental variables were
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differences in disagreement payoffs, magnitude
of the prize, and group size. Komorita and
Kravitz studied pure bargaining (each bar-
gainer could enforce the disagreement out-
come) involving groups of two, three, or four
bargainers negotiating over the distribution
of a fixed number of “points.”

Two more studies involving bargaining
games with full information about payofis
are not directly comparable to the other
studies considered here because they were
conducted in such a way as to permit no
communication of any sort between players.
Both Stone (1958) and Crott {(1971) presented
participants with a set of games in which
the feasible set was portrayed graphically.
Each participant was instructed to independ-
ently mark a demand on the graph with the
understanding that the graphs marked by the
player and his or her opponent would sub-
sequently be compared to see if their demands
were compatible ; this would determine whether
agreement had been reached. In Stone’s ex-
periment, participants were told to make their
demands on a series of games, and were told
that their opponent had already made his
demands. In fact the opponent was imaginary.
The games were defined in terms of monetary
payoffs, but the monetary awards were imagi-
nary, although participants were told that
those whose imaginary winnings fell in the
top 25% would receive a prize of §1. Stone
was primarily interested in the degree to
which players hedged their demands, and he
reported a correlation between ‘‘cautious”
behavior in one game and in another, across a
variety of games. In Crott’s (1971) experiment,
the games were also defined in terms of the
feasible set of monetary payoffs. After each
participant had indicated his or her demand
in a series of games, a random pairing of
bargainers in a subset of these games de-
termined the actual cash payoffs. Crott (1971)
found that the ratio of the players’ maximum
feasible payoffs was a good predictor of the
ratio of their demands. (For games in which
the disagreement point is the origin, the solu-
tion G predicts payoffs in the same ratio.)
Crott (1972a) reported a related investigation
into different aspects of bargaining.5

Taken together, the results of the bar-
gaining experiments in which the bargainers
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had full information about one another’s
monetary payoffs are consistent with the
proposition that comparison of players’ payoffs
plays a part in determining the outcome of
bargaining. In view of the fact that the game-
theoretic models under consideration are stated
in terms of utility rather than monetary
payoffs, the question arises whether the ex-
perimentally observed comparisons involve
money only, or whether they involve com-
parisons of the plavers’ utility in some
deeper way.

Partial Information

Two experiments have been reported that
attempt to address this issue by studying
bargaining situations in which the bargainers
negotiate over the distribution of chips with
only partial information about the value of
those chips (each bargainer knows the value
of the chips to himself but not to his or her
opponent). In situations of this sort, bar-
gainers cannot directly compare the value of
their payoffs, since this information is not
common knowledge. The two studies (Hecka-
thorn, 1978; Nydegger, 1977) that have been
conducted using this procedure illustrate the
difficulty of implementing a study of this kind
in such a way that it conforms to the as-
sumptions of the models it is intended to test.

Nydegger’s (1977) study, also reported in
Nydegger (1979), was modeled on the study
by Nydegger and Owen (1975) and was
intended both to test Nash’s four properties
and to compare the predictive value of Nash’s
and Raiffa’s solutions in bargaining with
partial information about the payoffs. To
establish the payoff scales, each individual
was asked to select 10 items he would like
to have from a list of 20 items from the
campus store and to rank them in order of
preference. He was then told to assign the

¢ Further investigations by Crott and his co-workers
into various aspects of bargaining are reported in
Crott (1972b), and in Crott, Simon, and Yelin (1974);
Crott, Lumpp, and Wildermuth (1976); Crott and
Muller (1976); Crott, Muller, and Hamel (1978).
These studies fall outside the scope of this review,
but they are mentioned here for completeness, since
they have not been included in the reviews of the
English language literature.
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most preferred item a value of ‘100 units,”
and to assign lower values to the other items
“with the only constraint being to preserve
the ordinality of the rankings.” Participants
were then brought together to bargain for
chips that were assigned values in “units,”
with the understanding that a player who
earned a certain number of units in bar-
gaining would then receive the most preferred
item that he had assigned not more than
that number of units.

The difficulty in interpreting the results of
this experiment arises from the fact that the
actual payoffs available to the participants
consisted of a discrete set of prizes. Thus, for
instance, if one of the bargainers had valued
one of the potential prizes at 55 units and
the next most desirable prize at 40 units,
then he would presumably be indifferent to
receiving anywhere from 40 to 54 units, since
any agreement in this range would yield the
same prize. Thus if the players are assumed
to be motivated by the prizes, the units
cannot be taken to represent the utilities of
the players.

Heckathorn’s (1978) study was also in-
tended to study bargaining under conditions
of partial information and to compare Nash’s
solution with Raiffa’s.” However, the rules
under which the bargaining was conducted
did not correspond to those of a pure bar-
gaining game, since there was no disagreement
outcome that could be enforced by both
players. A further difficulty encountered in
this article is that Raiffa’s solution is identified
by an incorrect formula that is not inde-
pendent of changes in the origins of the
players’ payoff scales.

