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This study reports an experiment designed to test the predictive value of Axelrod’s
measure of conflict of interest. The results support the conclusion that Axelrod’s measure
is a good predictor of the time required to reach agreement in a given bargaining game,
but that it is not a good pedictor of the frequency with which disagreements will be
observed in a given game. The theoretical implications of this conclusion are discussed.

INTRODUCTION

The study of bargaining occupies an important place in economics
in general and game theory in particular, with various parts of the
literature having roots at least as far back as the work of Edgeworth
(1881), Zeuthen (1930), Hicks (1932), and Nash (1950). The lion’s
share of the theoretical literature concerns the nature of the agreements
which we might expect would be reached in particular kinds of bar-
gaining situations, especially when the bargaining is conducted by
suitably motivated and informed bargainers. Although the conse-
quences of potential disagreement are often considered to influence the
ultimate agreement, little attention has been given to what kinds of
bargaining situations are likely to result in actual disagreements.
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One exception to this generalization is the work of Axelrod (1967,
1970), who proposes a measure of the “conflict of interest” in a bar-
gaining situation. This measure is defined for bargaining games of the
kind first studied by Nash (1950), and is intended to predict the likeli-
hood of disagreement as well as the amount of other kinds of “con-
flictful behavior” which will be observed in such games.! We regard
Axelrod’s approach to be a promising one for the study of disagreement,
and one which has perhaps received less attention than it merits. The
main purpose of this article is to report some experimental results con-
cerning Axelrod’s measure, and to suggest some new directions in which
the study of disagreements in bargaining might proceed.

Of course, any experimental study of behavior which seeks to test
the predictive value of a mathematical theory must be designed with
care and interpreted with caution. First, the experiment must be
conducted under conditions which are consistent with the assumptions
of the theory.2 Second, any operational assumptions which are re-
quired to translate the predictions of the theory into observable out-
comes must be explicitly formulated. Only when both these conditions
are met can the results of the experiment be interpreted as a test of the
theory together with its operational assumptions.

It will therefore be necessary to describe in some detail both the
theoretical underpinnings of the theory to be tested, and the experi-
mental procedures to be employed. This article will therefore be
organized as follows. The second section will review Nash’s (1950)
theory of bargaining, together with some recent results which indicate
how this theory is related to the occurrence of disagreements. The next
section will review Axelrod’s work, and the fourth section will review
some experimental work concerned with bargaining, with particular
attention to recent results which suggest the conditions under which
an experimental test of Axelrod’s predictions can be conducted most
appropriately. The fifth section will discuss such an experimental test
and its results, and the final section will consider avenues for further
theoretical and experimental work.

1. Cf. Axelrod (1970): 196, 191-2. Some other approaches to the study of disagree-
ment in bargaining are found in Crawford (1979) and Myerson (1980).

2. Conversely, experimental evidence can help establish under what circumstances
the assumptions of a theory might be appropriate.
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NASH’S MODEL OF BARGAINING

Following Nash (1950), we will consider two-player bargaining games
defined by a pair (S, d), where d is a point in the plane, and S is a com-
pact convex subset of the plane which contains d and at least one point
x such that x > d. The interpretation is that S is the set of feasible
expected utility payoffs to the players, any one of which can be achieved
if it is agreed to by both players. If no such agreement is reached, then
the disagreement point d is the result.

Nash proposed that bargaining between rational players be modelled
by means of a function called a solution, which selects a feasible out-
come for every bargaining game. That is, if we denote the class of all
two-player bargaining games by B, a solution is a function f: B— R*such
that f(S,d) is an element of S. Nash further proposed that a solution
should possess the following properties.

Property 1. Pareto optimality: If f(S,d) = x and y = x, then either y = x or y ¢ S.

Property 2. Symmetry: If (S,d) is a symmetric game (i.e., if (x1, X2) € S 1mp11es (X2, X1)
€ S and if d; = d>) then fi(S,d) = (S, d).

Property 3. Independence of irrelevant alternatives: If (S,d) and (T, d) are bargaining
games such that T contains S, and if f(T,d) € S, then (S, d) = {(T,d).

