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RISK AVERSION AND NASH’S SOLUTION FOR BARGAINING
GAMES WITH RISKY OUTCOMES

By ALvIN E. RotH AND URIeL G. RoTHBLUM!

Recent results have shown that, for bargaining over the distribution of commodities, or
other riskless outcomes, Nash’s solution predicts that risk aversion is a disadvantage in
bargaining. Here we consider bargaining games which may concern risky outcomes as well
as riskless outcomes, and we demonstrate that, in such games, risk aversion need not
always be a disadvantage in bargaining. Intuitively, for bargaining games in which
potential agreements involve lotteries which have a positive probability of leaving one of
the players worse off than if a disagreement had occurred, the more risk averse a player,
the better the terms of the agreement which he must be offered in order to induce him to
reach an agreement, and to compensate him for the risk involved. For bargaining games
whose disagreement outcome involves no uncertainty, we characterize when risk aversion is
advantageous, disadvantageous, or irrelevant from the point of view of Nash’s solution.

1. INTRODUCTION

SEVERAL INVESTIGATORS have considered how risk aversion influences the out-
come of bargaining, as modelled by Nash’s model of bargaining, and related
models. Loosely speaking, Kannai [3] noted that when bargaining concerns
distribution of a divisible commodity between two risk averse individuals, then
Nash’s solution assigns a larger share of the commodity to a bargainer as his
utility function becomes less risk averse. Thus, risk aversion is a disadvantage in
this situation, according to Nash’s model. Kihlstrom, Roth, and Schmeidler [5]
and Roth [11] generalized this observation to the case where the bargaining
concerns selecting a single outcome from a set of riskless outcomes on which the
two bargainers each have concave utility functions. Risk aversion is again a
disadvantage. This has been elaborated by Sobel [14], who considers the case of
bargaining over the distribution of several divisible commodities. Thomson
[15] has independently reported related results. All these results find risk aversion
to be a disadvantage in bargaining over a set of riskless outcomes. This intu-
itively plausible relationship between an individual’s bargaining ability and his
propensity for risk-taking has been established only for bargaining situations
whose potential outcomes involve no risk.

This paper concerns the more general case, in which bargaining may be over
risky as well as riskless outcomes (however, we consider only the case in which
the disagreement outcome is riskless). In some cases, risk aversion continues to
be a disadvantage in bargaining; in some cases, it has no influence; and in some
cases, risk aversion turns out to be an advantage. Intuitively, for bargaining
games in which potential agreements involve lotteries having a positive probabil-
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ity of leaving one of the bargainers worse off than if a disagreement had
occurred, the more risk averse a player, the better the terms of the agreement
which he must be offered in order to induce him to reach an agreement.

Nash’s model of bargaining is reviewed in Section 2, together with the previous
results concerning risk aversion. Section 3 studies a class of games introduced in
Roth and Malouf [12], from which examples can be drawn in which risk aversion
is disadvantageous, irrelevant, or advantageous. The general case of games whose
disagreement outcome is certain is then considered, and the effect of risk
aversion in arbitrary games is characterized.

2. PREVIOUS RESULTS

Following Nash, we consider two-player bargaining games defined by a pair
(S,d) where d is a point in the plane, and S is a compact convex subset of the
plane containing 4 and at least one point x such that x > d.2 The interpretation
is that S is the set of feasible expected utility payoffs to the players, any one of
which will result if agreed to by both players. If no agreement is reached, the
disagreement point d results. Let P(S) be the Pareto optimal subset of S.

Nash proposed that bargaining between rational players be modelled by a
function called a solution, which selects a feasible outcome for every bargaining
game. If B denotes the class of all two-player bargaining games, a solution is a
function f: B— R? such that f(S,d) is in S. Nash also proposed that a solution
should have the following properties: Pareto optimality, symmetry, independence
of irrelevant alternatives, and independence of equivalent utility representations.’
Nash proved the following.

THEOREM 1: There is a unique solution which possesses these four properties. It is
the solution F defined by F(S,d)= x such that x > d and

(= d) (X2 = dy) > (1 = di)(y2— )
for all y in S such that y # x and y > d.

2We use the notation x > d to mean that x> d, and x, > d,. Similarly, x > d will mean x, > d,
and x, > d,.