Partial information of a different sort was
considered in an experiment by Hoggatt,
Selten, Crockett, Gill, and Moore (1978),
motivated by a theoretical model based on
Nash’s solution, proposed by Harsanyi and
Selten (1972). In the game played in this
experiment, participants bargained over the
distribution of 20 “money units” whose value
(10¢) was known to both of them. In the
event of disagreement, each player received
0 units. What each player did not know was
whether his or her opponent had a “high
cost” of 9 units or a “low cost” of O units
that would be subtracted from his or her
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winnings following any agreement. Before the
game commenced, each player’s cost was de-
termined by a random process that gave a
509 chance of having high or low cost. Each
player was informed only of the result of his
or her own random process, so that when
the bargaining commenced, each player knew
his or her own cost and the probability dis-
tribution that determined the opponent’s cost.
(Situations of this type are called games of
incomplete information.) After equating the
utility of the players with their monetary
payoffs, it was found that there was sub-
stantial qualitative agreement between aspects
of the experimental results and predictions of
the theory, although agreements at an equal
division of the 20 units were the most com-
mon, even in the case in which a player with
low cost bargained against a player with
high cost.

Modification of the Classical Models

The experimental evidence considered in the
previous section reveals some considerable
discrepancies between observed experimental
results and the predictions of the game-
theoretic models. In particular, the property
of independence of equivalent utility repre-
sentations was consistently violated in studies
in which each player knew the monetary value
of his or her opponent’s payoffs.

There is thus ample support for the propo-
sition that comparison of the monetary payoffs
available to the bargainers plays a role in
determining the outcome of bargaining in
situations that make available to both bar-
gainers the information necessary to. make
such comparisons. To design a descriptive
theory of bargaining for situations in- which
the participants know each other’s monetary
payoffs (rather than their utility payoffs), it
is therefore necessary to reexamine those
aspects of the classical models that deal with
the nature of the payoffs and the information
they convey. In this section we consider a
new model that allows for the comparison of
the payoffs between players.

7 Heckathorn refers to Raiffa’s solution as the
“Smorodinsky-Kalai” solution.
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When bargaining games (S, d) defined in
terms of the feasible utility payoffs were con-
sidered, it was natural to impose the restric-
tion that the set S be convex. However, when
the game (S, d) is defined in terms of mone-
tary payoffs, this restriction is no longer
natural, and so this section is concerned with
games from a larger class than the class B,
considered so far. Let B* denote the class of
games (S, d) where S is a compact (but not
necessarily convex) subset of the plane con-
taining the point ¢ and at least one point x
such that x > d. For simplicity we will also
require that the Pareto optimal subset of S
be connected, as would be the case in any
game in which the bargaining concerns the
distribution of a divisible commodity. When
a game (S, d) is considered as a member of
the class B*, the set S is to be interpreted
as the set of feasible monetary payoffs and
the point d as the monetary payoffs resulting
from disagreement.

A model of bargaining in such games will
be a solution f defined on the class B*. To be
consistent with the available experimental
evidence, this solution should possess Prop-
erties 1-3 but not Property 4. Specifically,
it should incorporate information (of a kind
that is precluded by Property 4) about the
relative payoffs the players receive at any
agreement. It is instructive to consider the
effect of replacing Property 4 with the fol-
lowing property that in certain respects can
be considered almost the opposite of Prop-
erty 4.8

Property 4': Independence of ordinal trans-
formations preserving interpersonal compari-
sons: Let (S,d) and (S, d’) be games in B*
such that d'; = t;(dy, ds) for ¢ = 1,2, and
S = {(ta1, x2), ta (21, 22)) | (1, %2) € S} where
t = (t, t2) is a transformation ¢:5— R? such
that for all x, yin Sand 7 = 1, 2;

@) ti(zy, 22) > t:(y1, y2) if and only if x; > y,,
and
(ii) tl(xl, xz) - ll(dl, dz) > tz(xx, X2)
© — t3(dy, do), if and only if
xl"'dlzxz—dg.

Then
f:i(S', &) = t:(f(S, d)).
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This property states that if a game (S’, d’)
is derived from (S, d) via a transformation ¢
(of feasible payoff vectors) that (a) preserves
each player’s ordinal preferences and (b) pre-
serves information about which player makes
larger gains at any given payoff, then the
same transformation applied to the final
agreement of the game (S,d) should yield
the final agreement of the game (S, d’). That
is, it states that the solution should depend
only on the ordinal preferences of the players
and on the ordinal comparison of the payoffs
to the players at any given agreement, and
not on any other features of the payoffs.
A solution possessing Property 4’ thus differs
from a solution possessing Property 4 in two
ways: (a) It treats the feasible payoffs to a
player as ordinal rather than interval data
(i.e., it reflects the direction of each player’s
preferences but not how much the player
prefers one payoff to another) and (b) it
permits ordinal comparisons of one player’s
payoffs to those of the other player, rather
than precluding all such comparisons.

One solution that possesses Property 4’ is
the solution f = E, that selects the outcome
E(S,d) = z, where z is the Pareto optimal
point in S such that min{z; — di, 22 — ds}
> min{x; — dy, x; — d,} for all Pareto optimal
points x in § distinct from z. The solution E
picks the Pareto optimal point in S that
maximizes the minimum gains available to
the players. The letter E was chosen to reflect
the fact that this solution selects the outcome
that gives both players equal gains, whenever
there exists a Pareto optimal outcome with
this property. In any event, the solution E
always selects the Pareto optimal point that
comes closest to giving the players equal gains.