Property 4. Independence of equivalent utility representations: if (S, d) and (§, &) are
bargaining games such that S= (aix; + by, a%; + by) | (X1, X2) €S and d=(aid; + by,
axd; + by) where ay, a,, by and b, are numbers such that a; and a; > 0, then f(é, a) =
(a:fi(S, d) + by, axf2(S,d) + by).

These properties have been discussed amply elsewhere (cf. Nash,
1950; Luce and Raiffa, 1957; Harsanyi, 1977; Roth, 1977a, 1977b, 1979).
Here we will simply note that only Property 4 deals at all with the
assumption that the game (S, d) is defined in terms of the von Neumann-
Morgenstern expected utility payoffs of the players. Before going on,
it will be useful to briefly review the implications of this assumption.

Recall that an individual’s utility function u is real-valued function
defined on some set of alternatives A. It is a model of choice behavior,
in the sense that u(a) > u(b) for two alternatives a and b if and only if
a is preferred to b; i.e., if and only if the individual would choose alter-
native a when faced with the choice between a and b. In 1944, von
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Neumann and Morgenstern were the first to demonstrate conditions on
an individual’s preferences which are sufficient so that choice behavior
over risky alternatives is the same as if the individual were maximizing
the expected value of the utility function. Such a utility function is
uniquely defined only up to an interval scale, which is to say that the
origin (zero point) and unit of the utility function are arbitrary. Thus,
if u is an expected utility function representing an individual’s prefer-
ences, then another utility function v represents the same preferences
if and only if v = au + b, where a is a positive number.

So, Property 4 states that if a game (S, d) is derived from (S,d) by
transforming the utility functions of the players to equivalent represen-
tations of their preferences, than the same transformations applied to
the outcome of the game (S, d) should yield the outcome selected in
(S,d). Thus, it states that the solution should depend only on the
preferences of the players, and not on any arbitrary features of the
utility functions representing those preferences.

Note that, since the game is defined in terms of the players’ utility
functions (which model their choice behavior), and since the rules of
the game allow each player to choose the disagreement point if wished;
then any solution f which selects an outcome to which both players
might potentially agree must also possess the following property.

Property 5. Individual rationality: f(S, d) >d.
Nash proved the following famous result.

Theorem 1: There is a unique solution which possesses Properties 1-4. It is the
solution F defined by F(S,d) = x such that x = d and (x; - di) (x2 - d2) > (y: - d1)
(y2 - dz) for all y in S such that y # x and y = d.

Nash’s solution F selects the outcome which maximizes the geometric
average of the gains available to the bargainers over the set of feasible,
individually rational outcomes.

Observe that any solution which is assumed to select Pareto optimal
outcomes can never yield predictions which reflect the possibility of
disagreement, since disagreement is never Pareto optimal for bargaining
games in the class B being considered. However, the following recent
result shows that the possibility of disagreement can be incorporated
into the context of Nash’s other assumptions (Roth, 1979).

Theorem 2: There are precisely rwo solutions which possess Properties 2-5. One is
Nash’s solution F, and the other is the disagreement solution D defined by D(S, d) =
d for all bargaining games (S, d).
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Thus when the assumption of Pareto optimality is relaxed, the
possibility of disagreement becomes compatible with Nash’s solution,
and disagreement is the only behavior compatible with that described
by Nash’s solution. However, since the solution F describes behavior
which never leads to disagreement, while D describes behavior which
always leads to disagreement, it is clear that we will have to explore
different kinds of models if we wish to be able to characterize what
properties of games make some games more likely to result in dis-
agreement than others. The nextsection is concerned with one approach
to this question.

AXELROD’S MEASURE OF
“CONFLICT OF INTEREST”

Axelrod (1967, 1970) also considers bargaining games (S, d) of the
kind considered in the previous section. He defines on the class B a
real-valued function which we will denote by A, and calls the quantity
A(S, d) the conflict of interest of the game (S, d). Before describing the
function A, it will be convenient to define, for any game (S, d), the
related game (S', d), where S* = {x = (x1, X2)|d < x <y for some y in S}
(see the shaded area in Figure 1).