3PROPERTY | (Pareto Optimality): If f(S,d) = x and y > x, then either y = x or y & S.

PROPERTY 2 (Symmetry): If (S,d) is a symmetric game (i.e., if (x,x,) € S implies (x,,x,) € S
and if d| = d,), then f((S,d) = f,(S,d).

ProPERTY 3 (Independence of Irrelevant Alternatives): If (S,d) and (T, d) are bargaining games
such that T contains S, and if f(T,d) € S, then f(S,d) = f(T,d).

PrROPERTY 4 (Independence of Equivalent Utility Representations): If (S,d) and (S d) are
bargaining games such that

S={((ax, +bpay, +b)|(x,x) €S} and  d=(ayd, + by, ards + b))
where a,, a,, b, and b, are numbers such that a, and a, > 0, then
(8,d) = (a, fi(S,d) + bj,a, fx(S,d) + by).

These properties have been discussed amply elsewhere (cf. Nash [7], Luce and Raiffa [6], Harsanyi
[2], Roth [9, 11]).
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The above description follows the usual custom in describing bargaining
games solely in terms of the feasible utility payoffs available to the players,
without specifying the particular bargains which yield those utilities. To consider
the effects of risk aversion, we need to consider the alternatives over which
bargaining is conducted.

One approach is to consider each game (S, d) as arising from bargaining over
the set L of all finite lotteries over some set of certain alternatives C contained in
R”, by individuals with (arbitrary) utility functions #; and u,. (Denote u =
(u,,u,).) Then the feasible set of utility payoffs is the concave set

) S = {(uy(1),uy(1)) |/ is an element of L},
and the disagreement point d is the point
)] d = (u(), ux(2))

where ¢ € C is the (deterministic) alternative which results in the case of
disagreement. An (extended) bargaining model is a quintuplet (S,d, C,¢,u) where
S and d are defined by (1) and (2) and (S,d) € B. Such a bargaining model is
deterministic if S = {u(c)|c € C}, ie., if every payoff can be achieved by a
deterministic outcome.

Now consider the effect of replacing one of the players, say player 2, in a
bargaining model (S, d, C, ¢, u) with a more risk averse player. Let u, = w, and let
W be a more risk averse utility function than w, i.e., W(c) = k(w(c)) for all ¢ in C,
where k is an increasing,* concave function (c.f. Arrow [1] Pratt [8], or Kihlstrom
and Mirman [4]). Consider the bargaining model (S d,C,¢, u) derived from the
original one by replacing individual® w with the more risk averse individual .
We can state the following theorem (c.f. Roth [11, Theorem 5], or Kihlstrom,
Roth, and Schmeidler [5]).

THEOREM 2: In deterministic bargaining models, the utility which Nash’s solution
assigns to a player increases as his opponent becomes more risk averse. That is,
Fl(f, dA) > F(S,d), where (§, c?) is obtained from (S,d) by replacing player 2 with
a more risk averse player.

In Roth [10] it was shown the Nash’s solution could be interpreted as the
utility function for a certain kind of individual, reflecting his preferences for
bargaining in different games. Interpreted in this way, Theorem 2 states that such
a player prefers to bargain against the more risk averse of any pair of possible

4We use the word “increasing” to denote a function such that k(a) > k(b) if a > b. If the first
inequality need not be strict, the function will be called nondecreasing.

SSince an individual is represented in this model only by his utility function, an individual whose
utility function is w will sometimes be referred to as individual w.
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opponents. Another interpretation of this result can be obtained by looking at
the second player’s utility. When bargaining against a given player 1 over a fixed
set of outcomes, Nash’s solution predicts that a less risk averse bargainer w
obtains a more desirable outcome than does a more risk averse bargainer w, in
terms of the common preferences of both w and w.

Theorem 2 states that Nash’s solution F has a plausible sensitivity to risk
posture, in deterministic models. We call an arbitrary solution f risk sensitive if it
satisfies the conclusion of Theorem 2 for all deterministic bargaining models. It
has been established (c.f. Roth [12, Theorem 6]) that if a solution f is both Pareto
optimal and risk sensitive, then f is independent of equivalent utility representa-
tions. Thus risk sensitivity can replace independence of equivalent utility repre-
sentations in a characterization of Nash’s solution, or of any solution which is
both risk sensitive and Pareto optimal. Theorem 2 can in fact be proved for any
bargaining games in which the disagreement point and all of the Pareto optimal
payoffs can be achieved by riskless events.