Just as Nash’s solution is uniquely charac-
terized by Properties 1, 2, 3, and 4, it turns
out that the equal gains solution E can be
characterized by Properties 1, 2, 3, and 4’
That is, we can state the following new result.

Theorem 4: The equal gains solution E is
the unique individually rational solution that
possesses Properties 1, 2, 3, and 4'.

8 An alternative approach is investigated by Kalai
(1977b), Myerson (1977), and Roth (1979). These
and other related approaches are considered in Roth
(in press).
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The proof of this theorem is given in the
Appendix.

The equal gains solution E can thus be
thought of as differing from Nash’s solution
only in the kind of information that is as-
sumed to determine the outcome of bar-
gaining. Property 4 permits Nash’s solution to
be sensitive to the inlensity of each player’s
preferences for the various potential outcomes
(as measured by von Neumann & Morgen-
stern, 1953, utility functions), but requires it
to be insensitive to any comparison between
players. Property 4, on the other hand,
permits the equal gains solution E to be
sensitive to comparisons of the payoffs the
bargainers get at any given outcome, and to
be sensitive to each players’ ordinal prefer-
ences over different outcomes, but prevents it
from being sensitive to the intensity of their
preferences over different outcomes.

The experiment described in the following
section is designed to help distinguish the
effects of those two kinds of information.

Experiment

The experiment reported here is designed
to test the hypothesis that the information
that influences the outcome of bargaining is
to a large extent the information shared by
both bargainers, as opposed to information
available to only one of the bargainers. We
examine the hypothesis that Nash’s solution
is descriptive of bargaining situations in which
each player does know his or her opponent’s
von Neumann-Morgenstern utility for each
outcome but does not know the opponent’s
monetary payoff. We will also examine the re-
lated hypothesis that when the players know
both their opponents’ monetary payoffs as well
as their utilities, the outcome of bargaining will
be influenced by interpersonal comparisons,
in the direction of equal gains. Simply put,
we will be examining the hypothesis that
Nash’s solution is descriptive of bargaining
when the players share the sort of information
assumed by Property 4, and that Property 4
(and consequently Nash’s solution) fails to
be descriptive when the shared information
is of a different sort. (The specific implica-
tions of these hypotheses for our experiment
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will be described in detail following the de-
scription of the experimental design.)

None of the experiments reviewed earlier
necessarily permit the players to know one
another’s von Neumann-Morgenstern expected
utility for an agreement, since even the ex-
periments conducted under conditions of full
information revealed only the monetary payoffs
available. To the extent that a player has a
utility function that is not linear in money,
this utility function is not known to the
player’s opponent (nor to the experimenter).
At the same time, in giving each player in-
formation about the opponent’s monetary
payoffs, these experiments gave the players
information about their opponent’s payoffs
that is nof contained in the players’ utility
functions, and that is defined on a common
absolute scale rather than on independently
normalized interval scales. The fact that ob-
served agreements tended toward equal payoffs
makes clear that this information played a
role in the bargaining, since the comparisons
necessary to determine equality are not well-
defined on independently normalized interval
scales.

Thus the preceding experiments provided
less information of one kind (about the utili-
ties) and more information of another kind
(about the monetary awards) than is assumed
to be relevant by the classical game-theoretic
models being tested.® The experiment de-
scribed next is designed to provide participants
with the required information about their
opponent’s utility for the available payoffs,
and to permit information about the under-
lying monetary payoffs to be provided or
withheld as an experimental variable.

Design

Recall that knowing an individual’s expected utility
for a given agreement is equivalent to knowing what
lottery he or she thinks is as desirable as that agree-
ment. Thus in a bargaining game in which the feasible
agreements are the appropriate kind of lotteries,

9 That is, knowing a player’s monetary payoffs does
not permit his or her utility function to be known
except in the special case in which utility is known
to be linear in money. Even in this case, however,
knowing the monetary payoffs conveys additional
information not conveyed by the utility function alone.
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knowing the utilities of the players at a given agree-
ment is equivalent to simply knowing the lottery they
have agreed on.

In each game of this experiment, therefore, players
bargained over the probability that they would receive
a certain monetary prize, possibly a different prize
for each player. Specifically, in each of four games
played under two information conditions, players
bargained over how to distribute “lottery tickets”
that would determine the probability that each player
would win his or her personal lottery (i.c., a player
who received 45% of the lottery tickets would have
a 45%, chance of winning his or her specified monetary
award and a 55% chance of winning nothing). In the
event that no agreement was reached, each player
received nothing. In the full information condition,
each player was informed of the value of his or her
own potential prize and of his or her opponent’s
potential prize; in the partial information condition,
each player was informed only of the value of his or
her own prize.

