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Abstract

This paper examines the effect on learning in simple decision tasks of the addition of a constant
to all payoffs. Experiment 1 reveals that this effect, initially observed in a probability learning task,
is not limited to single person decision making under uncertainty. Experiment 2 shows that the
effect is not linear. Two additional experiments show that the non-linearity cannot be explained by
whether zero is in the payoff range. The implications of these results for reinforcement learning
models are evaluated and two models that capture the main results are proposed. ©1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In an earlier study two of us (Bereby-Meyer and Erev, 1998) found that learning speed, in
a binary choice task, is affected by the sign of the possible payoffs . Maximal learning speed
was observed when the optimal strategy had a positive expected value, and the alternative
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strategy had a negative expected value. Thus, the addition of a constant to all payoffs
that changes the signs of the expected payoffs can affect learning speed. This finding is
potentially important because it may reflect a robust behavioral regularity that should be
captured by descriptive models of learning.

The current research was designed to improve our understanding of the added constant
effect and its implications to the development of descriptive learning models. The paper
is organized as follows: Section 2 summarizes the experiment reported in Bereby-Meyer
and Erev (BME, 1998), which found that the addition of a constant to all payoffs can
have a significant effect on learning speed in a simple single-person decision task. Section 3
presents a new experiment that shows that the ‘added constant’ effect generalizes to strategic
environments, and can be observed in a zero sum game.

Section 4 presents the adjustable reference point model supported by the BME results. It
shows that although the model is consistent with the findings summarized in Sections 2 and
3, itcannot be general. The limitations of the model are highlighted in a thought experiment,
and a new laboratory experiment. While the model predicts that the size of the effect will
increase with the magnitude of the added constant, the results reveal that the effect is not
monotonic. It seems that addition of a small constant can have large effect when all the
payoffs are close to zero (the status quo outcome), and that a further increase in the added
constant has little effect as it moves all the payoffs away from zero.

Section 5 presents two additional experiments to compare alternative modifications of the
adjustable reference point model. Our analysis suggests that the effect is relatively insen-
sitive to the range of the possible payoffs. Section 6 summarizes the observed regularities,
and compares variants of the adjustable reference point model and an alternative average
reinforcement model that can describe them. To reduce the risk associated with post hoc
models, the models’ parameters are fitted based on the (9) one-person decision tasks and
then evaluated based on 13 two-person games.

2. Bereby-Meyer and Erev’s (BME, 1998) main results

BME studied binary decision tasks under uncertainty. In each of the tasks (experimental
conditions) the decision maker (DM) participated in 500 independent trials and was asked to
guess which of two mutually exclusive events L or H will occur. In all trials the probability
of H (Pn) was 0.7 (and the probability of L was 0.3). After each trial the DM received an
immediate feedback concerning the realized event and his/her payoff.

The different tasks differed with respect to the payoffs. In Condition 0,4 the DM earned
4 points when he or she guessed correctly and lost nothing when he or she was wrong. The
other two conditions were created by subtracting a constant from these payoffs. In Condition
—2,2 the payoffs were 2 for a correct response a@dor incorrect, and in Conditior-4,0
the DM lost 4 points when he or she was wrong and earned nothing for a correct response.
Subjects received an initial show up fee (in points), and at the conclusion of the experiment
the accumulated points were converted to money (0.01 Shekel =$0.003 to each point).

Simple decision problems of this type, referred to as probability learning tasks, were
studied extensively by psychologists in the 1950s and 1960s. While the optimal response
is always to choose the most common event (guess ‘H’), the literature reveals that DMs are
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Fig. 1. Bereby-Meyer and Erev (1998). Proportion of optimal (‘H’) choices as a function of time (5 blocks) and
payoff condition in the experiment (left) and the simulations.

slow learners. After 100 and 200 trials they tend to ‘probability match;’ that is, to select ‘H’
in 70 percent of the trials. With longer experience DMs slowly move toward the optimal
choice (see Edwards, 1961). In addition, manipulation of the payoffs can affect the learning
process (Siegel et al., 1964).

BME'’s experimental results are summarized in the left hand column of Fig. 1 by the
proportion of ‘H’ choices (‘optimal’ choices) in five blocks of 100 trials in each condition
(the right hand columns are simulation results to be discussed below). A two-way repeated
measures ANOVA (with block as the repeated measure) on the choice of the dominant color
(P(‘H")) revealed a significant condition effect. The proportion of ‘H’ choices was signif-
icantly lower in Condition 0,4 than in the other two conditions. The difference between
Conditions—2,2 and—4,0 was insignificant.