In the following sections we will see that this simple relationship between risk
aversion and Nash’s solution fails to carry over to the case of games with Pareto
optimal payoffs which can only be achieved by lotteries.

3. RISK AVERSION IN A SIMPLE FAMILY OF GAMES
WITH RISKY OUTCOMES

Consider the family of bargaining models (S,d,C,¢,u) where C contains
exactly three-elements, a', a?, ¢, where ¢ is the disagreement outcome, and a' is
the outcome most preferred by player i. Since (S,d) € B, some lottery between
a' and a? is preferred by both players to the disagreement outcome ¢. The set S
equals the convex hull of the three points d = u(¢), u(a'), and u(a?), and the
Pareto set P(S) equals the line segment joining the latter two points. Only the
endpoints of P(S) can be achieved by riskless outcomes; all other Pareto optimal
points are achieved only by lotteries.

The effect of risk aversion in games of this type depends on the position of the
disagreement point. Let (S,d) be a game derived from a three-element set C as
described above, with u, = w, and let ($,d) be a game obtained by replacing
player 2 with a more risk averse player, with utility function u, = w such that
w(c) = k(w(c)) for all ¢ in C, where k is an increasing concave function. Then
we have the following parallel to Theorem 2.

THEOREM 3: O Ifw< w(a'), then Fl(S d) > Fi(S,d). (i) If w(2) > w(a),
then F,(S d)< F(S,d).

Proor: Since F is independent of equivalent utility representations, it is
sufficient to prove the theorem for games with u;, w, and W normalized so
u(a") = w(a? = w(a® =1, and u(a®) =w(a')=w(a')=0. For an arbitrary
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game (T,d) normalized in this way,
O, 1) ifdi,—d, < —
l+d —d, 1—-d +d
(3) F(T,d) = d] 2 , 1 2 )
2 2
(1,0) ifd —d,>1.

if —1<d —dy<1,

In case (i), d, = w(¢) < w(a') = 0, and since W is a concave transformation of
w which keeps W(a')= w(a')=0 and W(a? = w(a? =1, it follows that d2
= W(¢) < w(¢) = d,. Equation (3) therefore implies that F,(S d) > F(S,d) in
this case. In case (ii), d, = w(¢) > w(a')=W(a')=0 and 4, < w(a?) = W(a?)
= 1. Since W is a concave transformation of w, d2 = W(¢) > w(¢) = d,, and so
equation (3) implies F,(S d) < F\(S,d). Note that when |d, — d,| < 1, the in-
equality in the conclusion of the theorem is strict. This completes the proof.

Note that any Pareto optimal payoff can be identified with a lottery between
a' and a”. Theorem 3 could be reformulated in terms of these lotteries. Part (i) of
the Theorem states that the probability which Nash’s solution assigns to a'is
higher in (S d) than in (S, d), and the reverse holds in part (ii). Thus, according
to Nash’s solution, risk aversion is a disadvantage to a player in games where he
prefers his opponent’s favorite outcome to the disagreement outcome (case (i)).
The reverse is true in case (ii): risk aversion is an advantage to a player in games
where he prefers the disagreement outcome to his opponent’s favorite outcome.
In games where he is indifferent between these two outcomes, a player’s risk
aversion has no influence. (This last property made such games appropriate for
the experimental study of bargaining reported in Roth and Malouf [12] since the
risk aversion of the players need not be controlled for when such games are used
to test predictions of Nash’s solution.)

4. GENERAL GAMES WITH CERTAIN DISAGREEMENT OUTCOMES

Here we consider arbitrary bargaining models (S,d, C,¢,u). That is, we no
longer restrict the set C to be finite, as in the previous section. Let P(L) denote
the Pareto optimal subset of lotteries. We say x € S is u-supported by c,clecC
if for some p € (0,1), x = pu(c') + (1 — p)u(c?) and if there is no other point
¢ € C, distinct from ¢! and ¢? such that ¢* = qu(c') + (1 — q)u(c?) for g€
(0,1). So x is u-supported by ¢! and ¢? if it can be achieved by a lottery between
them, and if they are the “closest” certain outcomes by which x can be achieved.
(If x = u(c) for ¢ € C, then x is u-supported by ¢! = ¢? = c.)