Each player played four games, in random order,
under one of the information conditions, against dif-
ferent opponents. Players were allowed to communicate
freely by teletype, but they were unaware of the
identity of their opponents. In Game 1, no restriction
was placed on the percentage of lottery tickets that
each player could receive, and hoth players had the
same potential payoff of $1. Game 2 was played with
the same potential payoffs as Game 1, but one of the
players (Player 2) was restricted to receive no more
than 609 of the lottery tickets. Game 3 was played
with the same rules as Game 1, but with different
monetary payoffs for the two players: $1.25 for
Player 1 and $3.75 for Player 2. Game 4 was played
under the same rules as Game 2, with the same prizes
as Game 3 (see Table 1).

To interpret the set of feasible outcomes in each
of these games in terms of each player’s utility func-
tion for money, recall that if we consider each player’s
utility function to be normalized so that the utility
for receiving his or her own prize is 1, and the utility

" for not receiving it is 0, then the player’s utility for
any lottery between those two alternatives is the
probability of winning the lottery.

Note that we are considering the feasible set of
utility payoffs to be defined in terms of the utility
function of each player for the lottery that the player

Table 1
Prizes and Feasible Distributions
for Games 1-4

Max- Max-
imum % imum 9%,

Prize for Prize for allowed allowed

Game Player 1 Player 2 Player1 Player 2
1 $1 $1 100 100
2 $1 $1 100 60
3 $1.25 $3.75 100 100
4 $1.25 $3.75 100 60

ALVIN E. ROTH AND MICHAEL W. K. MALOUF

receives, independently of the bargaining that has
taken place to achieve this lottery, and even inde-
pendently of the lottery that the opponent receives.
In doing so, we are taking the point of view that
although the progress of the negotiations may in-
fluence the’ utilities of the bargainers for the agree-
ment eventually reached, the description of any effect
that this has on the agreement reached belongs in
the model of the bargaining process rather than in
the model of the bargaining situation. Considerable
confusion in the literature has resulted from attempts
to interpret bargaining models in terms of the player’s
utilities for outcomes affer the bargaining has ended,
since no bargaining model can be falsified by experi-
mental evidence if, after an outcome has been chosen,
the utilities of the players can be interpreted as having
changed in whatever way is necessary to be con-
sistent with the model. To have predictive value,
bargaining theories must be stated in terms of pa-
rameters that can be measured independently of the
phenomena that the theories are designed to predict,
and it is for this reason that we consider the utilities
that define the game, in either information condition,
to be simply each player’s utility for money. (See
the passage from Chertkoff and Esser, 1976, quoted
on p. 574 of this article.)1°

Predictions of the Models

Because the monetary awards available to
the players in each game are the same under
both information conditions, so are the feasible
utility payoffs. Since the classical game-theo-
retic models depend only on the feasible set
of utility payoffs (i.e., since they are defined
on the class B of games), both Nash’s and
Raiffa’s solutions predict no difference be-
tween the two information conditions.

9 An alternative approach (particularly in the full
information condition) would have been to try to
assess the utility of each player for all possible dizisions
of the lottery tickets; that is, to incorporate into the
utility functions each player’s preferences for his or
her standing relative to the opponent; as well as for
the monetary payoff that the player receives. In this
particular experiment, this would have no effect on
the utility functions of the players for any potential
Pareto-optimal agreement, as long as each player
prefers, of any two agreements the one that gives
him or her the higher percentage of lottery tickets.
(This is because each agreement is a lottery between
the same two outcomes—the most preferred and the
least preferred Parcto-optimal agreements.) However,
there could, in general, be an effect on the utility of
the players for the disagreement outcome and for the
non-Pareto-optimal agreements. For the reasons indi-
cated, we will consider the set of feasible utilities
associated with each game to be defined by each
player’s utility for money. '
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Property 1, Pareto optimality, predicts that
in all four games agreements will be reached
and will divide all of the lottery tickets.
Property 2, symmetry, predicts that in Game 1
the playvers will receive equal percentages of
the lottery tickets. (Thus Properties 1 and 2
together imply a 30-30 split in Game 1.)
Property 3, independence of irrelevant alter-
natives, then predicts that Game 2 will reach
the same outcome as Game 1 (since the
restriction in Game 2 does not exclude the
50-50 split). Property 4, independence of
equivalent utility representations, predicts that
Game 3 will have the same outcome as Game 1
and Game 4 will have the same outcome as
Game 2, since these games differ only in the
size of the monetary prizes (which affects
only the scale of the utility functions).

Taken together, Properties 1-4 thus pre-
dict a 50-50 split in all four games. Since
Nash’s solution F possesses all four proper-
ties, this is the prediction of Nash’s solution.
In what follows, it will sometimes be con-
venient to discuss the predictions of the models
in terms of the quantity D, defined as the
percentage of lottery tickets received by
Player 2 minus the percentage of lottery
tickets received by Player 1. The prediction
of Nash’s solution is that D will equal O for
all four games under both information
conditions.

Raiffa’s solution G does not possess Prop-
erty 3, and so it predicts a different outcome
for Game 2 than for Game 1; like Nash’s
solution, it predicts that Game 1 will result
in a 50-50 split, but in Game 2 it predicts
that Players 1 and 2 will receive 62.5%, and
37.59, of the lottery tickets, respectively.
Since it possesses Property 4, it predicts that
Game 3 should have the same outcome as
Game 1, and Game 4 should have the same
outcome as Game 2. Thus Raiffa’s solution
predicts that D will equal O for Games 1
and 3, and that it will equal —25 for Games 2
and 4 under both information conditions.

