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ABSTRACT

A game-theoretic model is used to study the effect of risk aversion on the outcome
of bargaining over the terms of an insurance contract. When the insurer is risk
netural, it prefers to bargain with the more risk averse of any two potential clients,
since that client will agree to spend more, for less insurance, than will a less risk
averse client. Bargaining over insurance contracts leads to results that differ from
those obtained in a competitive insurance market. In a competitive market, clients
seeking to insure against the same loss choose the same insurance contract, regard-
less of their risk posture.

Introduction

This paper uses a game-theoretic model to study the insurance contracts
reached through direct negotiation, in a non-competitive context. In this
situation, a single insurer insures many risks similar to and approximately
independent of that being analyzed. This permits the insurer to diversify these
risks, to behave as though it were risk neutral, and to insure at essentially fair
rates. The client, on the other hand, faces a relatively small number of these
risks and therefore cannot self-insure at fair rates. The client therfore bargains
as though he or she were risk averse. The fact that clients bargain rather than
behaving competitively is justified if the client is a relatively large client who
does repeat business and who faces large risks.! Industrial insurance of large
companies or marine insurance of oil tankers are examples of situations to
which this analysis might, at least as an approximation, be applied.
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1 Competitive behavior is price taking. In other words, a client who behaves competitively
takes prices as given.
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In other interesting situations, the assumption of insurer risk neutraility
cannot be justified by the above or other arguments. In these situations, the
approach developed in this paper can be viewed as a first step toward a theory
of negotiated insurance contracts. Subsequent steps would, of course, require
an extension of the results presented below to the case of risk averse insurers.

This paper focuses on the effect of the clients’ risk aversion on the outcome
of bargaining about the terms of an insurance contract. In particular, consider
a situation in which a risk averse individual, faced with a possible financial
loss, bargains with a risk neutral insurance company. The two parties bargain
about the amount of insurance to be provided as well as its price. In such a
situation it seems reasonable to expect that the insurance company will be
more successful in bargaining against a more risk averse client than against
one who is less risk averse. The formal analysis of this situation that follows
considers a game theoretic model of bargaining whose predictions are con-
sistent with this expectation. This result is contrasted with results obtained
when insurance contracts are determined through exchanges in competitive
insurance markets. When insurance markets are competitive, risk aversion
need be of no disadvantage to the insured. In fact, as is well known, in a
competitive market equilibrium the price of insurance is actuarily fair regard-
less of the risk aversion of the insured, as long as the insurer is risk netural.
Futhermore, at this price the risk averse insured always chooses to be fully
covered.

The formal model used to obtain these results has the following features.
Risk aversion of the insured is introduced by assuming that he or she
maximizes the expected value of aconcave von Neumann-Morganstern utility
function. As usual, risk neutrality of the insurer is interpreted to mean that it
maximizes expected income.? Associated with each possible insurance con-
tract is an expected utility for the insured and an expected income for the
insurer. The set of all expected utility-expected income pairs associated with
all possible contracts describes a Nash bargaining game in which the “‘dis-
agreement point’’ is the expected utility-expected income pair that results
when no insurance is provided. This means that if bargaining breaks down and
no agreement is achieved, no insurance is provided. The outcome of bargain-
ing is assumed to be the insurance contract predicted by the Nash solution to
this bargaining game.

In this situation, increases in the risk aversion of the insured are introduced
using the Arrow-Pratt risk aversion measure. Using arguments similar to
those in Kihlstrom, Roth and Schmeidler [1979], it is possible to describe the
effect of an increase in the Arrow-Pratt risk averseness of the insured on the
set of expected utility-expected income pairs that defines the Nash bargaining
game and on the Nash solution to this game. In particular, it will be shown that
the insurer obtains a higher expected income when it bargains against a more

2That is, the insurer maximizes the expected value of a linear von Neumann-Morganstern
utility function, so that his or her utility for a given lottery is equal to the expected income
received from that lottery.
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risk averse client than when it bargains against a less risk averse client seeking
to insure against the same potential loss. This is shown to imply that more risk
averse clients who bargain against risk neutral insurers pay higher insurance
premiums for less insurance than less risk averse clients in the same situation.