Let X; = max {xX; | (x1, X2) € S"}and X, = max {x | (x1, x2) € S}, and for
each value of x; between d; and mean xi, let ¢(x1) = max {Xz | (X1, X2)
€ S'}. Then ¢ is the function which defines the upper boundary of S*
(see Figure 1), and the intervals [di, Xi] and [da, X2] define the range of
feasible, individually rational demands available to players 1 and 2,
respectively. Of course, not every pair of feasible demands is a feasible
outcome (e.g., in general (X;, X2) is not contained in S); which is to say
that the rectangle {(x1, x2) | di < x1 <X, d2 < x2 < X2} of joint demands
always contains S* and may be strictly larger than the set S* (see
Figure 1).

Axelrod defines A(S, d) to be the proportion of the area of the joint
demand rectangle which is not contained in S’. This measure is in-
variant with respect to equivalent utility representations, in the sense
that if (S, d) and (S, d) are related as in property 4, then A(S, d) =
A(S,d).* Consequently, it will be sufficient to confine our attention to

3. Note that (S,d) and (S",d) share the same set of points which are both individually
rational and Pareto optimal. So any bargaining process which obeys properties 1, 3, and
S will yield the same outcome for the two games.

4. Axelrod (1970) sketches the outline of an axiomatic characterization of the
function A, which requires this form of invariance with respect to equivalent utility repre-
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games (S, d) normalized so that d; = d2 = 0, and x; = x; = 1. For games
normalized in this way, the area of the joint demand rectangle is 1,
and so

1

A(S,d)=1 ~/ p(x;)dxy.

0

That is, for games normalized in this way, A(S, d) is equal to 1 minus
the area of S (i.e., A(S, d) is equal to the shaded area in Figure 2).

According to this definition, the lowest possible conflict of interest
occurs in a game (S, d) for which (X1, Xz) is a feasible outcome, since
A(S, d) = 0 for such a game (cf. Figure 3a). The highest possible conflict
of interest occurs in a game (S, d) in which unrestricted side payments
are possible,5 and A(S, d) = 1/2 for such a game (cf. Figure 3b).

Axelrod (1970: 45) offers the following intuitive justification for why
the function A can be interpreted as measuring the conflict of interest.
He points out that the greater A(S, d) becomes, “the more the region
(S") bulges outward, the better both players can simultaneously do, and
hence the less incompatible are the goals of the players. For example,
if the region bulges a great deal, the players can both get nearly their
best payoff, so their conflict of interest is low.”

Before reporting an experimental test of this assertion in the fifth
section, we will first need to consider the general question of how
experiments can be designed to test theories which are stated in terms
of the utility functions of the players.

EXPERIMENTAL IMPLEMENTATION OF
NASH BARGAINING GAMES

Any experimental test of the predictive value of Axelrod’s measure
of conflict of interest is faced with many of the same problems involved

sentations. Thus, the function A is intended to depend only on the preferences of the
players as expressed in their utility functions, and not on any arbitrary features of those
utility functions.

5. Recall that if (S,d) € B then S must be a convex set, and so for games normalized
sod; =d;=0and X; = X; = 1, the feasible set S with the smallest area is the convex hull of
the points (0,0), (1,0) and (0,1), as in Figure 3b.
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Figure 1

S+

Figure 2
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(a) (b)

Figure 3

in testing the predictive value of Nash’s solution. Both theories are
stated with respect to bargaining games defined in terms of the (von
Neumann-Morgenstern) expected utility functions of the players, and
so they can only be directly tested in experimental situations which
permit the expected utility of the bargainers for the underlying payoffs
to be known. Furthermore, the assumption of both theories that both
players know what game is being played means that each player must
be able to determine an opponent’s utility. Finally, we shall see that
the assumption that the bargaining process is independent of equivalent
utility representations places additional restrictions on the information
which is made available to the bargainers in an experimental situation.
In order to discuss how such experiments may be designed, we first need
to consider what it means to determine the expected utility function of
a player, over some set A of alternatives.