3. The added constant effect in a constant sum game

The results summarized above appear to contradict previous findings by Rapoport and
Boebel (1992). They found that the addition of a constant to all payoffs ir & Bonstant
sum two-person matrix game did not have a significant effect on behavior. This difference
can be aresult of a qualitative difference between single person decision making and decision
making in the strategic environment presented by a game, but can also be a result of other
differences between the BME and Rapoport and Boebel studies. Rapoport and Boebel's
task was more complex, led to relative flat learning curves and was played for only 120
periods. Moreover, they did observe some (although insignificant) effect of the addition of a
constant to the payoffs. Thus, it is possible that the added constant effect can also be found
in games.

To evaluate this hypothesis the current section studies the added constant effect in a game
played under the conditions used by BME with the exception that the payoffs are determined
by a game (and players know that). Following Suppes and Atkinson (1960) we examined
a 2x 2 probabilistic constant sum game. In each trial of this game each player can either
win or lose, and the winning probability is determined by the payoff matrix and the choices



114 I. Erev et al./J. of Economic Behavior & Org. 39 (1999) 111-128

made by the two players. Thus, as in a probability learning task each player makes a binary
choice and then receives one of two payoffs.

3.1. Method

Participants Fifty-six Ben Gurion University students served as paid participants in the
experiment. They were assigned to one of two experimental conditions and run in pairs.
The exact payoffs were contingent on performance and ranged from 21 to 24 Shekels
($7-$8).

Apparatus and procedurd@he experiment was programmed and run u§isgal Basic3
for Windows 3.1. This system was installed on a 486PC, with a Super VGA 14" screen.
Both pair members were seated in front of the same computer. They were separated by a
plastic divider so each could see only his own part of the screen. They received 20-22.5
shekels for showing up and were told that they would play a game in which they could
earn more money, but can also lose some of the show up fee.

Subjects were informed that they were playing a game against the person seated next to
them. In each of the game’s 500 trials they had to select one of two keys, and could either
win (receive a payoff ofV) or lose (a payoff oL). The payoffs were determined by the
matrix in Fig. 2 which was not known to the subjects. They were only told that their payoff
depends on their choice, their opponent’s choice and on a chance event.

Each of the two keys was associated with one of the game alternatives (A or B) and a
color (Blue or Red) that appeared on a box on the screen following the choice. The selected
cell in the game’s matrix determined the winning probabilities. For example if Player 1
chose Blue (A1) and Player 2 chose Red (B2), the probability of winning was 0.8 for player
1, and 0.2 for Player 2.

The subjects received two types of feedback after each period: an update in the accu-
mulating payoff counter, and a graphical feedback. The graphical feedback was presented
(in a feedback box for 3 seconds) to match the BME display. This display did not add
information: winning was represented by presentation of the color the player had chosen.
A loss was represented by the color not chosen.

Two payoff conditions were compared. In Conditiens,.5 the payoffs werk=—-0.5
andW=0.5 and the initial endowment (showup fee) was 2250 points (The value of each
point was 0.01 Shekels ($0.003)). In Condition 0,1 the payoffs Wwer®, W=1 and the
initial endowment was 2000 points (20 shekels).

3.2. Results

The left hand column in Fig. 2 presents the proportion of A choices in five blocks of 100
trials over the 14 subjects in each role in each condition. The results in Condition 0,1 are
practically identical to the results observed in previous studies of this condition (Suppes and
Atkinson, 1960; Erev and Roth, 1998). In Conditierb,.5 Player 2 appears to be closer to
the equilibrium, but Player 1 initially moves farther away from the equilibrium.

To evaluate if this pattern is consistent with the hypothesis of faster learning in Condition
—.5,.5 a payoff sensitivity score was calculated for each participant as the proportion of
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Fig. 2. The game experiment. The payoff matrix (top) presents the probability of winning for each subject given the
possible choices. The figure shows the proportion of A choices as a function of time (5 blocks), payoff condition

and player role in the experiment (left) and the simulations. The equilibrium predictions are presented at the right
hand side of the experimental column.

choice of the alternative that yielded higher average payoff in the previous rounds of the
game. Over the 500 blocks the score was 0.632 in Condition 0,1 and .679 in Condition
.—.5,.5. The difference is small but significatf26] = 2.0, p < 0.05). These results are
consistent with the BME findings. Players appear to be more sensitive to past outcomes
when the payoff framing involves losses.

4. The model supported by BME and its limitations

BME showed that the added constant effect, described above, is not captured by most
learning models proposed in recent years (e.g. Roth and Erev, 1995; Tang, 1996; March,
1996; Mookherjee and Sopher, 1997; Borgers and Sarin, 1995; Fudenberg and Levine,
1998; Cheung and Friedman, 1998; Camerer and Ho, 1998). Only the adjustable refer-
ence point (ARP) reinforcement model (initially proposed in Erev and Roth, 1996 and
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studied in Rapoport et al., 1997; Erev and Rapoport, 1998) captures the observed effect.
This model is an extension of Roth and Erev’s (1995) linear quantification of Thorndike’s
(1898) Law of Effect (similar quantifications were suggested by Bush and Mosteller,
1955; Luce, 1959; Herrnstein, 1970; Harley, 1981). It can be described by the following
assumptions.

