Political Science 452: Text as Data

Justin Grimmer
Assistant Professor
Department of Political Science
Stanford University

June 8th, 2011
Where We’ve Been, Where We’re Going

- Class 1: Finding Text Data
- Class 2: Representing Texts Quantitatively
- Class 3: Dictionary Methods for Classification
- Class 4: Comparing Language Across Groups
- Class 5: Texts in Space
- Class 6: Clustering
- Class 7: Topic models
- Class 8: Supervised methods for classification
- Class 9: Ensemble methods for classification
- Class 10: Scaling Speech
Cross validation, Ensembles, and Super learning

Classification:

- Models for categorizing texts
- Know (develop) categories beforehand
- Hand coding: assign documents to categories
- Infer: new document assignment to categories (distribution of documents to categories)

This week: how to select method?
- Combining many methods

Scaling: (when we get there!)
Cross validation, Ensembles, and Super learning

Classification:
- Models for categorizing texts
Cross validation, Ensembles, and Super learning

Classification:
- Models for categorizing texts
- Know (develop) categories before hand
Classification:
- Models for categorizing texts
- Know (develop) categories before hand
- Hand coding: assign documents to categories
- Infer: new document assignment to categories (distribution of documents to categories)
Cross validation, Ensembles, and Super learning

Classification:
- Models for categorizing texts
- Know (develop) categories before hand
- Hand coding: assign documents to categories
- Infer: new document assignment to categories (distribution of documents to categories)
- This week: how to select method?
- Combining many methods
Cross validation, Ensembles, and Super learning

Classification:
- Models for categorizing texts
- Know (develop) categories before hand
- Hand coding: assign documents to categories
- Infer: new document assignment to categories (distribution of documents to categories)
- This week: how to select method?
- Combining many methods

Scaling: (when we get there!)
Methods for Classification

Three supervised methods (there are many!)

1) Naive Bayes:
 - Training set: Construct model of what documents “look like”
 - Test set: Assign documents to categories, based on similarity to categories

2) ReadMe:
 - Focus on estimating proportions only
 - Training set: construct model of stem profiles in categories
 - Test set: linear algebra solution to problem (modulo dimensionality)

3) Support Vector Machines
 - Training set: identify separating plane between two classes
 - Test set: classify based on location to separating plane
Support Vector Machines

Document i is an $M \times 1$ vector of counts

$$y_i = (y_{1i}, y_{2i}, \ldots, y_{Mi})$$

Suppose we have two classes, c_1, c_2.

$$t_i = 1 \text{ if } i \text{ is in class 1}$$
$$t_i = -1 \text{ if } i \text{ is in class 2}$$

Suppose they are separable:
- Draw a line between groups
- Goal: identify the line in the middle
- Maximum margin
Support Vector Machines: Maximum Margin Classifier
(Bishop 2006)
Support Vector Machines: Maximum Margin Classifier (Bishop 2006)
Support Vector Machines: Maximum Margin Classifier
(Bishop 2006)
Support Vector Machines: Maximum Margin Classifier (Bishop 2006)
Support Vector Machines: Maximum Margin Classifier
(Bishop 2006)
Goal create a score to classify:

\[s(y_i) = \beta' y_i + b \]

- \(\beta \) Determines orientation of surface (slope)
- \(b \) determines location (moves surface up or down)
- If \(s(y_i) > 0 \) → class 1
- If \(s(y_i) < 0 \) → class 2
- \(\frac{|s(y_i)|}{||\beta||} \) = Document distance from decision surface (margin)
Support Vector Machines: Algebra (Bishop 2006)

Objective function: maximum margin
Objective function: maximum margin

$\min_i \left[|s(y_i)| \right]$: Point closest to decision surface
Objective function: maximum margin
\[
\min_i [|(s(y_i)|] : \text{Point closest to decision surface}
\]
We want to identify \(\beta \) and \(b \) to maximize the margin:
Objective function: *maximum margin*

\[\min_i [|s(y_i)|]: \text{Point closest to decision surface} \]

We want to identify \(\beta \) and \(b \) to maximize the margin:

\[
\begin{align*}
\operatorname{arg\ max}_{\beta, b} & \left\{ \frac{1}{\| \beta \|} \min_i [|s(y_i)|] \right\} \\
\end{align*}
\]
Support Vector Machines: Algebra (Bishop 2006)

Objective function: **maximum margin**

\[
\min_i \left[|s(y_i)| \right]: \text{Point closest to decision surface}
\]

We want to identify \(\beta \) and \(b \) to maximize the margin:

\[
\arg \max_{\beta, b} \left\{ \frac{1}{\|\beta\|} \min_i \left[|s(y_i)| \right] \right\}
\]

\[
\arg \max_{\beta, b} \left\{ \frac{1}{\|\beta\|} \min_i \left[|\beta'y_i + b| \right] \right\}
\]
Objective function: maximum margin

\[
\min_i \left[\left| (s(y_i)) \right| \right]: \text{Point closest to decision surface}
\]