Consider the case in which the set A of alternatives contains elements
a and c such that the player likes a strictly better than c, and for any
alternative b € A, the player likes a at least as well as b, and b at least as
well as c. Then if u is a utility function representing this individual’s
preferences over the set of alternatives A, it must have the property
that u(a) = u(b) = u(c). Since u is defined only up to an interval scale,
we may arbitrarily choose its unit and zero point, and in particular we
may take u(a) = 1 and u(c) = 0. The problem of determining u(b) then
becomes the problem of finding the appropriate value between 0 and 1
so that all those lotteries over alternatives that the individual prefers to
b have a higher expected utility, and all those lotteries to which b is
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preferred have a lower expected utility. If we denote by L(p) = [pa;
(1 - p)c] the lottery that with probability p yields alternative a and with
probability (1-p) yields alternative c, then the utility of participating
in the lottery L(p) is its expected utility, pu(a) + (1-p)u(c) = p. If pis the
probability such that the individual is indifferent between b and L(p),
then their utilities must be equal, and so, u(b) = p. Thus when we say
that the utility of alternative b to a given individual is known, we mean
that the probability p is known such that the individual is indifferent
between having alternative b for certain or having the risky alternative
L(p).

For instance, consider an individual who is faced with a choice of
receiving one-half of a million dollars for certain or participating in a
lottery that will yield a million dollars with a probability p and otherwise
yield zero dollars. If we set the individual’s utility function for zero
dollars at 0 and the utility for a million dollars at 1, determining the
individual’s utility for one-half million dollars means determining the
probability p that would leave this individual indifferent between the
lottery and the one-half million dollars. Most of us would require p to
be considerably greater than one-half before we would take the lottery
over the assured one-half million dollars, which is to say that our
utility is not linear in money, and our utility for one-half million dollars
is more than halfway between our utility for zero dollars and our utility
for a million dollars. In what follows, when we say that one individual
knows another’s utility for a given event (e.g., a particular reward), we
are not requiring knowledge of any utility theory, but rather that the
individual has sufficient knowledge of the other’s preferences to be able
to determine an equivalent lottery of the sort just described. (For a
more complete discussion, see Herstein and Milnor, 1953; Krantz et al.,
1971; von Neumann and Morgenstern, 1944.)

Since knowing an individual’s expected utility for a given agreement
is equivalent to knowing what lottery is thought as desirable as that
agreement, then in a bargaining game in which the feasible agreements
are the appropriate kind of lotteries, knowing the utilities of the players
at a given agreement is equivalent to simply knowing the lottery they
have agreed on. In our experiments, therefore, every player i was told
about 2 monetary prizes: a large one 1(i) and a small one s(i). In each of
the games, the players bargained over the probability p(i) that they
would receive their large prize 1(i). Specifically, they bargained over
how to distribute “lottery tickets” that would determine the probability
that players would win their personal lotteries; i.e., a player i who re-
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ceived 409% of the lottery tickets would have a 40% chance of winning a
large monetary prize 1(i) and a 60% chance of winning a small prize
s(i). In the event that no agreement was reached in the allotted time,
each player i received a small prize s(i). In other words, a player would
receive the large prize only if an agreement is reached on splitting the
lottery tickets and if the ensuing lottery is won. Otherwise, receipt of a
small prize is always assured.® We will refer to games of this type as
binary lottery games.

To interpret the set of feasible outcomes of a binary lottery game
in terms of each player’s utility function for money, recall that if we
consider each player’s utility function to be normalized so that the
utility for receiving the large prize is 1, and the utility for receiving the
small prize is 0, then the player’s utility for any lottery between these
two alternatives is the probability of winning the lottery. That is, an
agreement which gives player i p(i) percent of the lottery tickets also
gives a utility of p(i).

Note that a change in the prizes is therefore equivalent to a change
in the origin and scale of the player’s utility functions. This makes it
possible to use binary lottery games to experimentally investigate the
circumstances under which the bargaining process is indeed inde-
pendent of equivalent utility representations (property 4) resulting from
a change in prizes. Such an experiment is discussed in detail in Roth and
Malouf (1979). The results of that experiment support the conclusion
that the information shared by the bargainers decisively influences
whether the bargaining process is sensitive to a change in the prizes.
Specifically, in binary lottery games in which players know only their
own prizes, the observed agreements are independent of changes in the
prizes of the players.” However, in binary lottery games in which both
players know both prizes,® the observed agreements are not inde-
pendent of equivalent utility representations—i.e., the observed out-
comes do not obey property 4. Note that both of these information
conditions meet the assumption customarily made about bargaining
games, which is that the players’ von Neumann-Morgenstern utility for
each outcome is known.

6. This experimental design was first introduced in Roth and Malouf (1979), which
also includes a review and discussion of previous experimental work in this area.