Al Initial propensities At time t=1 (before any experience has been acquired) each
playern has an initial propensity to play high pure strategy, given by some non-negative
numbergnk(1). In the current context it is natural to assume equal initial propensities for
all pure strategies, that is for each plaper

gnk(1) = gnj(Dfor all pure strategies;.

A2 Reinforcement functioifhe reinforcement of receiving a payafin trial tis given by an
increasing functioR(t, x) Specifically, the reinforcement is assumed to be the difference
between the payoff and the player’s reference point.

R(t, x) = x — pu(1),

where the reference point is a weighted average of previous payoffs. The weighted average
is computed as

pn(t +1) = (WD) (pa (1)) + (1 = W()x 1)

whereW(t) is determined by the sign of the reinforcement and two parametetsv(O
a<1):WEH)=wif x< p,(t) andW({t)=1— a(1—w) if x> p,(1).

A3 Updating of propensitiesf player n plays hiskth pure strategy at timeand receives
a reinforcement oR(t,x) then the propensity to play stratepis updated as a function of
R(t,x)

qnj(t +1) = MAX[ v, (D(0))gnj(1) + Ex(j, R(t, x))] @

wherev >0 is a technical parameter that insures that all propensities are poBiftyes
a discounting function which slowly reduces the importance of past experienc& iand
a function which determines how the experience of playing stratemyd receiving the
rewardR(t,x) is generalized to update each stratggy
The model assumes a fixed discountid(g) = 1 — ¢ whereg is a forgetting parameter. In
the case of binary decisions the generalization function is reduced to a ‘two-step’ function:

, _Rt.x)A—¢) if j=k
Er(j, R(t,x)) = R(t, x)e otherwise

A4 Probabilistic choice ruleFollowing Luce (1959) the probabilitpnk(t) that playern

3 The other models predict no effect (Roth and Erev, 1995; Cheung and Friedman, 1996; Mookherjee and Sopher,
1997; Fudenberg and Levine, 1997) or a different pattern (Tang, 1996; March, 1996; Borgers and Sarin, 1995;
Camerer and Ho, 1998).
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plays hiskth pure strategy at timeis

qnk(t) 3)
Xgnj(t) 7
where the sum is over all of playats pure strategiep

Pnk(f) =

Predictions BME derived the model’s predictions using computer simulations given the
parameters selected by Erev and Roth (1996, and utilized by Rapoport etal., 1997; Erev and
Rapoport, 1998). The value of these parameterssite=3,¢ =0.2,¢ =0.001,p(1) =0,
w=0.98, andx =0.5. The model’s predictions for the three conditions compared by BME
are presented in the second column in Fig. 1. This figure shows that the model captures the
slower learning in the gain domain (Condition 0,4).

The second columnin Fig. 2 presents the model’s predictions for the experiment described
in Section 3. In this case too the model appears to capture the added constant effect.

Limitations Although Erev and Roth’s (1996) adjustable reference point model provides
a reasonable fit to the results presented above it is clear that this model is limited. To see
this, think about the effect of adding a very large constant to all payoffs in the BME study.
For example, consider the addition of 100 points to the 0,4 condition to create a 100,104
condition. The model predicts extremely slow learning in this condition. Even after 500
periods the model predicts choice probabilities around random choice. Moreover, slow
learning is expected even in the trivial case of decision making under certBjryl(.

This unlikely prediction is a result of the assumed slow reference point adjustment pro-
cess. Under the current model (and parameters) more than 100 periods are needed for the
reference point to adjust to a value above 100. During this slow adjustment period both
alternatives receive relatively high reinforcements. Thus, almost half the reinforcement is
received for a choice of the dominated alternative. The ratio of reinforcement changes once
the reference point is high enough, but at this stage all the reinforcements are small relative
to the initial reinforcements and as a result the learning is very slow.

To provide empirical support for this thought experiment we ran a replication of the BME
study with more extreme conditions (although not as extreme as the thought experiment).
Two conditions were compared: payoffs 2,6 an@l, —2.

4.1. Experimental test

Method:

Participants Twenty-eight Technion students served as paid participants in the experiment.
They were randomly assigned to the two experimental conditions.

Apparatus and Procedurd@he apparatus and procedure used in the experiment described
in Section 3 were utilized again with two exceptions: (1) The payoff probabilities for
each choice were fixed throughout the experiment (were not affected by the choice made
by another subject), and (2) the subjects were told that their task is to guess which of the
two events will occur.