We want to identify \(\beta \) and \(b \) to maximize the margin:

\[
\arg \max_{\beta, b} \left\{ \frac{1}{\|\beta\|} \min_i \left[\left| (s(y_i)) \right| \right] \right\}
\]

\[
\arg \max_{\beta, b} \left\{ \frac{1}{\|\beta\|} \min_i \left[\left| \beta' y_i + b \right| \right] \right\}
\]

Constrained optimization problem
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[\xi_i = \begin{cases} 0 & \text{if correctly classified} \\ |s(y_i)| & \text{if incorrectly classified} \end{cases} \]

Tradeoff:
- Maximize margin between correctly classified groups
- Minimize error from misclassified documents

\[\arg \max_{\beta, b} \left\{ \Sigma_{i=1}^C (\xi_i + 1|\beta|) \right\} \]

\[\inf_{i} \left[|\beta'y_i + b| \right] \]

C captures tradeoff
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[\xi_i = 0 \text{ if correctly classified} \]
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[
\begin{align*}
\xi_i &= 0 \text{ if correctly classified} \\
\xi_i &= |s(y_i)| \text{ if incorrectly classified}
\end{align*}
\]
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[
\xi_i = \begin{cases}
0 & \text{if correctly classified} \\
|s(y_i)| & \text{if incorrectly classified}
\end{cases}
\]

Tradeoff:
What About Overlap? (Bishop 2006)

- Rare that classes are separable.

- Define:

\[
\xi_i = \begin{cases}
0 & \text{if correctly classified} \\
|s(y_i)| & \text{if incorrectly classified}
\end{cases}
\]

Tradeoff:

- Maximize margin between correctly classified groups
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[\xi_i = 0 \text{ if correctly classified} \]
\[\xi_i = |s(y_i)| \text{ if incorrectly classified} \]

Tradeoff:
- Maximize margin between correctly classified groups
- Minimize error from misclassified documents
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[\xi_i = 0 \text{ if correctly classified} \]
\[\xi_i = \| s(y_i) \| \text{ if incorrectly classified} \]

Tradeoff:

- Maximize margin between correctly classified groups
- Minimize error from misclassified documents

\[\arg \max_{\beta, b} \left\{ C \sum_{i=1}^{N} \xi_i + \frac{1}{\|\beta\|} \min_i \left[|\beta'y_i + b| \right] \right\} \]
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[
\xi_i = 0 \text{ if correctly classified}
\]
\[
\xi_i = |s(y_i)| \text{ if incorrectly classified}
\]

Tradeoff:
- Maximize margin between correctly classified groups
- Minimize error from misclassified documents

\[
\arg \max_{\beta, b} \left\{ C \sum_{i=1}^{N} \xi_i + \frac{1}{||\beta||} \min_i[|\beta' y_i + b|] \right\}
\]

\(C\) captures tradeoff
What About Overlap? (Bishop 2006)

- Rare that classes are separable.
- Define:

\[\xi_i = \begin{cases} 0 & \text{if correctly classified} \\ |s(y_i)| & \text{if incorrectly classified} \end{cases} \]

Tradeoff:
- Maximize margin between correctly classified groups
- Minimize error from misclassified documents

\[
\text{arg max}_{\beta, b} \left\{ C \sum_{i=1}^{N} \xi_i + \frac{1}{||\beta||} \min_i [|\beta'y_i + b|] \right\}
\]

\(C\) captures tradeoff
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories

1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
 - Solution(?): select category with largest "score"
 - Problem: scales are not comparable

2) Common solution: set up $K \left(\frac{K-1}{2} \right)$ classifications
 - Perform vote to select class (still suboptimal)

3) Simultaneous estimation possible, much slower
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?

1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
 - Solution(?): select category with largest "score"
 - Problem: scales are not comparable

2) Common solution: set up $K\left(\frac{K-1}{2}\right)$ classifications
 - Perform vote to select class (still suboptimal)

3) Simultaneous estimation possible, much slower
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
 - Compare each class to all other classes

Problem: can lead to inconsistent results
Solution(?): select category with largest "score"
Problem: scales are not comparable

Common solution: set up K($K-1$)/2 classifications
- Perform vote to select class (still suboptimal)

