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RANDOM PATHS TO STABILITY IN TWO-SIDED MATCHING

By ALvIN E. RotH AND JoHN H. VANDE VATE!

1. INTRODUCTION

EMPIRICAL STUDIES OF TWO SIDED MATCHING have so far concentrated on markets in
which certain kinds of market failures were addressed by resorting to centralized,
deterministic matching procedures. Loosely speaking, the results of these studies are that
those centralized procedures which achieved stable outcomes resolved the market
failures, while those markets organized through procedures that yielded unstable out-
comes continued to fail.> So the market failures seem to be associated with instability of
the outcomes.

But many entry-level labor markets and other two-sided matching situations don’t
employ centralized matching procedures, and yet aren’t observed to experience such
failures. So we can conjecture that at least some of these markets may reach stable
outcomes by means of decentralized decision making. And decentralized decision mak-
ing in complex environments presumably introduces some randomness into what match-
ings are achieved. However, as far as we are aware, no nondeterministic models leading
to stable outcomes have yet been studied.

The present paper demonstrates that, starting from an arbitrary matching, the process
of allowing randomly chosen blocking pairs to match will converge to a stable matching
with probability one. (This resolves an open question raised by Knuth (1976), who
showed that such a process may cycle.) Furthermore, every stable matching can arise
with positive probability from an initial situation in which all agents are unmatched.

2. RANDOM MATCHING IN THE MARRIAGE MODEL

We follow Gale and Shapley (1962) in considering the simple two-sided matching
model, known as the marriage problem, in which matchings are one-to-one.> The two
sets of agents are M ={m,,...,m,} and W={w,,...,w,}, called “men” and “women,”
and each agent has a complete and transitive preference ordering over the agents on the
other side of the market and the prospect of remaining single. The preference ordering

! This work has been partially supported by grants from the National Science Foundation and the
Alfred P. Sloan Foundation. We have received helpful comments from Robert Foley, David Gale,
Donald Knuth, Jack Ochs, and Uri Rothblum.

ZRoth (1984a) studies the American market for newly graduated physicians. Prior to 1951 that
market experienced a number of failures, having to do with the difficulty of setting uniform dates of
appointment, and with the frequency with which contracts were broken. In 1951 a centralized
matching procedure that produces stable matchings was adopted, which is still in use, and which
resolved these problems. Roth (1990) studies the various different entry level markets for new
physicians in the different regions of the National Health Service of the United Kingdom. In
response to similar market failures in the late 1960’s, centralized matching procedures were adopted
in these markets also. But different procedures were adopted in different markets, and those which
produce stable matchings have succeeded in resolving the failures, and remain in use, while in all
but the smallest markets those which did not produce stable matchings continued to experience the
same problems as when the markets were decentralized, and these centralized schemes were
ultimately abandoned. See also Mongell and Roth (1990) for a study of the preferential bidding
system used by American sororities. See Crawford and Knoer (1981) and Kelso and Crawford (1982)
for theoretical studies emphasizing the connection between two-sided matching models generally
and labor markets.

There is now a large literature concerning this and many much more general models of
two-sided matching. See Roth and Sotomayor (1990) for a comprehensive account.
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of a man m, for example, can be represented by an ordered list P(m): if man m prefers
w; to w; then w; appears earlier in the list than does w;, and so man m’s preferences
might be given by

P(m)=W1,W3,W5,m,wz,...,wk,

indicating that his first choice is to be matched to woman wy, his second choice is to be
matched to woman w, his fourth choice is to remain single, etc.* For our purposes it will
be sufficient to describe only those people that an agent prefers to being single, so that
the above preferences can be abbreviated by

P(m) =wy,w;,ws.

Let P={P(m,),...,P(m,), P(w)),...,P(w,)} denote the preference lists of all the
agents, so a particular instance of the marriage model is specified by (M, W, P).

An outcome is a matching of men to women, i.e. a one-to-one function p from
MUW to itself, such that for each m in M and w in W,u(m)=w if and only if
w(w) =m, and if u(m) is not contained in W then u(m)=m, and similarly pu(w) =w if
w(w) is not contained in M. (If u(m)=w, then man m is matched to woman w, and
if u(m) =m, then man m is single, or ‘“‘unmatched”.) For a given matching u, a man m
and a woman w are said to form a blocking pair if they are not matched to one another
(uw(m) #w) and if they each prefer one another to their mates at u (w prefers m to
u(w) and m prefers w to u(m)). For our purposes here, it will also be convenient to say
that a man m forms a blocking pair with himself if w(m)=w such that man m prefers
being single to being matched with w, and similarly w forms a blocking pair with herself
if she prefers being single to being matched with m = u(w). A matching x in which no
man or woman forms a blocking pair with him or herself is called individually rational. A
matching u is stable if there are no blocking pairs.