Specifically, in each of the 500 trials the subjects were asked to predict the appearance
of one of two colors (Blue or Red). The participants were told that their payoff wolll be
for a correct prediction and for an incorrect prediction. The value W andL defined the
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experimental conditions. In Condition6,—2 the payoff for inaccurate predictioh)(was
—6, the payoff for accurate predictiolf was—2, and the show up fee was 4000 initial
points.

Condition 2,6 was created by adding 8 points to each outcome. Thus, the payoffs were
L=2, W=6. To insure identical objective incentives the ‘added pointst &0 =4000)
were ‘deducted’ from the initial endowment; so that there was no showup fee in that con-
dition.

For each participant one of the two colors (Red or Blue) was selected to be the ‘high
probability’ ("H’) response. This color was the correct response in 70 percent of the 500
trials. The order of the high probability events was randomized independently for each
participant across the 500 trials.

ResultsThe experimental results are summarized in the left hand column of the top panel
in Fig. 3, which has the same format as Fig. 1 (proportion of ‘H’ choices (‘optimal’ choices)
in five blocks of 100 trials in each condition). The predictions of the model presented above
are graphed in the second column. The results show that in violation of the large condition
effect predicted by the model, very little effect was observed in the experiment. In fact, the
difference between the two conditions is not close to being signifiégftZ6) = 0.44, ns).
Moreover, The proportion of ‘H’ choices in both conditions is not significantly different
from the proportion in Condition 0,4 of the BME study((,39) =0.32, ns), but is signif-
icantly lower than the proportions observed in Conditier%s2 and—4,0 ((1,52) =9.86,

p < 0.002).

One possible explanation of this pattern is that the initial reference point is influenced by
the range of possible payoffs (so that the model with a fixed initial reference point predicts
different behavior than was observed). This hypothesis is examined in the next section.

5. The effect of irrelevant outcomes

The adjustable reference point model presented above can account for all the results sum-
marized above under the assumption that, for example the initial reference point parameter
equals zeroq(1) = 0) when zero is in the payoff range, and equals the worst possible pay-
off (p(1) =Xmin) Otherwise. Two experiments designed to test this kind of explanation by
manipulating the payoff range via the addition of irrelevant outcomes are presented below.

5.1. A White trials experiment

In a first test of the ‘payoff range’ hypothesis we ran a replication of the experiment
reported in Section 4 with the addition of 50 trials in which the state of nature was White
and the payoff was zero independently of the subject’s choice.

Method Eighteen Technion students participated in this study. Nine subjects were as-
signed to Condition 0,2,6W which was identical to Condition 2,6 in Section 4 with the
exception of the added 50 trials. Thus, the experiment lasted 550 trials. The added 50 trails
were randomly distributed among the original 500 trials. The subjects were told that in
some of the trials there will be no correct answer and the payoff will be zero. The color in
the State of Nature feedback for these trials was White.
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Fig. 3. The 2 and 6 conditions in Fig. 1's format.

A second group of nine subjects was assigned to Cond#iér-2,0W which was a
replication of Condition-6,—2 with the addition of the white trials described above.

Results The experimental results summarized in the left hand column of the second
panel in Fig. 3 show no support for the ‘payoff range’ hypothesis. While this hypothesis
implies the large condition effect predicted by the model presented in the second column,
no condition effect was observed((,16) =0.14, ns).

5.2. A minimal and noisy information study

An additional experiment was run to evaluate if the failure of the ‘payoff range’ hypothesis
can be explained by the subjects’ ability to ignore the White trials. This study was a direct
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replication of the previous study with respect to the payoff manipulation, but the instructions
and the information were modified. In particular, the subjects (nine in each conditions)
were not told that their task was to predict events. Rather, they were simply asked to
choose between two keys. The feedback was limited to the obtained payoffs. Thus, a priori
the subjects could not tell that the ‘0’ payoff trials are irrelevant. That is, this experimental
condition is designed to limit the information of the players to that used by the reinforcement
learning model. If the results differ from the previous results, the difference can be attributed
to an effect of the additional information the players had when they knew that some trials
would give them zero no matter what they chose.

We refer to these two minimal information conditions as 0,2,6M a6g-2,0M.

Results The experimental results (left hand column of the lower panel in Fig. 3) are
surprisingly similar to the results of the previous experiment. In violation of the ‘payoff
range’ hypothesis and the model's predictions there was no significant condition effect
(F(1,16) =0.01, ns). Thus subjects seem able to ignore the outcomes that they do not influ-
ence in this case also, even though they do not know that some of their outcomes are not
influenced by their actions.