Simultaneous estimation possible, much slower
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
 - Solution(?): select category with largest “score”
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
 - Solution(?): select category with largest “score”
 - Problem: scales are not comparable
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
 - Solution(?): select category with largest “score”
 - Problem: scales are not comparable
 2) Common solution: set up $K(K - 1)/2$ classifications
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
 - Solution(?): select category with largest “score”
 - Problem: scales are not comparable
 2) Common solution: set up $K(K - 1)/2$ classifications
 - Perform vote to select class (still suboptimal)
How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories
- How to handle classification into K groups?
 1) Set up K classification problems:
 - Compare each class to all other classes
 - Problem: can lead to inconsistent results
 - Solution(?): select category with largest “score”
 - Problem: scales are not comparable
 2) Common solution: set up $K(K - 1)/2$ classifications
 - Perform vote to select class (still suboptimal)
 3) Simultaneous estimation possible, much slower
R Code to Run SVMs

library(e1071)
fit <- svm(T . , as.data.frame(tdm) , method = 'C',
kernel='linear')
where: method = 'C' → Classification
kernel='linear' → allows for distortion of feature space. Options:
- Linear
- Polynomial
- Radial
- sigmoid
preds <- predict(fit, data =
as.data.frame(tdm[-c(1:no.train),]))
Hillard, Purpura, Wilkerson: SVMs to code topic/sub topics for policy agendas project

<table>
<thead>
<tr>
<th>TABLE 3. Bill Title Interannotator Agreement for Five Model Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Major topic N=20</td>
</tr>
<tr>
<td>Subtopic N=226</td>
</tr>
</tbody>
</table>

SVMs are **under utilized** in political science
Assessing Models (Elements of Statistical Learning)

- **Model Selection**: tuning parameters to select final model
- **Model assessment**: after selecting model, estimating error in classification (last week’s discussion)
How Do We Build A Model?
There are many ways to fit models
And many choices made when performing model fit
How do we choose?

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\hat{E}[r]$, while the light red curves show the conditional test error $E_{r}[r]$ for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error $E[r]$ and the expected training error $E[\hat{E}[r]]$.
How Do We Build A Model?

There are many ways to fit models
And many choices made when performing model fit
How do we choose?
Bad way to choose:

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error Err_{tr}, while the light red curves show the conditional test error Err_{t} for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $E[\text{Err}_{\text{tr}}]$.
How Do We Build A Model?

There are many ways to fit models
And many choices made when performing model fit
How do we choose?
Bad way to choose: within sample model fit (HTF Figure 7.1)

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\tilde{\text{Err}}$, while the light red curves show the conditional test error Err_T for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $E[\tilde{\text{Err}}]$.
How Do We Build A Model?

Model **overfit**:

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error E_{tr}, while the light red curves show the conditional test error Err_{x} for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $E[Err]$.
How Do We Build A Model?

Model overfit:
- Some model complexity captures **systematic** features of the data
How Do We Build A Model?

- Some model complexity captures **systematic** features of the data
- Characteristics found in both training and test set
How Do We Build A Model?

Model overfit:
- Some model complexity captures systematic features of the data
- Characteristics found in both training and test set
- Reduces error in both training and test set

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error Err, while the light red curves show the conditional test error Err^c for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $\text{E}[\text{Err}]$.
How Do We Build A Model?

Model overfit:
- Some model complexity captures systematic features of the data
- Characteristics found in both training and test set
- Reduces error in both training and test set
- Additional model complexity: idiosyncratic features of the training set
How Do We Build A Model?

Model overfit:
- Some model complexity captures **systematic** features of the data
- Characteristics found in both training and test set
- Reduces error in both training and test set
- Additional model complexity: **idiosyncratic** features of the training set
- Reduces error in training set, increases error in test set
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity

- AIC: Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...
- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters
- Extremely model dependent

Need: general tool for evaluating models, replicates decision problem
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity
- AIC : Akaka Information Criterion
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity

- AIC: Akaka Information Criterion
- BIC: Bayesian Information Criterion
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity
- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...
- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters
- Extremely model dependent

Need: general tool for evaluating models, replicates decision problem
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity
 - AIC : Akaka Information Criterion
 - BIC: Bayesian Information Criterion
 - DIC: Deviance Information Criterion
Can work well, but...
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity
- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...
- Rely on specific loss function
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...

- Rely on specific loss function
- Rely on asymptotic argument
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity
- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...
- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...

- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters
- Extremely model dependent
How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity
- AIC : Akaka Information Criterion
- BIC: Bayesian Information Criterion
- DIC: Deviance Information Criterion

Can work well, but...
- Rely on specific loss function
- Rely on asymptotic argument
- Rely on estimate of number of parameters
- Extremely model dependent

Need: general tool for evaluating models, replicates decision problem
Cross-Validation: Some Intuition

Recall Optimal division of data:
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model

- Perform on labeled data
- Each step: use held out data to evaluate performance
- Avoid overfitting
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
- Perform on labeled data
- Suppose each document \(i\) belongs to class \(c_i\).
- Let \(c = (c_1, c_2, \ldots, c_N)\)
- Idea: use observations both in training and test sets
- Each step: use held out data to evaluate performance
- Avoid overfitting
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
- Perform on labeled data
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
- Perform on labeled data
 Suppose each document i belongs to class c_i.
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
- Perform on labeled data

 Suppose each document i belongs to class c_i.