Before the insurance situation is described in Section 3, Section 2 discusses
the bargaining game and Nash’s solution. Section 4 begins with a derivation
of the bargaining game implicit in the insurance situation. The manner in
which the game depends on the risk aversion of the client is then charac-
terized, and this characterization is used to determine the influence of an
increase in the client’s risk aversion on the insurance contract that yields the
Nash solution to the bargaining game.

A Model of Bargaining

Nash [1950] modeled any two-player bargaining game by a pair (S,d),
where S is a compact and convex subset of the plane, representing the set of
feasible expected utility payoffs to the players in the event of disagreement.
He also assumed that S contains at least one point s such that s > d. This
confines our attention to games in which it is possible for both players to gain
from an agreement. The rules of the game are that any payoff vector in S will
be the result of the game if it is agreed to by both players, and if no agreement
is reached, each player receives his disagreement payoff. That is, if the
players agree on a point y = (y,, ¥,) in S, the resulting utility payoffs to the
two players are y, and y,, and in the event that no agreement is reached, the
players receive d; and d,, respectively. Thus the rules of the game give each
player a veto over any outcome different from d, and it will be natural here to
think of the disagreement outcome d as corresponding to the ‘‘status quo,”’
which can only be altered by an agreement between the bargainers.

Nash modeled the bargaining process as a function called a solution, which
selects, for any bargaining game, a unique feasible outcome. Letting B denote
the class of all bargaining games, a solution f is a function f: B — R? such that,
for every game (S,d) in B, f(S,d) is a point contained in S. (So a solution f
models the bargaining process by predicting the outcome that will result.)

Nash proposed that a solution intended to model bargaining among rational
players should possess the following properties.

Property 1: Pareto optimality. If f(S,d) = zand y = z. either y = z or else y is not
contained in S.

Property 2: Symmetry. If (S.d) is a symmetric game (i.e., if d, = d, and if (x, ,x,) €
S implies (x,.x,) € S), f(S.d) = ,(S.d).

Property 3: Independence of irrelevant alternatives.? If (S,d) and (T,d) are games
such that T contains S and f(T.d) is an element of S, f(S.d) = f(T.d).

Property 4: Independence of equivalent utility representatives. If (S' .d") is related
to (S.d) by the transformationsd’ = (a,d, + b,.a,d, + b,)and S’ = {(a,y, + b, a,y,
+b,) | (y,.¥,) €S} wherea,, a,.b, and b, are numbers such that a; .a, > 0. f(S".d")
is related to f(S.d) by the same transformations. That s, if f(S'.d") = z’ and f(S.d) =

3 Perhaps a more descriptive name for this property is *‘independence of alternatives other
than the disagreement point™’ (cf. Roth [1977b]).
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z, 7" = (a;z, + b, a,z, + b,).

Because these properties have been discussed elsewhere at great length (cf.
Nash [1950], Luce and Raiffa [1957], Roth [1979]), this paper will not
discuss them further, except to note that Property 4 is the only property that is
directly motivated by the fact that the payoffs to the players are assumed to be
expressed in terms of their expected utility functions. Since each player’s
utility function is uniquely defined only up to the arbitrary choice of its origin
and scale, Property 4 requires that the utility payoff selected by the solution
for a player should be defined with respect to the same origin and scale as are
the other feasible payoffs for that player. Nash proved the following important
theorem:

Theorem 2.1: There is a unique solution which possesses Properties 1-4. It is the
solution f = F defined by F(S,d) = zsuch that z = d and (z, — d,)(z, — d,) > (y, —
d)y, — d,) forally in S suchthaty = dand y # z.

That is, Nash’s solution F selects the (unique) outcome z in S that is individu-
ally rational (i.e., z = d) and that maximizes the geometric average (i.e., the
product) of the gains that the players achieve by agreeing instead of disagree-
ing.

A well-known alternative characterization of Nash’s solution F is that it
selects the unique point z = F(S,d) such that the line joining d to z has the
negative slope of some tangent to S at z. That is, let ¢ be the function such that
all Pareto optimal points y = (y,,y,) of S can be represented as y = (y;,d(y,)).
Then the tangent to S at z has slope ¢ (z;), and the following lemma results.
(For simplicity, the result is stated for the case of ¢ differentiable at z;.)

Lemma 2.1: For any game (S,d), F(S,d) = z is the point such that
(B(z)=d )z, ~d) = = (z,).