6. Implications and alternative models

The results presented in Sections 4 and 5 suggest that a minimal variation of the ARP
model in which the initial reference point is sensitive to the payoff range is not sufficient
to account for the non-linear effect of the addition of a constant to the payoff. The current
section extends the search for a descriptive model that can account for the current results.
Two directions are taken: Minimal modifications of the adjustable reference point (Sections
6.1 and 6.2), and a more dramatic modification that assumes that DMs consider a loss
aversion strategy (Section 6.3). We understand that the current search is not likely to result
in finding the ‘right model,” yet we hope to find potentially general post hoc models.
Specifically, they should account for behavior in the tasks for which the original model
performed well (the 12 games considered in Erev and Roth (1998) and the three conditions
studied in BME), as well as account for the current data. To facilitate ex ante predictive
power this generality should be achieved without fitting parameters to specific games. Thus,
the models should account for the following observations:

Observation 1 When the average payoffs are ‘close’ to 0, the original model (that
assumes the initial reference point is 0 and the adjustment process is slow) provides a good
approximation of behavior. In line with the model’s prediction the addition of a constant to
the payoffs affects learning speed. Learning is slower when all payoffs are non-negative.

Observation 2When the average payoffs are ‘farther away’ from 0, the original model
fails. In violation of the model's predictions the addition of a constant to the payoffs does
not appear to affect learning speed.

Observation 3The failure cannot be accounted for by a ‘payoff range’ hypothesis. It
seems that the distinction between payoffs that are ‘close to 0’ and ‘farther away from 0,’
will have to be based on a quantitative measure.
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6.1. The ARP model with estimated parameters

The failure of the ARP model with the parameters estimated in Erev and Roth (1996) does
not imply that this model cannot account for the data with other values of its parameters.
The model's parameters have to be re-estimated to evaluate this possibility. To facilitate
evaluation of the estimated model’s potential generality, we decided to estimate the param-
eters based on the nine probability learning tasks summarized above and then test its ability
to capture the 12 games considered in Erev and Roth (£988) the new game studied
here.

Although the model has seven parameters, the current analysis focuses on five. The value
of two parameters, the technical parameteand the initial reference point paramegdt.)
are taken from Erev and Roth (1996) and are not estimated here. The value of the technical
parameter is left at= 0.0001. This value was selected by Erev and Roth to be ‘small enough’
so that further reduction does not affect the model’s fit. Thus, it is not a free parameter that
should be estimated. The value of the initial reference point is lgftlBt= 0 as this choice
of parameter can be seen as a meaningful psychological assumption rather than an arbitrary
choice. (Indeed an initial reference point at 0 is also assumed by other models including
Prospect Theory (Kahneman and Tversky, 1979).)

A grid search with a mean squared deviation (MSD) criterion was conducted to estimate
the value of the remaining five parameters. At the first step of this analysis computer
simulations were run for a wide set of parameter combinatfo@ne hundred simulations
were run with each set of parameter values in each of the nine tasks. In each task the
simulated players ‘participated’ in the same number of rounds as the experimental subjects.
At each round of each simulation the following steps were taken:

1. The simulated players’ strategies were randomly determined via Eq. (3).

2. Payoffs were determined using the payoff rule employed in the experiment in question.
3. Propensities were updated according to Eq. (2).

4. The reference point for the next period was determined.

The results of the simulations were summarized by the same statistics that were used to
summarize the experimental data. That is, the simulations of the probability learning tasks
by the proportion of ‘H’ choices in blocks of 100 trials.

At a second stage of the analysis, the squared distance between the experimental and
each set of simulated choice proportions in each block was calculated. The average of these
squared distances is the MSD score of the relevant set of parameters. The set of parameters
that minimize this score was found to §@) =3,¢ =0.18,¢ =0.075,w=0.96 ancx =0.5.

The MSD score (multiplied by 100) of the model with these parameters is 0.19.

The third panel in Figs. 1-3 shows the predictions of the current tasks. It shows that
although the quantitative fit scores are relatively good (this statement will become clearer
in the model comparison section below), the model does not capture Observation 1; with

4 These games, described in detail in Erev and Roth, include all the published (before 1998) experimental games
with unique mixed strategy equilibria that were run for more than 100 trials under conditions that eliminate the
possibility of reciprocation.

5 This parameter estimation approach is less efficient but more robust than traditional approaches to violations
of the assumption of a well specified model (see a discussion in Roth et al., 1998).
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the parameters that account for Observation 2 (the similarity of the 2,6 and@he2
conditions) this model does not capture the higher proportion of optimal choices in Condition
—2,2 relative to 0,4 (with the exception of the first block).