Our principal experimental hypothesis is
that only in the partial information condition
will the observed outcomes be consistent with
Property 4, since Property 4 specifies that
only the utility functions of the players should
be relevant to the outcome, and this is pre-
cisely the information shared by the players
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in the partial information condition. Thus
Games 1 and 3 should yield the same outcome
in this condition, as should Games 2 and 4.
It would be consistent with the results of
most of the studies reviewed earlier if the
observations were consistent with Properties
1-3 as well, and so our hyvpothesis for this
condition is that Nash’s solution will be
descriptive.

In the full information condition, the prin-
cipal hypothesis is that the observations will
continue to be consistent with Properties 1-3,
but will no longer be consistent with Prop-
erty 4: that is, Game 1 will yield a different
outcome than Game 3, and Game 2 will yield
a different outcome than Game 4. In this
condition, the players share both the informa-
tion about one another’s utility specified by
Property 4 as well as the information about
each other’s monetary payoffs needed to make
the kind of comparisons specified by Prop-
erty 4'. Since Property 4 vields Nash’s solu-
tion F when combined with Properties 1-3,
whereas Property 4’ yields the equal gains
solution E, our hypothesis is that, in this
condition, the observations will tend to fall
between those predicted by the two solutions.
(Note that the results of the earlier studies
conducted under conditions of full informa-
tion also tended to fall between the predic-
tions of these two solutions.) The equal gains
solution defined en the expected monetary
payoffs (rather than the expected utility
payoffs) predicts that the plavers will each
receive 509, of the lottery tickets in Games 1
and 2, and that in Games 3 and 4 Plavers 1
and 2 will receive 759, and 259, respectively.
(This would result in an expected monetary
payoff of 50¢ to each player in Games 1 and 2,
and 95¢ to each plaver in Games 3 and 4.)

The experimental hypotheses are, therefore,
that in the full information condition, D will
equal O for Games 1 and 2, and be bhetween 0
and —30 for Games 3 and 4. In the partial
information condition, D should equal 0 for
all four games.

Method

Subjects. The subject pool consisted mainly of
college sophomores from an introductory business
administration course. No special skill or experience
was required for participation. Pretests were run with
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the same subject pool to ensure that the instructions
to participants were clear and easily understandable.

Procedure. Each participant was seated at a visu-
ally isolated terminal of a computer-assisted instruc-
tion system (called pLATO) developed at the University
of Illinois, whose features include advanced graphic
displays and interactive capability. The experiment
was conducted in a room containing over 70 terminals,
most of which were occupied at any given time by
students uninvolved in this experiment. No more than
9 of the terminals were used for the experiment at
any time (8 terminals occupied by participants, and
1 terminal used by the experimenter to monitor the
proceedings). Participants were seated by the experi-
menter in order of their arrival at scattered terminals
throughout the room, and for the remainer of the
experiment they received all of their instructions and
conducted all communication through the terminal.

Background information such as a brief review of
probability theory was first presented. The main tools
of the bargaining were then introduced. These con-
sisted of sending messages or sending proposals.
A proposal was a pair of numbers, the first of which
was the sender’s probability of receiving his/her prize
and the second was the receiver’s probability. The use
of the computer enabled any asymmetry in the pres-
entation to be avoided. pLATO also computed the ex-
pected value of each proposal and displayed the
proposal on a graph of the feasible region. After being
made aware of these computations, the bargainer was
given the option of canceling the proposal before its
transmittal. Proposals were said to be binding on the
sender, and an agreement was reached whenever one
of the bargainers returned a proposal identical to the
one he or she had just received.

Messages were not binding. Instead, they were used
to transmit any thoughts that the bargainers wanted
to convey to each other. To ensure anonymity, the
monitor intercepted any messages that revealed the
identity of the players. In the partial information
condition, the monitor also intercepted messages con-
taining information about the available prizes. The
intercepted message was returned to the sender with
a heading indicating the reason for such action.

To verify their understanding of the basic notions,
the subjects were given some drills followed by a
simulated bargaining session with the computer. As
soon as all the participants finished this portion of
the experiments, they were paired at random and the
bargaining started.

At the end of 12 minutes or when agreement was
reached (whichever came first), the subjects were
informed of the results of that game and were asked
to wait until all the other bargainers were finished.
For the subsequent game there were new random
pairings, and the bargaining resumed. The cycle con-
tinued until all four games were completed. At no
point in the experiment were the players aware of
what the other participants were doing, or of the
identity of their opponents.
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Table 2

Means and Standard Deviations for D
Game

Statistic 1 2 3 4

Full information (11 pairs)

M 00 —1909 —-34.600 —21.636

SD 0.0 12.169 19.277 22.482
Partial information (8 pairs)

M 0.0 1.325 2.500 —2.500

SD 0.0 8.335 4.629 4.106

Note. The mean and standard deviation are reported
after the removal of an outlier (D = 498 resulting
from a (1, 99) agreement) that is 6.8 standard devia-
tions from the mean.

