Introduction to Distributed Optimization

Reza Zadeh

@Reza_Zadeh | http://reza-zadeh.com
Optimization

At least two large classes of optimization problems humans can solve:

» Convex

» Spectral
Optimization Example: Gradient Descent
Logistic Regression

Already saw this with data scaling

Need to optimize with broadcast
Model Broadcast: LR

\[w \leftarrow w - \alpha \cdot \sum_{i=1}^{n} g(w; x_i, y_i) \]

```scala
val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)
for (i <- 1 to numIterations) {
  val gradient = points.map { p =>
    (1 / (1 + exp(-p.y * w.dot(p.x))) - 1) * p.y * p.x
  ).reduce(_ + _)
  w -= alpha * gradient
}
```
Model Broadcast: LR

\[w \leftarrow w - \alpha \cdot \sum_{i=1}^{n} g(w; x_i, y_i) \]

Call `sc.broadcast`

```scala
val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)
for (i <- 1 to numIterations) {
  val gradient = points.map { p =>
    (1 / (1 + exp(-p.y * w.dot(p.x))) - 1) * p.y * p.x
  }.reduce(_ + _)
  w -= alpha * gradient
} 
```

Use via `.value`
Separable Updates

Can be generalized for

» Unconstrained optimization

» Smooth or non-smooth

» LBFGS, Conjugate Gradient, Accelerated Gradient methods, …
Optimization Example: Spectral Program
Spark PageRank

Given directed graph, compute node importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Using cache(), keep neighbor list in RAM
Spark PageRank

Using `cache()` to keep neighbor lists in RAM

Using partitioning to avoid repeated hashing
Spark PageRank

Generalizes to Matrix Multiplication, opening many algorithms from Numerical Linear Algebra
Partitioning for PageRank

Recall from first lecture that network bandwidth is \(\sim 100\times\) as expensive as memory bandwidth.

One way Spark avoids using it is through locality-aware scheduling for RAM and disk.

Another important tool is controlling the \textit{partitioning} of RDD contents across nodes.
Spark PageRank

Given directed graph, compute node importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Best representation for vector and matrix?
PageRank

1. Start each page at a rank of 1
2. On each iteration, have page \(p \) contribute \(\frac{\text{rank}_p}{|\text{neighbors}_p|} \) to its neighbors
3. Set each page’s rank to \(0.15 + 0.85 \times \text{contribs} \)

```scala
val links = // RDD of (url, neighbors) pairs
var ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  }
  ranks = contribs.reduceByKey(_ + _).mapValues(.15 + .85*_)}
```
Execution

Input File

Links
(url, neighbors)

map

Ranks$_0$
(url, rank)

join

Contribs$_0$

reduceByKey

Ranks$_1$

join

Contribs$_2$

reduceByKey

Ranks$_2$

...

Links and ranks are repeatedly joined

Each join requires a full shuffle over the network
→ Hash both onto same nodes

Map tasks

Reduce tasks
Solution

Pre-partition the links RDD so that links for URLs with the same hash code are on the same node

```scala
val ranks = // RDD of (url, rank) pairs
val links = sc.textFile(...) .map(...)
    .partitionBy(new HashPartitioner(8))

for (i <- 1 to ITERATIONS) {
    ranks = links.join(ranks).flatMap {
        (url, (links, rank)) =>
            links.map(dest => (dest, rank/links.size))
    }.reduceByKey(_ + _)
        .mapValues(0.15 + 0.85 * _)
}
```
New Execution
How it works

Each RDD has an optional Partitioner object

Any shuffle operation on an RDD with a Partitioner will respect that Partitioner

Any shuffle operation on two RDDs will take on the Partitioner of one of them, if one is set
Examples

```
pages.join(visits).reduceByKey(...)
```

- Output of join is already partitioned

```
pages.join(visits).map(...).reduceByKey(...)
```

- map loses knowledge about partitioning

```
pages.join(visits).mapValues(...).reduceByKey(...)
```

- mapValues retains keys unchanged
Main Conclusion

Controlled partitioning can avoid unnecessary all-to-all communication, saving computation.

Repeated joins generalizes to repeated Matrix Multiplication, opening many algorithms from Numerical Linear Algebra.
Performance

Why it helps so much: Links RDD is much bigger in bytes than ranks!
RDD partitioner

Use the .partitioner method on RDD

```scala
scala> val a = sc.parallelize(List((1, 1), (2, 2)))
scala> val b = sc.parallelize(List((1, 1), (2, 2)))
scala> val joined = a.join(b)

scala> a.partitioner
res0: Option[Partitioner] = None

scala> joined.partitioner
res1: Option[Partitioner] = Some(HashPartitioner@286d41c0)
```
Custom Partitioning

Can define your own subclass of `Partitioner` to leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain name, because many links are internal

class DomainPartitioner extends Partitioner {
 def numPartitions = 20

 def getPartition(key: Any): Int =
 parseDomain(key.toString).hashCode % numPartitions

 def equals(other: Any): Boolean =
 other.isInstanceOf[DomainPartitioner]
}