Note that the individual rationality of Nash’s solution is consistent with the
assumption that each player’s payoffs are expressed in terms of his or her
expected utility function, which models the choice behavior. The disagree-
ment outcome can be chosen by either player acting alone, and so if Player i is
faced with a choice of agreeing on an outcome z or taking the disagreement
payoff, he or she will choose z only if z, = d,. That is, because each player
chooses between a potential agreement z and the disagreement payoff so as to
maximize his or her utility, only if z = d can it be agreed to by both players.
Roth [1977a, 1979] has recently shown that when the individual rationality of
the players is made explicit, it is not necessary to assume Pareto optimality in
order to characterize Nash’s solution. That is, the following theorem results.

Theorem 2.2: There are precisely two solutions f which are individually
rational (i.e., f(S,d) = d) and which possess properties 2-4. One is Nash’s
solution f = F, and the other is the disagreement solution f = D, defined by
D(S,d) = d for every game (S,d).

Consequently, there are only two individually rational modes of behavior
consistent with Properties 2-4; one of which yields disagreement in every
game, while the other yields Nash’s solution. In other words, Nash’s solution
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F is the unique individually rational solution that is consistent with Properties
2-4 and that yields an outcome other than disagreement for at least one game.

Thus Nash’s solution is intimately associated with the individual rationality
of the players, which is an ordinal property of their utility functions. Although
Nash made no explicit use of individual rationality, it can essentially replace
the assumption of Pareto optimality, which can be viewed as an assumption of
collective rationality.

Of course, the expected utility functions of the players convey more than
just ordinal information about the players’ preferences. In particular, each
player’s expected utility function also summarizes his or her preferences over
risky alternatives. A recent paper by Kihlstrom, Roth and Schmeidler [ 1979]
showed that, for bargaining games that arise from bargaining over riskless
alternatives, Nash's solution is responsive in an intuitively plausible way to
changes in the risk posture of the bargainers. It was further shown that this
property of *‘risk sensitivity’ could be used to replace Property 4 in the
assumptions used in Theorem 2.1 to characterize the solution F on games that
arise from bargaining over riskless alternatives.

This paper studies the responsiveness of Nash'’s solution to changes in the
risk posture of the players in bargaining games that arise from bargaining over
risky alternatives. In particular, the paper will examine bargaining games that
arise from bargaining over possible insurance contracts. The paper will use
the notion of risk posture first introduced by Arrow [1965,1971] and Pratt
[ 1964]. For the case of utility functions a single variable (such as money), a
utility function w will be said to be ar least as risk averse as another utility
function w if w = k(w), where k is an increasing concave function. The utility
function w is said to be (strictly) more risk averse than w if the function k is
strictly concave.

Note that for any model of bargaining that depends in a non-trivial way on
the expected utility function of the bargainers, the underlying assumption is
that the risk aversion of the bargainers influences the outcome of bargaining.
That is, the risk aversion of the bargainers influences the decisions they make
in the course of negotiations, which in turn influence the outcome of bargain-
ing. (See Roth [1979], for an explicit treatment.) Consequently, when the
paper considers the effect that risk aversion has on the outcome of bargaining,
it does not assume that the bargainers need to know one another’s risk posture.

An Insurance Problem

Envision a sitution with two individuals, one of whom faces a possible
financial loss. This individual will be referred to as the client, and his or her
wealth (in dollars) will be w. > 0 if the loss fails to occur. If, however, the loss
occurs, it will amount to L dollars and his or her resulting after-loss wealth
will be w. — L > 0. The other individual will be referred to as the insurer. The
insurer’s wealth is w,; dollars and he or she is not faced with the possibility of
any exogenously determined losses. The insurer may however agree to bear
some of the burden of the client’s loss in the event it arises; i.e., he or she may
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agree to insure the client. Of course, the insurer must be induced to assume
this risk. The inducement comes in the form of a premium payment made
from the client to the insurer in the event that no loss is incurred. If the insurer
assumes A dollars of the client’s loss and receives a premium payment of P
dollars in the event of no loss, his or her resulting wealth will be

X., = W, - A
2 I )
if the loss occurs and
X T oW tF (2)
if no loss occurs.* With this insurance contract in force, the client’s wealth is

f T ST LYA 3)

if the loss is incurred and
X = wC - P (4)

when no loss is incurred.