The bargaining process consisted of the exchange of
messages and proposals, and participants were in-
structed that “your objective should be to maximize
your own earnings by taking advantage of the special
features of each session.” Only if the bargainers
reached agreement on what percentage of the “lottery
tickets” each would receive were they allowed the
opporturity to participate in the lottery for the par-
ticular game being played. All transactions were
automatically recorded.

The lotteries were held after all four games were
completed, and each player was informed of the
outcomes and the amount of his winnings. A brief
explanation of the purpose of the experiment was
then given, and the subjects were offered the oppor-
tunity to type any comments, questions, and so on,
and were directed to the monitor who paid them.

Results

The 76 games played yielded 72 agreements
(95%) of which 71 (99%,) were Pareto optimal,
so that 939, of the bargaining encounters
ended in a Pareto optimal agreement.

Because the players did not know who they
were bargaining with and since a different
random pairing of the subjects was performed
in each session, we shall assume the replica-
tion effect due to games to be negligible. This
assumption of independence is consistent with
the assumptions made by Kahan and Rapoport
(1974). '

Table 2 gives the means and standard de-
viations for D. (An outlier in Game 3 of the
full information condition has been removed.)
The zero variance for Game 1 precludes con-
ventional analysis. However, Games 2, 3,
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and 4 in the partial information condition
were not significantly different from zero,
() = 45, 1(7) = 1.528, and ((7) = 1.722,
respectively. In the full information condition
also, Game 2 was not significantly different
from zero: {(10) = .520.

Both Games 3 and 4 were then compared
across information conditions. A { test was
performed vielding a significant difference
1(10.28)" = 5.88, p < .001 for Game 3, and
1(10.91) = 2.76, p < .02 for Game 4. (The
Mann-Whitney U test substantiated this
finding.)

In comparisons within conditions, / tests
showed that in the partial information condi-
tion, Game 1 was not significantly different
from Game 3, 1(14) = —1.53; and Game 2
was not significantly different from Game 4,
£(14) = —1.16. In the full information condi-
tion, however, Game 1 was significantly dif-
ferent from Game 3, £(19) = 5.97, p < .001,
and Game 2 was significantly different from
Game 4, £(20) = —2.56, p < .02.

We then compared Game 1 to Game 2
finding no significant difference in either the
full or the partial information condition,
£(20) = .52, and (14) = — 45, respectively.
Comparison of Games 3 and 4 did not vield
a significant difference in the full information
condition, £(19) = 1.41, whereas, in the partial
information condition, there was a significant
difference, £(14) = —2.29, p < .04.

Thus the results are consistent with the
hypothesis that Games 3 and 4 in the full
information condition are different from all
the other games. Inspection of the data in
Table 2 also clearly affirms the presence of
the predicted effect. (The unaggregated data
are given in Table 3.)

The high percentage of Pareto optimal agree-
ments lends support to the proposition that
the bargaining process observed here can be
described by Nash’s Property 1, under both
information conditions. Nash’s Property 3,
independence of irrelevant alternatives, is de-
scriptive in the full information condition but
is not supported in the case of Games 3 and 4
of the partial information condition. Under
the partial information condition, the simi-
larity of the means for all four games, and
the fact that they are not significantly dif-
ferent from zero, support the proposition that
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the bargaining process under this condition
pessesses Properties 2 and 4. In the full in-
formation condition, the differences between
the data for Games 1 and 3 and the dif-
ferences between the data for Games 2 and 4
suggest that comparison of the expected
monetary pavoffs to each player played a role
in determining the agreements reached. In-
formal examination of the transcripts con-
taining the messages exchanged by the players
also supports this conclusion. Of the 22 out-
comes observed in Games 3 and 4 under full
information, 19 resulted in agreements and 17
(87%) of these lic between the predictions of
Nash’s solution and the equal gains solution.
The principal hypotheses that the experiment
was designed to test are thus supported by
the results.

Summary and Conclusions

The principal issue with which this article
has been concerned is the effect that the
quality of the information commonly shared
by the bargainers has on the outcome of
bargaining. We saw that Nash’s model of the
bargaining process depends primarily on only
two of the properties he proposed, one of
which is intimately connected with the as-
sumption that the utility function of a bar-
gainer constitutes the only information avail-
able to his or her opponent about the
bargainer’s payoff at any agreement. A review
of the experimental literature showed that
when the utility of the players is taken to be
identical to their monetary payoffs, this prop-
erty is violated.