If x € S is u-supported by c', ¢, then it is favorably u-supported for player i if
u;(¢’) > u,(¢) for j=1,2, and unfavorably u-supported for player i if either
u,(c") < u;(%) or u;(c?) < u;(¢). Thus, x is favorably u-supported for player i if it
is u-supported by outcomes ¢! and ¢? both of which player i likes at least as well
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as the disagreement outcome, and unfavorably u-supported if player i prefers the
disagreement point ¢ to at least one of the supports ¢! and c% Note that every
Pareto optimal point in S can be achieved by a lottery between no more than
two certain Pareto optimal outcomes. Hence a point x € P(S) is unfavorably
u-supported for player i if and only if it is not favorably u-supported.

We can now consider the effects of risk aversion in games of this form. As
before, results are phrased in terms of games (S,d) and (S d) where the latter
game is derived from the former by replacing player 2, whose utility function
is u,, with a more risk averse player whose utility function is #,. (Denote & =

(uy,,).)

THEOREM 4: (i) If F(S, d) is favorably u-supported for player 2, then F I(S,cz
> F\(S,d). (i) If F(S,d) is unfavorably u-supported for player 2, then F\(S,d
< F(S,d).

)
)

5

Theorem 4 gives sufficient conditions for a bargainer’s risk aversion to be
advantageous or disadvantageous to his opponent. For small changes in risk
aversion, Lemma 2 will show these conditions are necessary as well as sufficient.
Part (i) of Theorem 4 generalizes Theorem 2, since for deterministic models,
F(S,d) must be favorably u-supported for both players, since F is individually
rational.

5. PROOFS

For A €[0,1] let u) = (1 — ANu, + Ad,, and let u” = (u,,u)), d* = u’(), and
S*={uNI)|l € L). Tt is straightforward to verify that u) is an increasing
concave transformation of u, on the set C, and that as A increases, ué‘ becomes
increasingly risk averse (i.e., if @ < B, then uf is a concave transformation of u$
on the set C). As X increases from O to 1, the game (S* @) is transformed from
(8%d% =(S,d)to(S',d") = (S d) in a way which allows the “local” effects of a
small change in player 2’s risk aversion to be examined. First, we establish that
when a player is replaced by a more risk averse player, every certain outcome
which was Pareto optimal in the old game is also Pareto optimal in the new
game.

LEMMA 1: Let P(L) and P(L) denote the set of Pareto optimal lotteries in the
games (S,d) and (S d) respectively. Then P(L) N C contains P(L) N C.

Proor: We show that if c € C is not Pareto optimal in (S d) then it is not
Pareto optimal in (S,d). If c & P(L)ﬂ C then there is an / € L such that
#(l) > ti(c) and either u,(/) > u,(c) or #,(I) > d,(c). But &, =k o u, on C,}°
5(/) equals the expected value of k o u, on the lottery /; ie., #,(/) = E(k uz)(l )
< k(E(uy(1))) = k(uy(!)), where the inequality follows from the concavity of k.

SThat is, u, is equal to the function & composed with the function u, (denoted k ° u,) on the set C.
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Thus k(uy(1)) > d,(1) > #,(c) = k(uy(c)), and, since k is an increasing function,
uy(1) > u,(c), with a strict inequality if @,(/) > 4,(c). This completes the proof.

Lemma 1 establishes that, as A increases from 0 to 1, the set PA(L)N C of
Pareto optimal certain outcomes is nondecreasing. The next part of the proof
proceeds by establishing results for games generated by a finite set of certain
alternatives C, and the proof concludes by establishing the general case.

We use the following proposition whose proof follows from the fact that
Nash’s solution is continuous in the Hausdorf topology on the (open) set B of
bargaining games (see Roth and Rothblum [13}).

PROPOSITION 1: For games generated by a finite set C of certain outcomes,
F(S*d") is a continuous function of \.

With Lemma 1, Proposition 1 allows us to prove the following.