7. See, however, Roth and Malouf (1980) and Roth et al. (1980) for experimental
studies concerned with equivalent utility representations arising in a different way.

8. Specifically, in games in which the size of all the prizes is common knowledge
(cf. Roth and Murnighan, 1980).
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As we have already noted, Axelrod’s measure of conflict of interest
is invariant with respect to equivalent utility representations. Thus, it is
a measure intended to model conflict in situations where the bargaining
process is independent of equivalent utility representations. Therefore,
in order to test its predictive value under potentially favorable condi-
tions, the experiment which follows is designed around binary games
in which players are informed only of their own prizes. That is, the
experiment described below is designed to test the predictive value of
Axelrod’s measure for games in which the bargaining process has not
been observed to violate the property of independence of equivalent
utility representations.

EXPERIMENTAL DESIGN

Each player played four binary lottery games in random order,
against different opponents. In each game, each player had a small
prize of $5.00 and a large prize of $10.00, and each game had restrictions
on the manner in which the players could divide the probability of
winning their large prizes. In each game, the sum of the percentage of
lottery tickets which each player received could not exceed 90%.° In
game 1 (G,), player 1 was restricted to a maximum of 60% of the lottery
tickets and player 2 was restricted to a maximum of 30%. In games 2
through 4, player 1 was restricted to a maximum of 90% of the lottery
tickets, while player 2 was restricted to a maximum of 40%, 50%, and
90% in games 2, 3, and 4 (G, G3, Gs), respectively. These four games are
summarized in Table 1, and the set of feasible agreements for each game
is depicted in Figure 4.

Note that game 1 has a unique Pareto optimal agreement, so that
A(G)) = 0; i.e., there is zero conflict of interest according to Axelrod’s
measure. Games 2, 3, and 4 have increasing conflicts of interest by
Axelrod’s measure; i.e., A(G2) = .22, A(G3) = .28, A(Gs) = .5. Thus,
these four games span the full range of Axelrod’s measure, from game 1,
which with A(G;) = 0 has the lowest possible conflict of interest, to
game 4, which with A(G) = .5 has the highest possible conflict of interest
(see Table 2).

9. In pilot experiments, a large number of (50,50) agreements were observed when
players were allowed to divide 100% of the lottery tickets. In order to control for any
special, cultural significance of “(50,50)”, the players were restricted to divide only 90%
of the lottery tickets, so that an equal division would be (45,45).
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40%
30%
60% 90%
Game 1 Game 2
90%
50%
90% 90%
Game 3 Game 4
Figure 4
TABLE 1
Games
Player’s 1 Prizes Player’s 2 Prizes Maximum % Allowed
Small Large Small Large Player 1 Player 2
Game 1 $5.00 $10.00 $5.00 $10.00 60% 30%
Game 2 $5.00 $10.00 $5.00 $10.00 90% 40%
Game 3 $5.00 $10.00 $5.00 $10.00 90% 50%
Game 4 $5.00 $10.00 $5.00 $10.00 90% 90%

NOTE: The sum of both players’ percentage does not exceed 90%.
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TABLE 2
Axelrod’s Measure of Conflict of Interest

Games
1 2 3 4

0 0.2222 0.2777 0.5

Two operational measures were selected against which to test the
predictive value of the Axelrod’s measure A. The first of these is the
percentage of disagreements observed in each of games 1-4; i.e., the
frequency with which the players failed to reach agreement in the
allotted time. The second measure is the average length of time required
to reach an agreement in each of games 1-4; i.e., the elapsed time from
the start of negotiations until their conclusion, for every game in which
agreement was reached.

METHOD

The experimental set-up employed PLATO, the computer-assisted
instruction system that was developed at the University of Illinois. The
attractiveness of such a system is its advanced graphic displays and
interactive capability.

The participants received all instructions and conducted all com-
munication through visually isolated terminals. The majority of the
participants were taking an introductory course in business adminis-
tration and were receiving credit for their participation in addition to
the money they received through bargaining. Although no special
knowledge or expertise were required for the experiment, pretests were
run using the same subject pool to eliminate any ambiguities in the
instructions.