6.2. Variants of the ARP model with sensitivity to relative reinforcement size

The failure of the ARP model with estimated parameters suggests that at least one of
the model’s basic assumptions has to be modified to account for Observations 1 and 2
with a single set of parameters. In a search for a sufficient modification we estimated the
parameters of the models that best fit the six new probability learning tasks (all the 2 and 6
conditions) and compared the estimated parameters to the parameters that best fit the BME
results. This comparison shows that larger forgettinggnd adjustmentw) parameters
are needed to capture the 2 and 6 conditions. The ARP model requires small forgetting and
adjustment parameters to capture Observation 1 (BME results) but requires larger values of
these parameters to capture Observation 2 (the 2 and 6 conditions). These results suggest that
a modified model, whose discounting and/or adjustment speed are a function of factors that
distinguish BME and the 2 and 6 conditions, may be able to account for the two observations
with a single set of parameters.

The finding that the minimal information experiment gave similar results to the white trials
experiment suggests that the distinguishing factors should be computed from the obtained
payoffs (that were the only feedback available in the minimal information experiment). The
most obvious difference (excluding the payoff range) is the absolute average size of the
reinforcements. While the initial average absolute reinforcements were around 2 in the 0,4
and—4,0 conditions, they were around 4 in the 2,6 af8]2 conditions.

In what follows, we construct and test a reinforcement model with the property that, when
the most recent reinforcements received are far from the running average of reinforcements,
behavior adjusts quickly, but adjusts slowly when the recent reinforcements are in the range
of the running average.

To distinguish between ‘small’ and ‘large’ absolute average reinforcement size, it is
convenient to focus on relative size. (Recall that reinforcement size is different from payoff
size, since reinforcements are measured compared to the current value of the reference
point.) Relative reinforcement size at timis defined here as

AR(?)

A0 =2

where AR() is an estimate of the average reinforcement size and)R¥@n estimate
of the variability of the reinforcements. The average reinforcement size is estimated as
AR(1) =R(1x), and fort>1:

AR(t) = (W)AR(t — 1) + (1 — w)R(, x).

The reinforcement variability is estimated here by a weighted average of the change in
accumulated reinforcements. Specifically, we assume that RV(1) x]Rénd fort> 1:

RV(@#) = W)RVE — D+ (1L —w")AR(Et — 1) — R(t — 1, x)|



I. Erev et al./J. of Economic Behavior & Org. 39 (1999) 111-128 123

Three variants of the ARP model that assume sensitivity to relative reinforcement &ipe (
are studied here. The first assumes that only the discounting is sensitiyg,tthe second
assumes that only the reference point adjustment speed is affected, and the third assumes
that both discounting and adjustment speed are affected.

An accelerated discounting (AD) moddb allow faster discounting given relatively
large absolute average reinforcements, this modification of the ARP model replaces the
discounting function in Eq. (2) with:

D(t) = (1 — ¢)!A®!

Note that since & (1—¢) <1, large discounting is implied wher(t)|>1 and small
discounting is implied whem\(t)| < 1. So the model will ‘forget’ previous propensities
quickly when recent reinforcements are far from the running average.

The modified model, as described above has the five free parameters of the original
model §(1), €, ¢, w anda) and two new averaging parametevsandw’. To facilitate
model comparison we start the current investigation with the simplification assumption
w =w’ =w that reduces the number of free parameters to five.

An accelerated reference (AR) point model. The assumption of an ‘accelerated reference
point’ can be added to the ARP model by a modification of the definitiow(of (see
Eq. (1) in Section 4). Specifically, we assume:

W(t) = w!AO)—al

where O<w < 1 is an initial adjustment parameter<Qx < 1 is a ‘pessimism’ parameter
that determines the relative reinforcement size that minimize the adjustment speed. This
assumption implies fast adjustment (Ia¥t)) when A(t) —«|>1 and slow adjustment
when A(t) — a| < 1. Here it is the reference point (rather than the propensities to choose
each strategy) that is being adjusted more quickly.) And, in line with the original model
faster adjustment is predicted for negative reinforcements.

With the simplification assumption =w” =wthe current model has five free parameters
(s(1), €, ¢, wandw) like the models discussed before.

An accelerated discounting (AD) and reference (ADR) motte third modification of
the ADR model includes the accelerated forgetting (as in the AD model) and accelerated
reference point (as in the AR model). So in this model, when recent reinforcements are far
from the running average, both the propensities to choose each action and the reference point
against which payoffs are measured to assess how reinforcing they are adjust quickly. Note
that in this case too, with the assumptiei=w"’ =w, the model has five free parameters:
(1), €, ¢, wanda.

6.3. A reinforcement average model with a ‘loss aversion’ strategy (REL)

In this section we briefly explore two distinct kinds of modifications. On the one hand, we
will review a modification of the learning model itself, which makes propensities depend on
average reinforcements rather than accumulated reinforcements. Such a model performed
well on the games studied by Roth et al. (1998). However we will also consider how the
effect of adding a constant can be modeled, not in the learning model itself, but in the
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choice of strategies over which the learning model operates. We do that in the present
case by positing a ‘loss aversion’ strategy, in the spirit of Prospect Theory (Kahneman and
Tversky, 1979).