A new experiment was designed to inves-
tigate whether this divergence between the
theoretical prediction and the results observed
in previous experiments might be due to the
fact that the information made available in
those experiments differed from the assump-
tions of Nash’s model. By having players
bargain over lotteries, it was possible to
produce experimental conditions in which the
plavers knew one another’s utilities. In the
partial information condition, this was the
only information the players had about their

It Due to the unequal variances in the two samples,
a noninteger degree of freedom is reported.
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opponent’s payoffs, so the information shared
by the bargainers conformed to the assump-
tions of Nash’s model. The experimental
results supported the hypothesis that Nash’s

Table 3
Percentage of Lottery Tickets

solution is descriptive of the bargaining process
under this condition. In the full information
condition in which the players knew each
other’s monetary awards as well as their

Full information

Partial information

Player Player
Game no. Group no. 1 2 D Group no.- 1 2 D
1 1 50.00 50.00 — 2 50.00 50.00 —
50.00 50.00 — 50.00 50.00 —
50.00 50.00 — 50.00 50.00 —
3 50.00 50.00 — 4 50.00 50.00 —
50.00 50.00 — 50.00 50.00 —
50.00 50.00 —
S 50.00 50.00 — 6 50.00 50.00 —_
50.00 50.00 — 50.00 50.00 —
7 50.00 50.00 — 8 50.00 50.00 —
50.00 50.00 —
9 50.00 50.00 —
2 1 50.00 50.00 — 2 40.00 60.00 20.00
50.00 50.00 —_ — — —
50.00 50.00 — 50.00 50.00 —
3 50.00 50.00 — 4 50.00 50.00 —_
50.00 50.00 — 49.70  50.30 .60
50.00 50.00 -—
5 68.00 32.00 —36.00 6 55.00 45.00 —10.00
25.00 40.00 15.00 50.00 50.00 —
7 50.00 50.00 — 8 50.00 50.00 —
50.00 50.00 —
9 50.00 50.00 —
3 1 73.00 27.00 —46.00 2 45.00 55.00 10.00
1.00 99.00 98.00 50.00 50.00 —
65.00 35.00 —30.00 50.00 50.00 —
3 — — — 4 50.00 50.00 —
70.00 30.00 —40.00 45.00 55.00 10.00
* 75.00 25.00 —50.00
S — — — 6 50.00 50.00 —_
70.00 30.00 —40.00 50.00 50.00 —
7 75.00 25.00 —50.00 8 50.00 50.00 —
70.00 30.00 —40.00
9 75.00 25.00 —50.00
4 1 75.00 25.00 —50.00 2 50.00 50.00 —
50.00 50.00 — 54.00 46.00 -8.00
55.00 45.00 —10.00 50.00 50.00 —
3 50.00 50.00 — 51.00 49.00 —-2.00
74.00 26.00 —48.00 4 50.00 50.00 —
50.00 50.00 —
5 — — — 6 55.00 45.00 —10.00
60.00 40.00 —20.00 50.00 50.00 —
7 80.00 20.00 —60.00 8 50.00 50.00 —
60.00 40.00 —20.00
9 65.00 35.00 —30.00
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utilities, the results confirmed the hypothesis
that in games in which the monetary awards
to the players differed, the agreements reached
would show a shift in the direction of equal
monetary gains.

The full information condition permitted
the players to make comparisons of the ex-
pected monetary payoffs each player would
receive from any agreement, and the results
strongly support the hypothesis that these
comparisons played a role in the bargaining
process. It was shown that if Nash’s Prop-
erty 4 was replaced with a Property (4') that
permitted such comparisons, then a solution
could be derived that predicted agreements
in which the players received equal gains.
(This could be viewed as a formal derivation
of some of the “equity”’-related predictions
that have been made in bargaining contexts).
Both Nash’s Property 4 and Property 4’ are
rather extreme, in that Property 4 permits
only the intensity of plavers’ preferences but
not comparison of their payofis to affect the
bargaining process, whereas Property 4’ allows
only for the effect of comparisons but not for
the intensity of preferences. Since the full
information condition provides the necessary
information both for comparisons of payoffs
and for judgments about intensity of prefer-
ences, it is not too surprising that the results
in this condition largely fell between the
predictions of Nash’s solution and the equal
gains solution. This suggests that in this
condition, both kinds of information influenced
the bargaining.

This phenomenon seems likely to be quite
general, since even in many conventional
bargaining situations in which the bargainers
have no direct knowledge of each others
utilities it is still probable that each bar-
gainer can form some estimate of the intensity
of his or her opponent’s preferences over
various agreements. The fact that the results
of many of the earlier experiments also fall
between the predictions of Nash’s solution
and the equal gains solution tends to bear
this out. It may also be the case that bar-
gaining situations in which the bargainers
share the most information will also offer the
most scope for individual bargaining ability.
The variances presented in Table 2 lend
support to this hypothesis, since the disper-
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sion of the results is greater under the full
information condition than under the partial
information condition. Further experimental
work will be needed to explore how different
kinds of information are incorporated into the
bargaining process and how the distribution
of this information between the bargainers
influences the outcome of bargaining. More
sophisticated mathematical models will be
needed to deal simultaneously with the dif-
ferent kinds of information available to the
bargainers, and to indicate how different kinds
of information may affect different aspects of
the bargaining.

Much research in the social psychology
literature has concentrated on what focal
points become “salient” in the course of
negotiations. The experimental results pre-
sented here, together with the consequences
of Properties 4 and 4’ as reflected by Nash’s
solution and the equal gains solution, make
it clear that “salience” in negotiations de-
pends on the information shared by the
bargainers. Insight into the mechanism by
which outcomes become salient in bargaining
may shed light on more general questions
concerning how mutual expectations are
formed in social situations.