Following Arrow [1963-4] and Debreu [1959], a claim to wealth that is
contingent on the event that there is no loss can be considered to be a different
good than a claim to wealth contingent on the event of a loss. If the event ‘‘no
loss™” is called “‘state n’” and the event “‘loss’” is called *‘state ¢,’” then x,, is
individual i’s claims to wealth contingent on the occurence of state s. The
variable i can equal I or C and s can equal ¢ or n.

The economy composed of these two individuals has “c * “1r contingent
claims to wealth in state n and *; * @ = L contingent claims to wealth in
state €. Before an insurance contract is agreed to, *pg = ¥ = *;, while
¥en T Y and xo, = w, - L If (A,P) is the agreed upon insurance contract,
X;s 1s given by (1)—(4) fori = I and C and s = ¢ and n.

The contingent claims allocations (x;_, x c) Which are feasible
for this economy in the sense that

X+ Xep = @¢ + @

and

Xig T Xge= wc+ o, — L

are described as points in the Edgeworth Box represented in Figure 1.

In Figure 1, the initial allocation of contingent claims is denoted by « and
the allocation of these claims implied by some insurance contract (A, P) is
shown as B. In fact, any allocation can be achieved from « by an insurance
contract (A, P). However, only a small subset of these insurance contracts
would be entered into voluntarily by both the client and the insurer. This
subset is the shaded region in Figure 1, if J;() s the indifference curve
of the insurer through the initial allocation @ and if ~ J_.(®) is the indiffer-

c
ence curve of the client through the initial allocation.

12* *cn’ ¥

A is, in fact, the net payment made by the insurer when a loss occurs. It equals the gross
payment less the premium P which is paid at the outset when the insurance agreement is
arranged.



378 The Journal of Risk and Insurance

'czl

+ wc—L

+w,.-L+A

FIGURE 1

Since the insurer maximizes expected wealth, his or her indifference curve
through « is

J = : + =
(¥ Mg Xy ) F ugxpg Y X, = o)

where u; is the objective probability of state s. Thatis, J;(a) is the set of
contingent claim vectors  (*; »*;,) with expected value equal to w;. Note
that, at every point on the indifference curve J;(®), the marginal rate of
substitution for the insurer is

MRS (xp % 0) = LIRATYY (5)

the ratio of the probabilities. In fact, similar comments can be made about any
of the insurer’s indifference curves. That is, along any insurer indifference
curve, the expected wealth of all contingent claim vectors is constant and, as a
result, the MRS is given by (5).
The situation is different for the client since uc, his or her utility function of
wealth, is strictly concave. A number of authors have shown that the function
U.(xo »x..)  defined by

Ue Cno¥cy,

) E ugug(reg) g (eey) 6
is strictly concave if and only if the function uc is strictly concave. On this
subject see, for example, Arrow [1963-4], Hirshleiffer [1965], Cox [1973],
and Debreu and Koopmans [1978]. Because Uc is strictly concave, all of his
or her indifference curves have the same shape as J;(® in Figure 1. J(®) is
the client’s indifference curve through his or her initial allocation (v, w.-L).
Also notice that since the client’s utility function Uc for contingent claims
vectors (X; »X.,) is defined in (6), his or her marginal rate of substitution at
Con¥cy) 18
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by (X
MRS (X onoXee) = WusGeg ) M
if, as assumed here, u¢ exists.

Before deriving the bargaining game implicit in this situation, it is instruc-
tive to describe the Pareto optimal allocations of contingent claims and the
core of this economy as well as the competitive equilibrium allocation that
would result if there existed competitive markets for contingent claims to
wealth in each state. Kihlstrom and Pauly [1971] have shown how the model
of competitive contingent claims markets can be reinterpreted to yield a model
of a competitive market for insurance contracts. Using this interpretation, the
competitive equilibrium to be described below can be viewed as the equilib-
rium that would result if insurance contracts were competitively traded.