Background information was first presented, followed by the main
tools of the bargaining, which consisted of sending messages or sending
proposals. A proposal was a pair of numbers: the first was the sender’s
share of the lottery tickets and the second was the receiver’s share. The
use of the computer enabled any asymmetry in the presentation to be
avoided. The PLATO system also computed the expected value of each
proposal and displayed the proposal on a graph of the feasible region.
After being made aware of these computations, the bargainer was given
the option of cancelling the proposal before its transmittal. Proposals
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were said to be binding on the sender; an agreement was reached when-
ever one of the bargainers returned a proposal identical to the one
just received.

Messages were not binding. Instead, they were used to transmit any
thoughts which the bargainers wanted to convey to each other. To
insure anonymity, the monitor intercepted any messages that revealed
the identity of the players. The monitor also intercepted messages con-
taining information about the prizes. The intercepted message was
returned to the sender with a heading indicating a reason for such
action. '

To verify their understanding of the procedures, the subjects were
given some drills followed by a simulated bargaining session with the
computer. As soon as all the participants finished this portion of the
experiment, they were paired at random and the bargaining started.

At the end of eight minutes or when agreement was reached (which-
ever came first), the subjects were informed of the results of that game
and were asked to wait until all the other bargainers were finished. For
the subsequent game there were new random pairings, and the bargain-
ing resumed. The cycle continued until all games were completed. At no
point in the experiment were the players aware of what the other
participants were doing, or of the identity of their opponents.

The bargaining process consisted of the exchange of messages and
proposals, and participants were instructed that “your objective should
be to maximize your own earnings by taking advantage of the special
features of each session.” All transactions were automatically recorded.
After all of the games were played, a brief explanation of the purpose
of the experiment was given, and the participants were offered the
opportunity to type any comments, questions, and so on, and were
directed to the monitor who paid them.

RESULTS

The number and percentage of disagreements are shown in Table 3,
while the means and standard deviations of the bargaining time are
shown in Table 4. The outcomes of all games are given in Table 5."°

Both games 1 and 4 have no disagreements, although Axelrod’s
measure A placed those two games at opposite extremes. A one-way

10. All the agreements in games 3 and 4 were Pareto optimal, 17 out of the 19 agree-
ments in game 1 were Pareto optimal (89.5%) and so were 13 out of the 15 agreements in
game 2 (86.6%).
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TABLE 3
Number and Percentage of Disagreements

Games
I 2 3 4
19 pairs 0? 4% 70 0?
(0%) 21.1%) (36.8%) (0%)
TABLE 4

Means and Standard Deviations for Time to Reach Agreement

Games
1 2 3 4

Excluding Disagreements 158.32°¢ 250.73Cd 215 .670‘:l 300.00d
(126.76) (161.29) (128.72) (155.24)

(total allowable bargaining time = 480 seconds)

NOTE: Cells with common superscripts are not significantly different from one
another at the 0.05 level using the Newman-Keuls test.

analysis of variance on the number of disagreements shows a significant
effect for games, F(3, 72) = 5.79, p < 0.02. Axelrod’s predicted distri-
bution for conflict—assuming that the number of disagreements is
proportional to A(G)''—was compared with the obtained distribution
of the number of disagreements over games. Using the Kolmogorov-
Smirnov goodness of fit test, Axelrod’s model was rejected (p < 0.01)
as a predictor of the frequency of disagreement.

A one-way analysis of variance of the time to reach agreement,
excluding disagreements, reveals a significant effect for games, F(3,61) =
3.19, p < 0.03. The games are rank ordered 1, 3, 2, and 4, in order of
increasing time to agreement. The results of a Newman-Keuls post hoc
test are shown in Table 4. Using the Kolmogorov-Smirnov goodness
of fit test, we were unable to reject, at the 5% significance level,Axelrod’s
model as a predictor of the time to reach agreement.'

11. Any alternative hypothesis that is not more than 219 from the proportionality
assumption would still be rejected at the 5% level. (Axelrod formally hypothesizes only
an ordinal relation.)

12. That is, the results are consistent with the hypothesis that the time to reach
agreement in a game G is proportional to A(G).
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DISCUSSION

Thus, the results of this experiment are consistent with the hy-
pothesis that the quantity A(G) can serve as a predictor of the average
bargaining time for agreements reached in a game G of the kind con-
sidered here. However these results lead us to reject the hypothesis that
A(G) can serve as a predictor of the frequency with which disagreements
will result in such games. This suggests that the characteristics of a game
G which influence the frequency of disagreement may not be the same
as those which influence the time required to reach a specific agreement,
and that A(G) may be more closely connected to the latter character-
istics than to the former.