A more general conclusion supported by
this article is that game-theoretic models of
bargaining provide a powerful theoretical
framework, with testable empirical content
and sufficient flexibility, to permit the study
of a wide range of bargaining situations. The
practice of deriving a solution from its char-
acteristic properties permits the design of
experiments that test these properties, and
the results of such experiments suggest new
properties that, because of the deductive
nature of formal mathematical models, permit
the derivation of new solutions. There thus
appear to be good prospects for considerable
interaction between further development of
theory and continued experimental investiga-
tion in this area.
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Appendix
Proof of Theorem 4

Theorem 4: The equal gains solution E is the
unique solution that is strongly individually
rational, strongly Pareto optimal, independent
of irrelevant alternatives, and independent of
ordinal transformations preserving interper-
sonal comparisons.

Proof: It is straightforward to verify that
the solution E is well defined and possesses the
properties specified by the theorem. We need
to show that it is the unique solution with those
properties; that is, if f is a solution possessing
the specified properties, then f(S, d) = E(S, d)
for any (S, d) in B*. For any game (S, d), let
P(S) denote the Pareto optimal subset of S,
and let S;t = {x & S|x 2 d} be the individ-
ually rational subset of S.

First observe that if fis individually rational,
strongly Pareto optimal, and independent of
irrelevant alternatives, then for any (S, d)
€ B*, f(S, d) = f(T, d), where T = P(S;)
U {d}. (This follows since individual rational-
ity implies that f(S, d) € St = {x € S|«
> d}, strong Pareto optimality implies f(S, 4)
€ P(S4%), and so independence of irrelevant
alternatives implies f(S, d) = f(T, d) for
any subset T of S that contains P(S4").) We
will sometimes denote the game (7, d) by
(P(S¢+), d), a slight abuse of our notation,
since d € P(S4t). However, it will be under-
stood that in this case the set of feasible payoff
vectors is P(S4t) \U {d}. So it will be sufficient
to show that f and E coincide on games of the
form (P(S4*), d), and Property 4’ further en-
sures that it will be sufficient to show this when
d=1(0,0=0

Let 4 be the convex hull of the points (2, 0) ;
(0, 2); and 0; we will show that f(P(4), 0)
= E(P(4),0) = (1, 1), where P(A4) is of course
the line segment joining the points (2, 0) and
(0, 2)). To show this it is sufficient to note that
the set P(4A) U {0} can be mapped into itself
by the transformation ¢ = (#, ;) given by

4 (x1x2) =2x1/ (1+x1) for 0<x<x»
=x1+x2—t2(x1,%2) for 0<uxy <xy;

by (x1,%2) = x14+x2—t1 (¥ 1.52) for 05 <y
=2x2/ (14x2) for 0<xs <xj.

This_transformation ¢ defined on the set P(4)
U {0} satisfies the conditions of Property 4’
and leaves only the points 0, (2, 0), (1, 1), and
(0, 2) fixed. But, since ¢ transforms the game
(P(4), 0) into itself, Property 4’ requires that
f(P(4),0) = t(f(P(A),0)); thatis, f(P(4),0)
must be a fixed point of £. The unique fixed
point of tin P(A) that is strongly individually
rational is the point (1, 1), and so f(P(4), 0)
= (1, 1) as required.

Next, observe that it will be sufficient for our
proof to show that f and E coincide on games
(P(Sot), 0) such that P(S) is a subset of P(A4).
To see this, consider an arbitrary game of the
form (P(So+) 0), and let (P(T),0) be a game
such that P(T) contains P(S), and P(T)

= {(x1¢(x1))]|0 < x; < 1}, where ¢ is a con-
tinuous decreasing function such that ¢ (&)
= 0. (Thus P(T) touches both axes, i.e., it con-
tains points of the form [0, Fo} and [F, 0].)
Then there is a (unique) point x* in P(T) that
gives the players equal gains; let x* = (¢, ¢),
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where ¢ is a positive real number. The trans-
formation t = (4, ¢2) given by

h(%1, 22) = 32 for 0<% <¢,.
= 2¢ — x2 otherwise;

ta(xy, %2) = 2c — %, for 0< %, <0,
= x2 otherwise;

transforms the game (P(T), 0) into the game
(cP(4), 0). So the transformation ¢ = /¢
transforms (P(T), 0) into (P(A) O) and thus
transforms the arbitrary game (P (Sg+), 0) into
a game whose strong Pareto set is a subset of
P(4). Property 4’ thus assures that if f and E
coincide on subsets of P(4) then they coincide
everywhere.

But if P(S) is a subset of P(4) that contains
the point f(P(4), 0) = (1, 1), then indepen-
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dence of irrelevant alternatives implies f(P(S),
0) = (1, 1), as well. If (1, 1) is not an element
of P(S), then P(S) is contained either in a line
segment joining (0, 2) to x = (&, x»), such
that x maximizes Player 1’s payoff in P(S) and
Z; < %, or else in a line segment joining (2, 0)
to the point x = (x;, Z») that maximizes
Player 2’s payoft, and for which &, < x;.
Either of these line segments can be trans-
formed into itself leaving only its endpoints
fixed, so that Property 4’ together with inde-
pendence of irrelevant alternatives and strong
individual rationality implies that f(P(S), 0)
= x = E(P(S), 0), which completes the proof.
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