The derivation of the Pareto optimal allocations begins by noting that the
concavity assumptions made about uc and the risk neutrality of the insurer
imply that an interior Pareto optimal allocation (x; % ,.x. »X.,) satisfies the
familar condition

MRS (RppaXog) = MRS (xp %) (8)
Using (5) and (7), (8) simplifies to
unu('l(XCn) _
TRNICHO N RO 9)

Because the insurer and the client have been assumed to agree about the
probability of a loss, the ratio w,/w is the same on both sides of (9), which can
therefore be reduced to

u'(x, )

C " Cn _
WGy o (10)

Since uc is assumed to be strictly concave, equation (10) implies that in any
interior Pareto optimal allocation the client must be completely insured in the
sense that

X = X M
Cn cL (11)
i.e., his or her wealth is subject to no random fluctuation. Since all losses must
be covered, (11) in turn implies that
X = X - L 5

1% In (12)

i.e., the entire loss must be borne by the insurer. This result is not surprising in
view of the fact that the insurer is risk neutral while the client is risk averse.
Three interior Pareto optimal allocations y, 8 and e are depicted in the
Edgeworth Box of Figure 2. Clearly, the insurer prefers € to & and & to v,
while the ranking is reversed for the client.

All of the interior optima lie on the line *c, = *c¢ shown in Figure 2. The
noninterior Pareto optimal allocations are those that lie on the lower edge of
the box between £ and {. Notice that at a noninterior optimal allocation, say 7,
the client’s losses are not completely covered; i.e., *cg < Xy and *18 = 0 .
Uncovered losses can be optimal if the insurer does not have the financial
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resources to provide complete coverage: i.e., if X;¢becomes zero before xc¢ is
raised to Xcy.

The Pareto optimal allocations between 7y and € are the only ones that both
the insurer and the client would voluntarily choose in preference to « at which
no insurance is provided. These are the core allocations for this economy. At
€, all of the gains from insurance accrue to the insurer. The client is indifferent
between « and €, and the wealth, *c, = *c4 , he or she receives in this
allocation is the certainty equivalent of the gamble faced without insurance.
Aty, on the other hand, the client receives all of the gains from insurance. The
insurer is indifferent between « and y because he or she has the same expected
wealth in both allocations.

Figure 2 assumes that all of the core allocations are interior. The remaining
analysis will continue to assume that this property of Figure 2 holds; i.e., that
all core allocations are interior allocations. This means that in any core
allocation the insurer is financially able to provide complete coverage. Since

Py < Py P (13)
and
(14)
,P

the policy Ay Y requires more finanical reserves from the insurer than any
other core policy. Thus, if the insurer has sufficient wealth to provide policy
(AY »P\) . he or she will indeed have the resources to provide complete coverage
in all other core allocations.

Inequalities (13) and (14) assert that although (Pé»Aa) is a more [less]
expensive policy than (P,»A)) [(P_,AD] it provides less [more] insurance
than (P ,A)) [(P_,A)] In fact, it is in general true that as the Pareto optimal
allocation is moved from v to €, the client does worse in two ways: the net
coverage, A, is reduced and the premium, P, is increased.

The allocation vy is the unique competitive equilibrium allocation in this
economy and ¥,/¥, is the equilibrium relative price of contingent claims in
state n in terms of claims to wealth in state €. Thus the competitive equilib-
rium insurance policy is (PY»AY) at which point the client is receiving more
coverage than at any other core policy and at which the price of this coverage
is lower than at any other core policy.

Having described the Pareto optimal, core and competitive allocations, the
paper now asks how an increase in risk aversion changes these allocations.
These changes are described in Figure 3, in which the indifference curves of a
client whose utility function is u.lu;] are denoted by J.[13.]. The utility
function uc is assumed to be less risk averse than ‘—‘c in the Arrow-Pratt sense.
The indifference curves of the less [more] risk averse client are thus depicted
as solid [dotted] curves. Observe that the increase in risk aversion from
Uz to u ¢ does not alter the set of Pareto optimal allocations. For a client
with utility function Y¢, as for a client with utility function uc, the interior
optima continue to satisfy (11) and (12) and lie on the line *¢, = ¢y in Figure
3. Similarly for clients with either utility function, the noninterior optima are
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the allocations between £ and { on the lower edge of the Edgeworth Box in
Figure 3.

Although the set of Pareto optimal allocations is unaffected when the client
becomes more risk averse, the core is enlarged by this change. Specifically,
when the utility function u. is replaced by Gc , the certainty equivalent of the
gamble faced by the uninsured client is reduced. Thus € is replaced by <. The
Pareto optimal allocation that is indifferent to « for the insurer continues to be
v even after_ u, replaces uc. In Figure 3, the change in the utility function
from uc to Y; changes the core from the points between vy and € to those
between y and ¢ .