The basicreinforcement average (REA) model, studied by Roth etal. (1998) (see Mookher-
jee and Sopher, 1997; Camerer and Ho, 1998; Fudenberg and Levine, 1998, for similar
models) can be described by Assumption Al as stated above, a simplification of A2 that
assumes that the reinforcements are identical to the obtained payoffs, and the following
modified updating and response rules:

A3 Updating of propensitiedf player n plays hiskth pure strategy at timeand receives
a reinforcement oR(t,x) then the propensity to play stratepis updated as a function of
R(t,x)

(4)

anit +1) = [an(f)[cnj(f) + NI+ R, x)]

[Cnj(1) + N(1) +1]

whereCy(t) is the number of times that strateppas been played in the firstrials and
N(1) is a free parameter that determines the strength of the initial propensities. (Roth et al.
simplified the model by the assumptidlil) = O, this simplification is not imposed here.)

A4 Exponential response rul@he probabilitypnk(t) that playern plays hiskth pure
strategy at time is
A
explignk(1)] ] , 5)

Pok(®) = [2 explign (1]

where the sum is over all of players pure strategieg and A is a free parameter that
determines reinforcement sensitivity.

When the initial propensities are assumed to equal the average reinforcement from random
choice, the basic reinforcement average model predicts no added constant effect. Thus, it
captures the 2 and 6 results but fails to account for the findings summarized in Sections 2
and 3. In addition to this failure the model has two obvious limitations. First, it predicts
that multiplying all payoffs by a positive constant will have a large effect. This prediction
is inconsistent with previous results (e.g. Myers et al., 1963). A more important limitation
involves the prediction concerning the effect of payoff variability. The REA model predicts
that choice probability in probability learning tasks converges to a value that is solely
determined by the difference between the expected values of the two alterrfatMasger
difference leads to more extreme choice probability independently of payoff variability. For
example, it predicts that the probability of ‘H’ choices in Condition 0,4 considered above
will be higher than in a ‘noise-free’ variant of this condition in which ‘H’ yields 1 point
with certainty P, =1) and ‘L’ yields 0 with certainty.

Two modifications of the model are introduced here to address these limitations. First,
the choice rule is modified to imply sensitivity to payoff variance and insensitivity to payoff

6 It predicts that the probability of choosing alternative H will converge to 1/[1 +xdp¢ 2Py)D)] whereD is
the difference between the good and bad outcomes.
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magnitude. Under the modified choice rule:

expgnk (1) /PV(1)] ]
% explgnj(t)/PV(®)] |

where PV{) is a measure of the payoff variability. PV(1) > 0 is assumed to equal the expected
absolute difference between the obtained payoff from random choice and the average payoff
from random choice. For example, in Condition 0,4 P\4#1J0.3|0— 2|+ 0.7]4— 2|+
0.710—2+0.3]4—2|)/2 = 2.ltisthenundated as an average absolute difference between
the recent payoff and the accumulated average payoff:

PV(@)( +mN (1)) + |x — PA®)|
t+mN@Q) +1

Pl = [ )

PV(t+1)=[

where PAY) is the accumulated payoff average in tti@ndm is the number of strategies
(2 in the current probability learning tasks). PAE calculated in a similar manner. PA(1)
is the expected payoff from random choice (thyg(1) = PA(1) for alln andk), and

PA(®)(t + mN (1)) + x
f+mN@ +1 ]

PA(t+1)=[

To address the effect of the addition of a constant (payoff sign) the current model distin-
guishes between strategy selection and observed alternative selection. It assumes that DMs
learn among three unobserved cognitive strategies: L, H and a ‘loss aversion’ (LA) strategy.
A selection of one of strategies L or H implies a selection of alternatives ‘L’ or ‘H’ respec-
tively. A selection of strategy LA in triglimplies a choice of the alternative that led to lower
proportion of losses in the first— 1 trials. When the loss proportions cannot be reliably
ranked (because they are identical as in Condition 0,4, or because the rank changes from
period to period as in Condition6,—2,0) this strategy is ignored. This model, referred to

as REL, has two parameters:N(1).

6.4. Model comparison

Descriptive fit The grid search procedure described in Section 6.1 was utilized to estimate
parameters of the post hoc models described above. The estimated parameters and the MSD
scores (multiplied by 100) over the nine probability learning tasks are presented in Table
1 (center). Since the three acceleration models have the same number of parameters the
comparison of these models is simple: The best model is the one with the lowest MSD
score. Table 1 shows that among the adjustable reference point models the best fit was
obtained by the ADR variant that assumes that both the forgetting and the reference point
functions are sensitive to the relative reinforcement size. This should not be too surprising,
since this is the model that allows both perceived reinforcements and actions to respond
most quickly when they are far from the average range. The fourth column in Figs. 1-3
presents the predictions of this model with the estimated parameters.