Let $c = (c_1, c_2, \ldots, c_N)$
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
- Perform on labeled data

Suppose each document i belongs to class c_i.
Let $\mathbf{c} = (c_1, c_2, \ldots, c_N)$
- Idea: use observations both in training and test sets
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
- Perform on labeled data
 Suppose each document \(i \) belongs to class \(c_i \).
 Let \(\mathbf{c} = (c_1, c_2, \ldots, c_N) \)
- Idea: use observations both in training and test sets
- Each step: use held out data to evaluate performance
Cross-Validation: Some Intuition

Recall Optimal division of data:
- Train: build model
- Validation: assess model
- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.
- Perform on labeled data
 Suppose each document \(i \) belongs to class \(c_i \).
 Let \(c = (c_1, c_2, \ldots, c_N) \)
- Idea: use observations both in training and test sets
- Each step: use held out data to evaluate performance
- Avoid overfitting
Cross-Validation: A How To Guide

Process:

- Randomly partition data into K groups. (Group 1, Group 2, Group 3, ..., Group K)
- Rotate through groups as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, ..., Group K</td>
<td>Group 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group 3, Group 4, ..., Group K</td>
<td>Group 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, ..., Group K</td>
<td>Group 3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, ..., Group K - 1</td>
<td>Group K</td>
<td></td>
</tr>
</tbody>
</table>

Justin Grimmer (Stanford University)
Cross-Validation: A How To Guide

Process:
- Randomly partition data into K groups.
Process:
- Randomly partition data into K groups.
 (Group 1, Group 2, Group 3, . . ., Group K)
Cross-Validation: A How To Guide

Process:
 - Randomly partition data into K groups.
 (Group 1, Group 2, Group3, . . ., Group K)
 - Rotate through groups as follows
Cross-Validation: A How To Guide

Process:
- Randomly partition data into K groups.
 (Group 1, Group 2, Group 3, ..., Group K)
- Rotate through groups as follows

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, ..., Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group 3, Group 4, ..., Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, ..., Group $K-1$</td>
<td>Group K</td>
</tr>
</tbody>
</table>
Cross-Validation: A How To Guide

Process:
- Randomly partition data into K groups.
 (Group 1, Group 2, Group 3, ..., Group K)
- Rotate through groups as follows

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, ...</td>
<td>Group 1</td>
</tr>
</tbody>
</table>
Cross-Validation: A How To Guide

Process:
- Randomly partition data into K groups.
 (Group 1, Group 2, Group 3, ..., Group K)
- Rotate through groups as follows

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, ..., Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group 3, Group 4, ..., Group K</td>
<td>Group 2</td>
</tr>
</tbody>
</table>
Cross-Validation: A How To Guide

Process:
- Randomly partition data into K groups.
 (Group 1, Group 2, Group 3, ..., Group K)
- Rotate through groups as follows

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, ..., Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group 3, Group 4, ..., Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, ..., Group K</td>
<td>Group 3</td>
</tr>
</tbody>
</table>
Cross-Validation: A How To Guide

Process:
- Randomly partition data into K groups.
 (Group 1, Group 2, Group 3, ..., Group K)
- Rotate through groups as follows

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, ..., Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group 3, Group 4, ..., Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, ..., Group K</td>
<td>Group 3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Cross-Validation: A How To Guide

Process:

- Randomly partition data into K groups.
 (Group 1, Group 2, Group 3, \ldots, Group K)
- Rotate through groups as follows

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, \ldots, Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group 3, Group 4, \ldots, Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, \ldots, Group K</td>
<td>Group 3</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, \ldots, Group $K - 1$</td>
<td>Group K</td>
</tr>
</tbody>
</table>
Cross-Validation: A How To Guide

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation (“Test”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group2, Group3, Group 4, . . . , Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group3, Group 4, . . . , Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, . . . , Group K</td>
<td>Group 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, . . . , Group K - 1</td>
<td>Group K</td>
</tr>
</tbody>
</table>

Strategy:
- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f: Y \rightarrow C$
- Predict values for Kth
- Summarize performance with loss function:
 \[
 L(C_i, f - k(y_i))
 \]
 - Mean square error, Absolute error, Prediction error, ...

\[
CV(\text{ind. classification}) = \frac{1}{N} \sum_{i=1}^{N} L(C_i, f - k(y_i))
\]

\[
CV(\text{proportions}) = \frac{1}{K} \sum_{j=1}^{K} \text{Mean Square Error Proportions from Group } j
\]

- Final choice: model with highest CV score

Justin Grimmer (Stanford University)
Cross-Validation: A How To Guide

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group2, Group3, Group 4, . . ., Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group3, Group 4, . . ., Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, . . ., Group K</td>
<td>Group 3</td>
</tr>
<tr>
<td></td>
<td>. . .</td>
<td>.</td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, . . ., Group K - 1</td>
<td>Group K</td>
</tr>
</tbody>
</table>

