Author: Reza Bosagh Zadeh

Machine Learning is the process of automatically building models from data. In the past two decades, researchers in many fields of study have been generating these models from progressively more data. Because this has led to higher quality learned models, researchers are using even greater quantities of data that require more and more complex distributed computing systems. These systems consist of many hard-drives connected to many machines (CPUs)—often commodity computers to keep costs down. But with many commodity machines come many failures: Hard-drives die, operating systems fail, and someone might trip over a power-cord in the data-center. The need to problem-solve such single points of failure renders distributed computing quite cumbersome. One solution: Use cleverly designed software to make applications running in clusters more fault-tolerant. Specifically, researchers turn to software known as cluster programming frameworks.

The most successful of these is Apache Spark. Built by the AMPLab at UC Berkeley and now by Databricks, Spark provides users with a distributed array that is fault-tolerant. Many researchers are already accustomed to programming with arrays in their favorite programming language. Spark provides much of the same functionality that arrays provide, with the convenience of the array being seamlessly distributed across a cluster. These arrays are called Resilient Distributed Datasets (RDDs). They can be large and stored on disk, with the portions that are in use swapped in and out of RAM for faster access. Because the generic idea of distributed arrays has nothing to do with any particular programming language, Spark is able to provide clean APIs in Python, Java, Scala, and R.

There are many ways to create RDDs but, the world only lets you create RDDs in ways that can be automatically tracked. The recipe for an RDD is saved along with the RDD, so that in the event of a machine failure, the part for which the machine was responsible can be rebuilt. Called “lineage”, this recipe is the primary fault-tolerance mechanism in Spark.

Given that programming with arrays has been historically successful, it is no surprise that RDDs have also enjoyed fast adoption. By using the power of RDDs, Spark provides four libraries out of the box:

- ML: Machine Learning algorithms and Matrix Computations
- GraphX: Graph processing library for handling large graphs
- Streaming: Handling streams of data (e.g. web logs or stock tickers)
- Dataframes: Easy access to tables of heterogeneous data, similar to those found in R and Python

These open source libraries are developed in a concerted effort across many universities and companies. For example, several Stanford students have worked
with me to create the basic building blocks for Linear Algebra in Spark, such as the Singular Value Decomposition. Only the most widely used and tested algorithms are added to the above libraries. However, there is a vibrant community of Spark Packages that can be installed with a single command line. Databricks maintains this package listing at http://spark-packages.org. The Spark ecosystem and its community make Big Data easier to handle.

Author:

Reza Bosagh Zadeh is a Consulting Professor at Stanford University and a Technical Advisor to Databricks. Reza received his PhD in Computational Mathematics from Stanford University under the supervision of Gunnar Carlsson. For his PhD work in Distributed Machine Learning, Reza received the Gene Golub Outstanding Thesis Award. During his Ph.D., Reza built the Machine Learning Algorithms behind Twitter's who-to-follow system, the first product to use Machine Learning at Twitter. As a Technical Advisor at Databricks, Reza is the initial creator of the Linear Algebra Package in Apache Spark.