Table 1 also shows that the modified reinforcement average (REL) model fit of the
probability learning data outperforms all the adjustable reference point models. The success
of this model in accounting for the probability learning data is remarkable as it has fewer free
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Table 1

MSD scores (10& mean squared deviation — smaller is better) between the different predictions and the exper-
imental results. The scores measure the average distance between tfdbk data compared to roumdf the
prediction

Model Estimated parameters MSR 100) score
Best fit of the 9 Prediction of the Prediction of the 12 games
probability learning tasks new game studied in Erev and Roth
1) € 13 ) o
ARP 30 0.18 0.075 0.96 0.4 0.18 0.29 0.86
AD 1 0.2 0.02 094 0.5 0.19 0.68 1.01
AR 3 0.2 0.02 0.96 0.5 0.25 0.38 0.87
ADR 3 0.29 0.09 0.935 0.5 0.17 0.49 0.71
N(1) x
REL 30 238 0.12 0.25 0.95

parameters. The fifth columnin Figs. 1-3 presents the predictions of this model. Comparison
of this column to the fourth column (the ADR model) reveals that the main advantage of
the REL is its ability to capture the average learning speed. The ADR incorrectly predicts
that almost all the learning will occur in the first two blocks.

Generality To evaluate the potential generality of the post hoc models and the estimated
model we computed their predictions for the 12 games studied in Erev and Roth and the
new game condition studied here. (Condition 0,1 was not considered as it is identical to
one of the conditions in Erev and Roth.) Two hundred simulations of each of the 13 experi-
mental games were run. Each simulation was a direct replication of the original experiment
(including the number of trials and the matching rule for the players). The players in the
simulations were programmed to behave according to the relevant model with the param-
eters that best fit the probability learning data (second column in Table 1). The simulation
results are summarized by the same statistics that summarize the experimental data in Erev
and Roth (choice proportions in 4-10 blocks). The model’s MSD scores (right hand column
in Table 1) measure the distance between the experimental and the simulation choice pro-
portions. The results show that the ADR model provides the most accurate predictions of
published data. Moreover, the fit provided by this and the REL model for the games studied
by Erev and Roth (0.71 and 0.95) is good even relative to the fit of the models estimated in
that paper (0.59-1.0).

7. Conclusions

The currentresearch examined the implication of the finding that the addition of a constant
to all payoffs can affect learning (Bereby-Meyer and Erev, 1998). Five main conclusions
have been reached:

1. The effect is not limited to decision making under uncertainty. A small but significant
effect of the addition of constant to all payoffs was observed ink&2Zonstant sum
game.

2. The effect is not linear and/or trivial. While the addition of 2 units (fre@hand 2to 0
and 4) had a large effect (in the BME study), the addition of 8 units (freBrand—2
to 2 and 6) had no effect.
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3. The non-linearity of the effect cannot be accounted for by the assumption that the initial
reference point (that determines if an outcome increases or decreases the probability
of choosing an action again) is a simple function of whether zero is in the payoff
range.

4. The ARP model has to be modified to account for this non-linear effect. A modification
that assumes that both discounting and the reference point adjustment process are
sensitive to the relative reinforcement size outperforms simpler modifications. The
modified model captures the current results as well as the results of the 12 matrix
games studied by Erev and Roth (1998).

5. The results are better described by a simpler two-parameter average reinforcement
model that assumes that DMs consider a loss aversion strategy. Yet, the modified refer-
ence point model appears to provide better account for the games considered by Erev
and Roth.

In addition to these relatively ‘direct’ conclusions, the current research provides some
support to the optimistic assertion that descriptive game-theoretic models can be rather
general. The finding that the models proposed (and estimated) to account for behavior in
simple decision tasks under uncertainty provides a good fit for behavior in two-person
games, suggests that the models capture general principles. Thus, models that capture these
principles can be used to derive useful ex ante predictions of behavior.

Examination of the common features of the two successful models suggests that the
important principles are likely include: slow probabilistic adjustment process to previous
outcomes that is sensitive to the addition of constant to all payoffs around 0 and to payoff
variability; and relatively insensitivity to the addition of constants that do not change payoff
sign, and to multiplication of all payoffs by a positive constant.

Finally, the fact that the two post hoc models are rather distinct suggests that even a rough
approximation of these principles is sufficient to capture behavior, and that future research
is needed to improve our understanding of the best approximation. In particular, we think
that future research is needed on players’ cognitive strategies, to provide an empirical basis
on which to model particular strategies as being those among which players learn.
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