The results of the experiment reported here permit us to speculate
on the nature of these different characteristics. To do so, we need to
formulate more precisely what characteristics of a game G are measured
by the quantity A(G). We can do this as follows.

Suppose that the rules of the game G = (S,d) are that each player i
makes a demand x;, and the payoff to the players is (x1, X2) if (x1, x2) € S*
and d = (d;,d;) otherwise."’ That is, the players each get what they de-
mand if their demands (x1, x;) are compatible (i.e., if (x1,x2) € S*), and a
disagreement results if the demands are incompatible (i.e., if (x1,X;)
¢ S). Then A(G) is equal to the probability of a disagreement if the
players choose their demands randomly.

Formally, we can state this observation as follows.

Theorem 3: In a game G = (8,d), if demands x, and x,are random variables with
uniform distributions of the intervals [d;,X;] and [d,, X,] respectively, then the
probability that x, and x,are incompatible is equal to A(G).

Proof: Let p denote the probability that the demands (x, x2) are
incompatible. Then p is equal to 1 minus the probability that
(x1,X2) € S™. But (X1, X2) € S”if and only if x, < ¢(x1), where ¢ is the
function which defines the Pareto optimal subset of S, as in the
third section. So,

p=1-— — -
A Xp—dp Xp-dy

1 49

13. These are the noncooperative bargaining rules proposed by Nash (1953).
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X1 og(x))—dy, d
:1_f1 bt _x_l = A(G).
d

Xy—dy X -4

Specifically, if G is normalized so thatd;i=d2=0 and X; =X, = l as
in the third section, then

1
p=A(G)=1 ~f p(x,)dx,.
0

This theorem makes explicit the notion that the quantity A(G)
measures the potential “room for disagreement” in a game G, and it
illuminates the experimental results obtained. Specifically, the experi-
mental results suggest that the potential room for disagreement is a
critical factor in determining the time required to reach a specific
agreement in those cases when some agreement is eventually reached,
but that other factors strongly influence whether an agreement will in
fact be reached, or whether a disagreement will result.

Thus in game Gi, which has a unique Pareto optimal outcome, and
for which A(G1) =0, the average time to reach agreement was short, and
no disagreements were observed. For games G2 and Gs, with more
room for disagreement, both the time to reach agreement and the num-
ber of disagreements increase. For game Gs, which is completely sym-
metric but which provides the maximum room for disagreement
(A(Gq) = .5), the average time to reach agreement was the longest of
the four games, but no disagreements were observed.

This observation is consistent with the relatively low frequency of
disagreements observed for completely symmetric games in other
experiments,“ and it strongly supports the conclusion that abundant
room for disagreement in a game G, as measured by A(G), is not in
itself sufficient to produce a high frequency of disagreements. This is
not too surprising in light of the fact that we have shown A(G) to be the
probability of disagreement which would result if players chose their

14. Cf. Roth and Malouf (1979), Malouf (1980). However the data from those other
experiments was insufficient to give statistically significant results concerning the fre-
quency of disagreement.
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TABLE S
Summary of Final Agreements

Game 1 Game 2 Game 3 Game 4
Player Player Player Player
Group 1 2 Time 1 2 Time 1 2 Time 1 2 Time
1 30 30 261 40 40 83 45 45 173 45 45 435
60 30 178 0o 0 - 0o 0 - 45 45 479
60 30 208 50 40 33 45 45 86 45 45 297
2 60 30 420 50 40 475 50 40 343 45 45 237
60 30 144 0o 0 - 0 0 - 45 45 474

60 30 87 50 40 479 o 0 - 45 45 151
60 30 179 55 35 81 40 50 179 45 45 474

3 60 30 48 50 40 109 45 45 100 45 45 252
60 30 59 50 40 131 46 44 384 45 45 118

60 30 18 54 36 241 0 0 45 45 305
60 30 39 o 0 - 0o 0 - 45 45 143
4 60 30 29 50 40 162 45 45 121 45 45 68
40 30 154 39 39 375 50 40 64 45 45 240
60 30 382 59 31 464 0o 0 - 45 45 457
60 30 75 50 40 202 45 45 168 45 45 421
S 60 30 58 50 40 142 45 45 170 45 45 127
60 30 217 50 40 394 0o 0 - 45 45 471
60 30 69 o 0 - 50 40 406 45 45 475

60 30 383 50 40 390 45 45 394 0 90 76

demands randomly, since we do not expect that rational players will
choose their demands in this manner."’