Strategy:

- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f: Y \rightarrow C$
- Predict values for Kth
- Summarize performance with loss function: $L(C_i, f - k(y_i))$

$$CV(\text{ind. classification}) = \frac{1}{N} \sum_{i=1}^{N} L(C_i, f - k(y_i))$$

$$CV(\text{proportions}) = \frac{1}{K} \sum_{j=1}^{K} \text{Mean Square Error Proportions from Group } j$$

- Final choice: model with highest CV score
Cross-Validation: A How To Guide

Step	Training	Validation ("Test")
1 | Group 2, Group 3, Group 4, ..., Group K | Group 1
2 | Group 1, Group 3, Group 4, ..., Group K | Group 2
3 | Group 1, Group 2, Group 4, ..., Group K | Group 3
... | ... | ...
K | Group 1, Group 2, Group 3, ..., Group K - 1 | Group K

Strategy:

- Divide data into \(K \) groups

\[
\text{CV(} \text{ind. classification}) = \frac{1}{N} \sum_{i=1}^{N} L(C_i, f - k(y_i))
\]

\[
\text{CV(} \text{proportions}) = \frac{1}{K} \sum_{j=1}^{K} \text{Mean Square Error Proportions from Group } j
\]

- Final choice: model with highest \(\text{CV} \) score
Cross-Validation: A How To Guide

Step	Training	Validation ("Test")
1 | Group2, Group3, Group 4, . . ., Group K | Group 1
2 | Group 1, Group3, Group 4, . . ., Group K | Group 2
3 | Group 1, Group 2, Group 4, . . ., Group K | Group 3
... | ... | ...
K | Group 1, Group 2, Group 3, . . ., Group K - 1 | Group K

Strategy:
- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f : \mathbf{Y} \rightarrow \mathbf{C}$

$$CV(\text{ind. classification}) = \frac{1}{N} \sum_{i=1}^{N} L(C_i, f(y_i))$$
$$CV(\text{proportions}) = \frac{1}{K} \sum_{j=1}^{K} \text{Mean Square Error Proportions from Group } j$$

Final choice: model with highest CV score
Cross-Validation: A How To Guide

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation (“Test”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group2, Group3, Group 4, . . ., Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group3, Group 4, . . ., Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, . . ., Group K</td>
<td>Group 3</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, . . ., Group K - 1</td>
<td>Group K</td>
</tr>
</tbody>
</table>

Strategy:

- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f : \mathbf{Y} \rightarrow \mathbf{C}$
- Predict values for K^{th}
Cross-Validation: A How To Guide

Step	Training	Validation ("Test")
1 | Group 2, Group 3, Group 4, ..., Group K | Group 1
2 | Group 1, Group 3, Group 4, ..., Group K | Group 2
3 | Group 1, Group 2, Group 4, ..., Group K | Group 3
... | ... | ...
K | Group 1, Group 2, Group 3, ..., Group K - 1 | Group K

Strategy:
- Divide data into \(K \) groups
- Train data on \(K - 1 \) groups. Create function \(f : Y \rightarrow C \)
- Predict values for \(K^{th} \)
- Summarize performance with loss function: \(L(C_i, f^{-k}(y_i)) \)
Cross-Validation: A How To Guide

Step Training Validation ("Test")
1 Group2, Group3, Group 4, . . ., Group K Group 1
2 Group 1, Group3, Group 4, . . ., Group K Group 2
3 Group 1, Group 2, Group 4, . . ., Group K Group 3
...
K Group 1, Group 2, Group 3, . . ., Group K - 1 Group K

Strategy:

- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f : \mathbf{Y} \rightarrow \mathbf{C}$
- Predict values for K^{th}
- Summarize performance with loss function: $L(C_i, f^{-k}(y_i))$
 - Mean square error, Absolute error, Prediction error, ...

CV(ind. classification) = \[\frac{1}{N} \sum_{i=1}^{N} L(C_i, f^{-k}(y_i)) \]
CV(proportions) = \[\frac{1}{K} \sum_{j=1}^{K} \text{Mean Square Error Proportions from Group } j \]

- Final choice: model with highest CV score
Cross-Validation: A How To Guide

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation ("Test")</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group2, Group3, Group 4, …, Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group3, Group 4, …, Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, …, Group K</td>
<td>Group 3</td>
</tr>
<tr>
<td></td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, …, Group K - 1</td>
<td>Group K</td>
</tr>
</tbody>
</table>

Strategy:

- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f : \mathbf{Y} \rightarrow \mathbf{C}$
- Predict values for K^{th}
- Summarize performance with loss function: $L(C_i, f^{-k}(y_i))$
 - Mean square error, Absolute error, Prediction error, ...