LEMMA 2: For games generated by a finite set C of certain outcomes, and for any
A €10, 1}, there exists a 8 > 0 such that:

(a) If F(S\dY) is favorably u}‘—supported for player 2, then for a € [A,A + 6],
F\(§°,d®) is a nondecreasing function of o, and F(S%d*) is favorably u“-
supported for player 2 in (S¢,d%).

(b) If F(S*,d") is unfavorably uA-supported for player 2, then for a € [A,A + 8],
F\(S8°,d%) is a strictly decreasing function of a, and F(S*,d*) is unfavorably
u“-supported for player 2 in (S¢,d*).

ProoF: First suppose F(S*,d%) is u’-supported by outcomes c!,c? € C such
that u(c') % u(c?. Lemma 1 implies ¢' and c¢? remain Pareto optimal as A
increases, and Proposition 1 therefore implies that there exists a positive 6,
sufficiently small so that for « € [A,A + 8], F(S% d*) remains u*-supported by c'
and ¢ Let E = {c',c% ¢}, and let (T*,d*) be the game generated by the three
element set £ and the utility functions »; and uy. Then F(S¢d*)& T* for
a €[A,A+ 8], and so F(S%d*) = F(T* d") since F is independent of irrelevant
alternatives (Property 3). But the behavior of F(T% d*) for a €[A,A+ 8] is
given by Theorem 3: that is, if « < B8 for a, 8 €[A\,A + 8], then (T*,d*) and
(TB,dP) play the roles of (S,d) and (SA, ci), respectively, in Theorem 3. So
Lemma 2 is proved when u(c') # u(c?). If, instead, F(S*,d") is u*-supported by
c!'=c? then F(S*,d") = u’c"). In this case F(S* d") must be favorably sup-
ported, since F is individually rational. If there is some 8 > 0 such that F(S%,d*%)
= u*(c') for a E[\,A+ 8], then Lemma 2 follows immediately. Otherwise,
Proposition 1 and the finiteness of C imply that there is a § > 0 and an outcome
3 such that, for all « € [A,A + §], F(S% d*) is u*-supported by ¢! and ¢>. If we
now let E = {c',c3 ¢}, then the argument of the previous paragraph assures that
F(S%d*) = F(T*,d"), where (T*,d%) is the game generated by E. So Theorem
3 implies that in this case also, F,(S#,d?) > F\(S*,d*) for a, B €[A,A + §] such
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that « < B. This completes the proof of Lemma 2, which shows that a suffi-
ciently small increase in the risk aversion of one of the players in a game (S*, d)
does not change the nature of the support of F(S,d)—i.e., there is an interval in
which F(S,d) will remain favorably or unfavorably u*-supported. The following
lemma establishes a global result.

LEMMA 3: For games generated by a finite set C of certain outcomes, if F(S,d)
is favorably u-supported for player 2, then F(S*,d") is favorably u*-supported for
player 2 for any A €0, 1].

PrOOF: Suppose Lemma 3 is false, and let 8 = inf{\| F(S*,d") is unfavorably
u*-supported for player 2). Then F(S? d”) is unfavorably supported for player
2, since otherwise Lemma 2 implies there is a § >0 such that F(S%d®) is
favorably u“-supported for a € [ B, B + 8], contradicting the definition of 8. But
B > 0 since (S° d°) = (S, d). Since the set P(L) N C cannot become larger as A
decreases (Lemma 1), Proposition 1 and the arguments of Lemma 2 imply that, if
F(S*,d") is unfavorably u”-supported for player 2, there exists a 8 > 0 such that
fora €[B - 8, B], F(S*,d*) is unfavorably u*-supported for player 2. But this
contradicts the definition of 8, and completes the proof.

ProOF OF THEOREM 4: First consider games generated by lotteries over a finite
set C of certain outcomes. If F(S,d) is favorably u-supported for player 2, then
by Lemma 3, F(S*d") is favorably u-supported for every A €[0,1], and
Lemma 2 therefore implies that, for every A, there exists an interval [A, A + 8]in
which F|(S% d*) is a nondecreasing function of a. Together with Proposition 1,
this implies F,(S*, ") is a nondecreasing function of A for all A [0, 1], complet-
ing the proof of part (i) when C is finite. If F (f, j) is unfavorably #-supported
for player 2, then Lemma 3 implies F(S* d*) is unfavorably u*-supported for
player 2 for every A €[0,1]. Using Lemma 2 and Proposition 1 as above, it
follows that F,(S* d@%) is a decreasing function of A for A € [0, 1], completing the
proof of part (ii) when C is finite.