Finally, the competitive equilibrium allocation is unchanged by the in-
crease inrisk aversion. In Figure 3, vy is the competitive allocation whether the
client’s utility function is uc or Gc .

The following section considers insurance contracts arrived at through
bargaining between the client and the insurer, using Nash’s model of bar-
gaining. It will show that, in contrast to the situation just described in which a
change in the client’s risk aversion has no impact on the competitive contract,
the client’s risk aversion does influence the contract arrived at as the Nash
solution to the bargaining game played by the insurer and client.

Bargaining Over the Insurance Contract

Let the insurer be Player | and the client Player 2, in a bargaining game
(S.d) such that S is the set of expected utility payoffs to the players resulting
from feasible insurance contracts and d is the pair of utility payoffs corres-
ponding to the initial allocation «. That is,d; = U;(e) = u (w) = w, d,
= U@ = Uluwg,uml) = pu () + wu(w~l) and if (y,,y,) is a point in S,
there exists an insurance contract (A,P) such that

vy, = unuI(wI+P) + uguI(wI—A) = un( mI+P) + ul( wI—A)

- -p) + “L+A
Yy Buglug™®) + upu, (u mL4A)

That is, each (y;,y2) in S is the utility payoff vector to the players that
corresponds to some feasible allocation of contingent claims (X, Xi¢, Xcns
Xce)i1.e.. y1 = Ui(Xm,Xi¢) and y, = Uc(Xcn.Xcr). Then S is a compact set, and
the concavity of Uc insures that S is convex.
The set of Pareto optimal utility payoffs in S corresponds to the set of
contingent claims allocations that satisfy equations (11) and (12). So if (z,,z,)
is Pareto optimal in S, z; = x;, — m¢L (since x;¢ = x5, —L) and
2y = uglugte=x ) since Xcp T Xon = %t ™*p, . So for any Pareto optimal
point (z,,z,), z, = #z,) where ¢ is the decreasing concave function defined
by #(z )= u (wtw=(z +u,1L)). The function ¢ can be thought of as determining
the Pareto optimal subset P(S), since all Pareto optimal utility payoffs are of
the form (z;, ¢(z))).

Consider two potential insurance clients with utility functions for money w
and w, such that w is more risk averse than w. Then w = k(w), where k is an
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increasing concave function. Suppose that the game (S,d) is the bargaining
game that results when client w bargains with the insurer over the set of
feasible insurance contracts;i.e., (S,d) is the game in whichu, = w. Let(S d)
be the game that results when, 1nstead client w bargains with the insurer; i.e.,
(S d) is the game in which uc = w =k(w). Note that the set of insurance
contracts corresponding to Pareto optimal utility payoffs is unaffected by the
change from w to w. So if ¢ and ¢ are the functions that define the Pareto
optimal subsets of S and S respectively, é = k(¢). This observation will
permit a proof of the following result.

Theorem 4.1: Let (S,d) be a bargaining game over insurance contracts, derived from

(S.d) by replacing Player 2 (the client with utility function w) with a more risk averse

client (whose utility function is w = k(w)).

1) Then Nash’s solution predicts that Player 1 will gain a higher utility when
bargaining with the more risk averse client; i.e., ,(S d) > Fy(S,d).

2) If (A,P) and (A P) are the insurance contracts predicted by Nash’s solution in the
games (s,d) and (S.d), respectlvely A < Aand P > P. Thatis, a more risk averse
client pays a higher premium and receives less coverage of his or her potential
loss.

Roth [1978] has shown that Nash’s solution can be interpreted as the utility
function for bargaining in a given game for certain kinds of risk neutral
players.S Interpreted in this way, Theorem 4.1 means that a risk neutral
insurer prefers to bargain with a more risk averse client than with a less risk
averse client.

Since bargaining over insurance contracts involves risky events, the results
of Kihlstrom, Roth and Schmeidler [1979] cannot be directly applied to prove
Theorem 4.1. Instead, the proof will proceed via the following lemma.

Lemma 4.1: Let (S,d) be a bargaining game whose Pareto optimal points are of the
form «v,,ev», and let (S d) be a game whose Pareto optimal points are of the form

G, o(y >> , where ¢ and & are decreasing concave functions. Then, if ¢ - x(» where
k is an increasing (strictly/ concave function, it follows that ¥ (s, > F (s.0) .