$$CV(\text{ind. classification}) = \frac{1}{N} \sum_{i=1}^{N} L(C_i, f^{-k}(y_i))$$
Cross-Validation: A How To Guide

Step	Training	Validation ("Test")
1 | Group2, Group3, Group 4, . . ., Group K | Group 1
2 | Group 1, Group3, Group 4, . . ., Group K | Group 2
3 | Group 1, Group 2, Group 4, . . ., Group K | Group 3
... | ... | ...
K | Group 1, Group 2, Group 3, . . ., Group K - 1 | Group K

Strategy:

- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f : Y \rightarrow C$
- Predict values for K^{th}
- Summarize performance with loss function: $L(C_i, f^{-k}(y_i))$
 - Mean square error, Absolute error, Prediction error, ...

CV(ind. classification) = $\frac{1}{N} \sum_{i=1}^{N} L(C_i, f^{-k}(y_i))$

CV(proportions) = $\frac{1}{K} \sum_{j=1}^{K} \text{Mean Square Error Proportions from Group } j$
Cross-Validation: A How To Guide

<table>
<thead>
<tr>
<th>Step</th>
<th>Training</th>
<th>Validation (“Test”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Group 2, Group 3, Group 4, ..., Group K</td>
<td>Group 1</td>
</tr>
<tr>
<td>2</td>
<td>Group 1, Group 3, Group 4, ..., Group K</td>
<td>Group 2</td>
</tr>
<tr>
<td>3</td>
<td>Group 1, Group 2, Group 4, ..., Group K</td>
<td>Group 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Group 1, Group 2, Group 3, ..., Group K - 1</td>
<td>Group K</td>
</tr>
</tbody>
</table>

Strategy:

- Divide data into K groups
- Train data on $K - 1$ groups. Create function $f : \mathbf{Y} \rightarrow \mathbf{C}$
- Predict values for K^{th}
- Summarize performance with loss function: $L(C_i, f^{-k}(y_i))$
 - Mean square error, Absolute error, Prediction error, ...

CV(ind. classification) = $\frac{1}{N} \sum_{i=1}^{N} L(C_i, f^{-k}(y_i))$

CV(proportions) = $\frac{1}{K} \sum_{j=1}^{K}$ Mean Square Error Proportions from Group j

- Final choice: model with highest CV score
How Do We Select K? (HTF, Section 7.10)

Common values of K
- $K = 5$: Five fold cross validation
- $K = 10$: Ten fold cross validation
- $K = N$: Leave one out cross validation

Considerations:
- How sensitive are inferences to number of coded documents? (HTF, pg 243-244)
- 200 labeled documents
 - $K = N \rightarrow 199$ documents to train,
 - $K = 10 \rightarrow 180$ documents to train
 - $K = 5 \rightarrow 160$ documents to train
- 50 labeled documents
 - $K = N \rightarrow 49$ documents to train,
 - $K = 10 \rightarrow 45$ documents to train
 - $K = 5 \rightarrow 40$ documents to train
- How long will it take to run models?
 - K-fold cross validation requires $K \times$ One model run
- What is the correct loss function?
If you cross validate, you really need to cross validate

From Section 7.10.2 of HTF

- Use CV to estimate prediction error
- All supervised steps performed in cross-validation
- Underestimate prediction error
- Could lead to selecting lower performing model
library(bootstrap) Contains a cross validation (bootstrap and Jackknife function as well)
Ensemble Learning

Many methods for classification
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)

Cross-validation: selection of one model
- Oracle property: selects best model for underlying data [this is amazing]
- But what do we do with the other models we fit?
- Ensemble methods: combine learners to improve model fit
- Simplest form: methods vote on category, majority wins

Justin Grimmer (Stanford University)
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)
- Naive Bayes
Ensemble Learning

Many methods for classification
 - SVM (linear, Gaussian, …)
 - Naive Bayes
 - Max-Entropy
Ensemble Learning

Many methods for classification

- SVM (linear, Gaussian, ...)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
- Random Forests
Ensemble Learning

Many methods for classification

- SVM (linear, Gaussian, …)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
- Random Forests
- …

Cross-validation: selection of one model

- Oracle property: selects best model for underlying data [this is amazing]
- But what do we do with the other models we fit?

Ensemble methods: combine learners to improve model fit

- Simplest form: methods vote on category, majority wins
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
- Random Forests
- ...

Cross-validation: selection of one model
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
- Random Forests
- ...

Cross-validation: selection of one model
- **Oracle** property: selects best model for underlying data [this is amazing]
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
- Random Forests
- ...

Cross-validation: selection of one model
- **Oracle** property: selects best model for underlying data [this is amazing]
- But what do we do with the other models we fit?
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
- Random Forests
- ...