Gale and Shapley (1962) proved that, for any preferences of the agents, the set of
stable matchings is nonempty. Knuth (1976) however, observed that there may be cycles
of blocking pairs, so that the process of allowing blocking pairs to form may not lead to a
stable matching.’> A bit of terminology will prove useful: If (m’, w’) is a blocking pair for a
matching u, we say that a new matching » is obtained from u by satisfying the blocking
pair if m’ and w’' are matched to one another at v, their mates at u (if any) are
unmatched at v, and all other agents are matched to the same mates at v as they were at
w. That is, v(m') =w’, and for all m in M distinct from m’ and p(w’), v(m) = u(m), and
if u(w") =m for some m in M,v(m)=m.

Knuth considered the example, with n = 3, with preferences:

P(my)=wy,wi,ws, P(my)=wy,ws,w,, P(ms)=wi,wy,ws,
P(wy)=my,my,m,, P(w;)=my,m;,m,, P(w;)=my,ms,m,.

Consider the unstable matching w, = [(w,, m,),(w,, m,),(w;, m;)] with blocking pair
(w,, m,;), which when satisfied leads to the matching

Mo = [(Wl,W1),(Wz,ml),(w3,m3)’(mz’mz)]’

blocked by (wq, m,), which when satisfied leads to

M3 = [(Wl,mz)’(wz,ml)’(W3’m3)]’

*If man m were indifferent between, say, w3 and ws, we could indicate this by enclosing them in
brackets in the preference list P(m).

®Gale and Shapley and Knuth looked at models in which no agent remains single, but the slightly
more general model considered here does not change any of the conclusions we discuss.
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blocked by (w,, m5), which leads to

My = [(wl,mz),(wz,m3),(w3,w3),(m1,m1)]

blocked by (w5, m;) and leading to

Ms= [(Wl, m,), (wy, ms), (w3, m1)],

blocked by (w,, m5), yielding

M6 = [(Whms)’(Wz’wz)’(ws’ml),(mz’mz)]’

blocked by (w,, m,), leading to

M7= [(Wl,m3),(Wz,m2),(W3’m1)],

blocked by (w;, m;), which leads to

Mg = [(Wl,ml),(Wz,mz),(ws’ws),(ms,mz»)]

blocked by (w5, m5) and leading to p,, completing the cycle.

Note that in this example there is a path that leads to a stable matching. (If from u,
we begin by satisfying the blocking pair (w,,m;), we reach the stable matching
[(wy, my),(w,, m3),(ws, m,)] in one more step.) The open question Knuth raised was
whether at least one such path exists from any matching to a stable matching, for any
preferences of the agents.® The theorem below resolves this question in the affirmative.
A consequence is that a fairly large family of random processes, beginning from an
arbitrary matching and selecting a blocking pair at random to create a new matching, will
eventually reach a stable matching with probability one. This result is presented below as
a corollary of the theorem.

THEOREM: Let u be an arbitrary matching for (M, W, P). Then there exists a finite se-
quence of matchings ., ..., j;, such that u = w,, u, is stable, and foreachi=1,...,k -1,
there is a blocking pair (m;,w;) for u, such that u, . is obtained from u; by satisfying the
blocking pair (m;,w,).

Proor: Let u; be an arbitrary individually rational matching (if «; is not individually
rational, we can initiate the sequence with a string of blocking pairs formed by
individuals, until we reach an individually rational matching). Suppose that u, has a
blocking pair (m;, w;). (If no blocking pairs exist, K =1 and we are done.) Let u, be the
next matching in the sequence described in the Theorem, with u,(m;) =w;, and define
the set A(1) = {m,, w,}. Note that if (m,,w,) is any blocking pair for u,, then {m,,w,} is
not contained in A(1). The proof will proceed by constructing the required sequence of
matchings in such a way that it can be associated with an increasing sequence of sets
A(g) which contain no blocking pairs, until a matching with no blocking pairs has been
achieved.

Inductively, suppose we have a set A(q) such that there are no blocking pairs for u .
contained in A(q), and such that u,,, does not match any agent in 4(q) to any agent

® Knuth (1976, problem 8) formally stated an open problem for the case in which there are equal
numbers of men and women, all mutually acceptable. So in his problem all men and women were
always matched, and when he satisfied a blocking pair he required that the “divorced” spouses
should be matched to each other. Here we speak of the related question in the more general model
we consider, and without any “forced” marriages, i.e. without requiring that the divorced spouses be
matched to one another. Our theorem does not resolve the question of under what circumstances
paths to stable matchings can always be found having the property that at each step the spouses of
the blocking pair to be satisfied will always be matched to one another. (Clearly such paths cannot
always exist when there are different numbers of men and women.)
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not in A(q). Then if u,,, is not stable, there exists a blocking pair (m’, w’) such that at
most one of m' and w' is contained in A(q). We consider three cases.