Table 5 strongly suggests that the symmetry of game G4 played an
important role in determining the outcome, since all but one'® of the
agreements reached in that game were symmetric. Thus, a theory
capable of predicting the frequency of disagreement in such games will
very likely have to incorporate, at least indirectly, some measure of a
game’s symmetry. Since all but one of the agreements in game G4 were

15. It can be shown, however, that a rational, utility-maximizing player who believed
that an opponent chose a demand randomly (as in Theorem 3) would respond by demand-
ing the payoff given by Nash’s solution (cf. Roth, 1979: 25-28).

16. The player who received 0 in the (0,90) agreement later explained that she had
typed the proposal by mistake.
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identical, it is somewhat surprising that so much time was needed to
reach them. This serves to emphasize the significance of the room for
potential disagreement, as measured by A(Ga), in determining the time
required to reach agreement.

REFERENCES

AXELROD, R. (1970) Conflict of Interest. Chicago: Markham.

———(1967) “Conflict of interest: an axiomatic approach.” J. of Conflict Resolution 11:
87-99.

CRAWFORD, V. P. (1979) “A theory of disagreement in bargaining.” Discussion Paper
79-3. University of California, San Diego.

EDGEWORTH, F. Y. (1881) Mathematical Psychics. London: Routledge and Kegan
Paul.

HARSANYIL, J. C. (1977) Rational Behavior and Bargaining Equilibrium in Games and
Social Situations. Cambridge, England: Cambridge Univ. Press.

HERSTEIN, I. N. and J. W. MILNOR (1953) “An axiomatic approach to measurable
utility.” Econometrica 21: 291-297.

HICKS, J. R. (1932) The Theory of Wages. London: Macmillan.

KRANTZ, D. H., R. D. LUCE, P. SUPPES, and A. TVERSKY (1971) Foundations of
Measurement, Volume I. New York: Academic Press.

LUCE, R. D. and H. RAIFFA (1957) Games and Decisions: Introduction and Critical
Survey. New York: John Wiley.

MALOUF, M.W K. (1980) “An experimental investigation of two-person bargaining.”
Ph.D. dissertation, University of Illinois.

MYERSON, R. B. (1980) “Solutions for two-person bargaining problems with incom-
plete information.” Discussion Paper 432. Northwestern University.

NASH, J. F. (1953) “Two person cooperative games.” Econometrica 21: 128-140.

———(1950) “The bargaining problem.” Econometrica 28: 155-162.

ROTH, A. E. (1979) Axiomatic Models of Bargaining. New York: Springer-Verlag.

———(1977a) “Individual rationality and Nash’s solution to the bargaining problem.”
Mathematics of Operations Research 2, 1: 64-65.

——— (1977b) “Independence of irrelevant alternatives and solutions to Nash’s bargain-
ing problem.” J. of Econ. Theory 16, 2: 247-251.

———and M.W.K. MALOUF (1980) “Scale changes and shared information in bar-
gaining: an experimental study.” (mimeo)

——— (1979) “Game-theoretic models and the role of information in bargaining.” Psych.
Rev. 86: 574-594.

———and J. K. MURNIGHAN (1980) “Strategic and sociological variables in models
of bargaining.” (unpublished)



348 JOURNAL OF CONFLICT RESOLUTION

ROTH, A. E. and J. K. MURNIGHAN (1980) “Common knowledge and deniability in

bargaining.” (unpublished)
von NEUMANN, J. MORGENSTERN, and O. MORGENSTERN (1953) Theory of
Games and Economic Behavior, 3rd ed. Princeton: Princeton Univ. Press.
ZEUTHEN, F. (1930) Problems of Monopoly and Economic Warfare. London: Routledge

and Kegan Paul.