Cross-validation: selection of one model
- **Oracle** property: selects best model for underlying data [this is amazing]
- But what do we do with the other models we fit?
- Ensemble methods: combine learners to improve model fit
Ensemble Learning

Many methods for classification
- SVM (linear, Gaussian, ...)
- Naive Bayes
- Max-Entropy
- Lasso/Ridge
- Random Forests
- ...

Cross-validation: selection of one model
- Oracle property: selects best model for underlying data [this is amazing]
- But what do we do with the other models we fit?
- Ensemble methods: combine learners to improve model fit
- Simplest form: methods vote on category, majority wins
Ensemble Learning: Intuition

Heuristic: if classifiers are **accurate** and **diverse** → ensemble methods improve

Intuition:

- Classify documents into two categories (Category 1, Category 2).
- True labels: evenly distributed across two categories
- Three classifiers with 75% accuracy, but independent
- Implement majority voting rule

\[
\Pr(\text{Correct Guess} | \text{Votes}) = \Pr(3 \text{ correct}) + \Pr(2 \text{ correct}) \\
= 0.75^3 + 3 \times (0.75^2 \times 0.25) \\
= 0.844
\]
Ensemble Learning: Intuition

![Graph showing the relationship between accuracy and the number of classifiers.]
Ensemble Learning: Intuition

Diverse and Accurate matter.

![Graph showing the relationship between learners and accuracy.](image-url)
Ensemble Learning: Intuition

Diverse and Accurate matter.

Aggregating Poor Classifiers

Accuracy vs. No. Classifiers
Other Reasons to Ensemble (Dietterich 2000)

Statistical

- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational

- Methods stuck in local modes
- Result: no one run provides best model
- Averages of runs may perform better

Complex "true" functional forms

- One method may be unable to approximate true DGP
- Mixtures of methods may approximate better
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid *wrong* model in test set
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational
Other Reasons to Ensemble (Dietterich 2000)

Statistical

- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational

- Methods stuck in local modes
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid *wrong* model in test set

Computational
- Methods stuck in local modes
- Result: no one run provides best model
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational
- Methods stuck in local modes
- Result: no one run provides best model
- Averages of runs may perform better
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational
- Methods stuck in local modes
- Result: no one run provides best model
- Averages of runs may perform better

Complex “true” functional forms
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational
- Methods stuck in local modes
- Result: no one run provides best model
- Averages of runs may perform better

Complex “true” functional forms
- One method may be unable to approximate true DGP
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational
- Methods stuck in local modes
- Result: no one run provides best model
- Averages of runs may perform better

Complex “true” functional forms
- One method may be unable to approximate true DGP
- Mixtures of methods may approximate better
Other Reasons to Ensemble (Dietterich 2000)

Statistical
- With little data, many algorithms offer similar performance
- Ensemble ensures we avoid wrong model in test set

Computational
- Methods stuck in local modes
- Result: no one run provides best model
- Averages of runs may perform better

Complex “true” functional forms
- One method may be unable to approximate true DGP
- Mixtures of methods may approximate better
Common Ensemble Methods

Committee Methods
- Voting (classification)
- Averaging (predictions)

Bagging: bootstrap aggregation
- Need method to produce variability between models in data set
- Bootstrap M data sets (draw N observations, with replacement)
- Apply classifier to each data set
- Aggregation across classified data sets
- Dietterich 2000: works well for unstable classifiers (lots of diversity across samples)
Common Ensemble Methods

Boosting: sequential training of weak classifiers

- Method for combining several *weak* classifiers
- Basic idea:
 - Model 1: classify initially based on all data (equal weight)
 - Model 2: classify all data, more weight to incorrectly classified data
 - Model 3: classify all data, more weight to incorrectly classified data

 ...

 - Model M: classify all data, more weight to incorrectly classified data
- Aggregate using weighted committee
Ensembles in R

ADABoost:
Bagging:
Post code to Piazza (from Solomon)
van der Laan, et. al (2007): Develop a cross-validation heavy method for aggregating classifiers

Best name in statistics?

Notation we’ll need:

\[
\begin{align*}
\mathbf{y}_i &= M \times 1 \text{ vector of data} \\
C_i &= \text{Category for observation } i \text{ (need pre-labeled data)} \\
M &= \text{Number of methods included in ensemble} \\
\mathbf{Z}_i &= (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM}) \\
&= \text{Predictions for } i \text{ across } M \text{ methods} \\
K &= \text{Number of Folds in Cross Validation}
\end{align*}
\]
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)

2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K-1$

3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$

4) Regress $C_i \sim Z_i$
 - Use any previous methods
 - Linear Regression, Lasso, Ridge, ...
 - Produce function that maps from Z_i to classes C_i
 - Example: $1 + \exp(-\beta'Z_i)$
Super Learning Algorithm

Training:

1) Split data into \(K \) blocks (K-fold cross validation)
Super Learning Algorithm

Training:
1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)

3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions $- Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$