First, suppose there is a blocking pair (m,,,w, ) such that m_, is contained in
A(g), and choose it to be the blocking pair with the property that, among all such
blocking pairs (m,w,,,),m,, is w,,’s most preferred mate’ in A(g). Let the next
matching in the sequence, u,,,, be formed using this blocking pair, and define
A(g+1)=A(g) U{w, }. If m_,, was unmatched at ., then A(g +1) is a set such
that no blocking pair for u,,, is contained in A(g + 1). Otherwise there may be a
blocking pair (m, 5,w, ;) for u . ,, withw, ., =u,, (m,,,) and m,,, both contained
in A(g + 1), in which case we choose it to be the blocking pair with the property that,
among all such blocking pairs (m,w,,,), m, ., is w,,,’s most preferred mate in
A(g +1). The next matching in the sequence, . 5, is formed using this blocking pair,
and the process continues until we reach a matching u,, r > g, such that no blocking
pairs for u, are contained in the set A(r)=A(g + 1). (This must eventually happen,
since no man ever receives a worse mate and hence no blocking pair appears twice in the
sequence p, . ,,..., &) The set A(r) is the set we require: it strictly contains A(g), and
contains no blocking pairs for u,.

The remaining two cases are now simple to consider. If there is no blocking pair
(m,,1,w,,1) With m,,, contained in A(g), but there is one with w,,, contained in
A(q), then we proceed as above, reversing the role of men and women. If every blocking
pair (m,, 1,w,, ) is disjoint from A(g), then select any such blocking pair to form the
next matching ., ,, and define the set A(g +1)=A(g) Y {m,,,w,,}. A(g+1) con-
tains A(g), and contains no blocking pairs for u,, ,, so it is the required set in this case.
The process must stop in finitely many steps (since A(g) can be strictly increased until a
stable matching is reached, but it cannot grow larger than M U W), so a stable matching
is eventually reached. This completes the proof.

We can now consider a random process which begins by selecting an arbitrary
matching u, and then proceeds to generate a sequence of matchings u =puq, 1s,...,
where each u,,; is derived from u; by satisfying a single blocking pair, chosen at
random from the blocking pairs for u;. We assume the probability that any particular
blocking pair (m,w) for the matching u,; will be chosen to generate u,, ; is positive, and
depends only on the matching u = u; (and not on ). Let R(u) be the random sequence
generated in this way from an initial matching u. We can now state the following
corollary, whose proof is immediate from the theorem and the positive probability of
every blocking pair.

CoRroOLLARY: For any initial matching w, the random sequence R(w) converges with
probability one to a stable matching.

3. CONCLUDING REMARKS

The process by which we have constructed the sequence of matchings in the proof of
the Theorem is very closely related to the deferred acceptance algorithm proposed by
Gale and Shapley (1962) to prove that the set of stable matchings is always nonempty.

TAt any point in which an agent is indifferent between more than one most preferred mate, ties
may be broken arbitrarily.

8 The probability that a particular blocking pair (m,w) for a matching u will be chosen might
reflect, for example, factors such as the likelihood that individuals m and w would meet, and the
number of other blocking pairs. And the Corollary holds even if we relax the assumption that this
probability must be the same every time the matching u arises, so long as the probability is bounded
away from zero.
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Indeed, if we begin with the matching w, at which all agents are single, and choose the
set A(1) to be the set of all men, then the sequence constructed in the Theorem is
precisely the sequence of matchings which occur in the deferred acceptance algorithm
with women proposing (and it converges to the stable matching that is best for the
women—see Gale and Shapley (1962), Roth and Sotomayor (1990)).

Note that, if we begin with the matching w, at which all agents are single, every stable
matching can be reached by a sequence of matchings as in the Theorem.® For example, if
u is an arbitrary stable matching, then the sequence formed by letting

A1) ={my,u(my)},... A(i) =A(GE-1) U {m;,u(m)},...

leads to w. So the class of random processes R(u,) discussed in the corollary yields every
stable matching with positive probability.

The special structure of the marriage model implies that the set of stable matchings
precisely equals the core, when the rules are that every man and woman is free to remain
single, and every mutually consenting couple consisting of one man and one woman is
free to marry.! However it is possible that our results may also have a bearing on more
general situations in which pairwise optimality has global implications: see, e.g., Feldman
(1973) who studies conditions under which pairwise optimal outcomes in a pure exchange
economy with money are Pareto optimal.

A natural direction to pursue further research will be into the incentives facing agents
who face the prospect of being matched by some sort of random stable mechanism. It is
already known (Roth (1982)) that there exists no revelation mechanism which both yields
a stable matching with respect to the stated preferences and makes it a dominant
strategy for all agents to state their true preferences. However it is also known (Roth
(1984Db)) that the deferred acceptance algorithm is a mechanism with the property that,
although agents may have an incentive to misrepresent their preferences, every equilib-
rium in undominated strategies will yield a matching that is stable with respect to the
true preferences. Some simple models in which a similar result can be obtained for
random stable mechanisms are explored in Roth and Vande Vate (1990).
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