Proof of the lemma: Since Nash’s solution F is independent of equivalent
utility representations, it will be sufficient to prove the lemma for the case
whend =d =0, where 0 denotes the orlgm(l e., 0=(0,0)).Soletz = F(S, 0)
and z = F(S 0); it is necessary to show that z, >z, . Since Nash’s solution
selects the point in S that maximizes the geometrlc average of the gains, it will
be sufficient to show that the geometric average A(y ) =k(¢(y,))y, as positive
first derivative at z;. But
A'(zl) = k'(tt)(zl))db'(zl)z1 + k(‘b(zl)) ,

and by Lemma 2.1, ¢'(ZI)21 = -¢(zl), S0

A'(zl) -k'(¢(zl))¢(zl) + k(¢(zl))

—k'(22)22 + k(zz) = zz[—k'(zz) + (k(ZZ)/ZZ)] .

S Specifically, the Nash solution represents the utility of bargaining for a player who is
neutral both to ordinary (probabilistic) risk and to strategic risk (cf. Roth [1978]).
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Because the (strict) concavity of the function k imples that
(k(z,)/z,) > k'(z,)  while the (strict) individual rationality of Nash’s solu-
tion implies z, > 0, A'(z;) > 0 | as required.

Proof of Theorem 4.1: Part (1) of the theorem will follow from Lemma 4.1
once it can be shown that d) k(¢), where d) and ¢ are the functions defining
the Pareto sets of S and S, respectively. But if (¥;»(y,))is a Pareto optimal
point in S, Y1 T *1n ~ “zL and ®v)) = w(ute-x ) and the point

(ka(‘?(y ))) is Pareto opumal in S, since w(u X ) T klepbu - ).

T
So ¢ = k(¢), and so r (s d) > F(s,d) ,as required. "

To prove Part (2) of the theorem note that if  * = (p s 0»%c 5% o) and
x = (Xp X1 05XesXc,)  are the contingent claims allocations correspondmg
to the utility pairs z = F(S,d)and z = F(s,d), F(S,d) > F (S,d) implies that
Xin ” “In - (smce x and x satlsfy equations (l 1) and (12)) Consequently

an=xC2=mI+wC_xI Cup g T Xp T Xy T Kt

By equation (2), =xy, > x;, implies that P > P, and by equation (3)

Xoq < %y imples A < A where (A,P)and (A P) are the contracts that give rise
to the contingent claims allocations x and x, respectively. This completes the
proof of the theorem.

The lemma can also be quickly demonstrated via the following informal,
graphical representation. In figure 4 below, the solid curve ¢ represents the
Pareto set of S. Then Lemma 2.1 states that the angles « and 3 are equal,
where « is the angle with the x, axis formed by the line joining d to z = F(S,d),
and B is the angle with the x, axis formed by the tangent to ¢ at F(S,d).

¢
__:\
¢ = 2= F(S,d)
N

\\

\ N

\ N

~N
\ I~
a : \ (B B~
d=d Z

FIGURE 4
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The dotted curve ¢ = k(¢) represents the Pareto set of S. The angle B made
by the tangent to ¢ at z is smaller than the angle 8. Therefore ¥(s,d) = z _must
fall further to the right than z; so the angle 4 made by the line from d to Z will
equal B, as required by Lemma 2.1.

The results presented above can be generalized to bargaining solutions
other than Nash’s solution. In particular, Kihlstrom, Roth and Schmeidler
[1981] showed that several solutions found in the literature possess essentially
the same risk sensitivity property as does Nash’s solution, and it is
straightforward to generalize those results to the insurance problem consid-
ered here.

Itis less clear how the results presented here can be generalized to insurance
problems in which both the insurer and client are risk averse. Roth and
Rothblum [1982] characterize how Nash’s solution responds to changes in the
risk aversion of the bargainers in a general setting where bargaining may
involve lotteries, but where the disagreement point is riskless. Their results
show that there are situations in which risk aversion can be advantageous, so
that the results of Kihlstrom, Roth and Schmeidler [1981] do not generalize in
a straightforward manner to all bargaining situations. The behavior of
negotiated insurance contracts for more general insurance problems thus
remains an open question.
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