For an arbitrary (possibly infinite) set C of certain outcomes, let F(S, d) be
u-supported by c',c? € C, let F(S,d) be fi-supported by c3,¢* € C, and let
E ={c',cc*c% ). Let (T,d) and (T,d) be the games generated by the finite
set E as in equations (1) and (2), using utility functions u = (u;,u,) and 4 =
(uy,,), respectively. Then, since Nash’s solution possesses the property of in-
dependence of irrelevant alternatives, F(T,d) = F(S,d) and F ( T, j) =F (f, (2).
But Thegrem 4 has already been proved for the finitely generated games (7,d)
and (f", d), and so it holds for (S,d) and (S,d) as well, completing the proof.

Note that, when a given bargainer is replaced by a more risk averse individual,
the set of Pareto optimal certain events may grow in such a way that Nash’s
solution will become favorably supported, even if it were unfavorably supported
in the original game. When this happens, a bargainer’s risk aversion stops being
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disadvantageous to his opponent, and starts being advantageous. This is why
part (ii) of Theorem 4 is only able to compare games whose Nash solution
remains unfavorably supported. Lemma 3, however, shows that a favorably
supported solution remains favorably supported when a bargainer is replaced by
a more risk averse individual. So part (i) of Theorem 4 establishes that, when
Nash’s solution is favorably supported, an individual’s risk aversion is always
advantageous to his opponent.

University of 1llinois
and
Yale University

Manuscript received September, 1980; revision received February, 1981.

REFERENCES

[1] ARrOWw, KENNETH J.: Essays in the Theory of Risk Bearing. New York: American Elsevier, 1971.

[2] HARrsANYI, JouN C.: Rational Behavior and Bargaining Equilibrium in Games and Social Situa-
tions. Cambridge: Cambridge University Press, 1977.

[3] KANNAL YAKAR: “Concavifiability and Constructions of Concave Utility Functions,” Journal of
Mathematical Economics, 4(1977), 1-56.

[4] KiHLSTROM, RICHARD E., AND LEONARD J. MIRMAN: “Risk Aversion with Many Commodities,”
Journal of Economic Theory, 8(1974), 361-388.

[5] KiHLSTROM, RICHARD E., ALVIN E. ROTH, AND DAVID SCHMEIDLER: “Risk Aversion and Nash’s
Solution to the Bargaining Problem,” Game Theory and Mathematical Economics, ed. by O.
Moeschlin and D. Pallaschke. Amsterdam: North-Holland, 1981.

[6] Luck, R. DUNCAN, AND HOWARD RAIFFA: Games and Decisions: Introduction and Critical Survey.
New York: John Wiley, 1957.

[7]1 NasH, JouN F.: “The Bargaining Problem,” Econometrica, 28(1950), 155-162.

[8] PrATT, J. W.: “Risk Aversion in the Small and in the Large,” Econometrica, 32(1964), 122—136.

[9] RoTH, ALVIN E.: “Independence of Irrelevant Alternatives and Solutions to Nash’s Bargaining
Problem,” Journal of Economic Theory, 16(1977), 247-251.

[10] : “The Nash Solution and the Utility of Bargaining,” Econometrica, 46(1978), 587-594,

983.

[11] : Axiomatic Models of Bargaining. Berlin and New York: Springer, 1979.

[12] RoTtH, ALVIN E., AND MICHAEL W. K. MaLour: “Game-Theoretic Models and the Role of
Information in Bargaining,” Psychological Review, 86(1979), 574-594.

[13] RotH, ALVIN E., AND URIEL G. RoTHBLUM: “Risk Aversion and Nash’s Solution for Bargaining
Games With Risky Outcomes,” Working Paper (preliminary version), University of Illinois,
Urbana, 1981.

[14] SoBeL, JoeL: “Distortion of Utilities and the Bargaining Problem,” Econometrica, 49(1981),
597-620.

[15] THoMSON, WiLLIAM: “The Manipulability of the Shapley Value,” Mimeo, University of Minne-
sota, Minneapolis, 1980.