4) Regress $C_i \sim Z_i$
 - Use any previous methods
 - Linear Regression, Lasso, Ridge, ...
 - Produce function that maps from Z_i to classes C_i
 - Example: $1 + \exp(-\beta'Z_i)$
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions $- Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
4) Regress $C_i \sim Z_i$
 - Use any previous methods
 - Linear Regression, Lasso, Ridge, ...
 - Produce function that maps from Z_i to classes C_i
 - Example: $1 + \exp(-\beta'Z_i)$
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K,
 ...
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$

3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 \[Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM}) \]
 - New data: (C_i, Z_i)
 - C_i: dependent variable
 - Z_i: $M \times 1$ vector of predictions (covariates)

4) Regress $C_i \sim Z_i$
 - Use any previous methods
 - Linear Regression, Lasso, Ridge, ...
 - Produce function that maps from Z_i to classes
 - Example: $1 + \exp(-\beta'Z_i)$
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)

2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$

3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
Super Learning Algorithm

Training:

1) Split data into \(K \) blocks (K-fold cross validation)

2) Fit \(M \) models on training data \(K \) times (K-fold cross validation)
 - Block 1: train on Blocks 2 to \(K \)
 - Block 2: train on Blocks 1, 3 to \(K \), \ldots
 - Block \(K \): train on Blocks 1 to \(K - 1 \)

3) For each of \(K \) blocks, generate \(M \) predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - \(\mathbf{Z}_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM}) \)
 - New data: \((C_i, \mathbf{Z}_i)\)
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $\mathbf{Z}_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
 - New data: (C_i, \mathbf{Z}_i)
 - C_i: dependent variable
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)

2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, . . .
 - Block K: train on Blocks 1 to $K - 1$

3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, . . . , Z_{iM})$
 - New data: (C_i, Z_i)
 - C_i: dependent variable
 - Z_i: $M \times 1$ vector of predictions (covariates)?
Super Learning Algorithm

Training:
1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $\mathbf{Z}_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
 - New data: (C_i, \mathbf{Z}_i)
 - C_i: dependent variable
 - \mathbf{Z}_i: $M \times 1$ vector of predictions (covariates)?
4) Regress $C_i \sim \mathbf{Z}_i$
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
 - New data: (C_i, Z_i)
 - C_i: dependent variable
 - Z_i: $M \times 1$ vector of predictions (covariates)?
4) Regress $C_i \sim Z_i$
 - Use any previous methods
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K-1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $\mathbf{Z}_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
 - New data: (C_i, \mathbf{Z}_i)
 - C_i: dependent variable
 - \mathbf{Z}_i: $M \times 1$ vector of predictions (covariates)?
4) Regress $C_i \sim \mathbf{Z}_i$
 - Use any previous methods
 - Linear Regression, Lasso, Ridge, ...
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K - 1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $Z_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
 - New data: (C_i, Z_i)
 - C_i: dependent variable
 - Z_i: $M \times 1$ vector of predictions (covariates)?
4) Regress $C_i \sim Z_i$
 - Use any previous methods
 - Linear Regression, Lasso, Ridge, ...
 - Produce function that maps from Z_i to classes C_i
Super Learning Algorithm

Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)
 - Block 1: train on Blocks 2 to K
 - Block 2: train on Blocks 1, 3 to K, ...
 - Block K: train on Blocks 1 to $K-1$
3) For each of K blocks, generate M predictions for each observation
 - Block 1: make predictions for observations in Block 1 using models
 - Carry out for all blocks, produce vector of predictions
 - $\mathbf{Z}_i = (Z_{i1}, Z_{i2}, Z_{i3}, \ldots, Z_{iM})$
 - New data: (C_i, \mathbf{Z}_i)
 - C_i: dependent variable
 - \mathbf{Z}_i: $M \times 1$ vector of predictions (covariates)?
4) Regress $C_i \sim \mathbf{Z}_i$
 - Use any previous methods
 - Linear Regression, Lasso, Ridge, ...
 - Produce function that maps from \mathbf{Z}_i to classes C_i
 - Example: $\frac{1}{1+\exp(-\beta'\mathbf{Z}_i)}$
Super Learning Algorithm

5) Fit all M models to entire data set, produce $\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM})$

6) Use function from Step 4 to produce classifications for all observations in training set

7) Evaluate super learner performance:
 - Built in method for assessing super learner's performance
 - Use model from Step 5 to generate predictions for all data
 - Use function from Step 4 to generate predictions for all observations
5) Fit all M models to entire data set, produce

\[\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM}) \]

6) Use function from Step 4 to produce classifications for all observations in training set

7) Evaluate super learner performance:
 - Built in method for assessing super learner's performance
 - Use model from Step 5 to generate predictions for all data
 - Use function from Step 4 to generate predictions for all observations
5) Fit all M models to entire data set, produce

$$\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM})$$
Super Learning Algorithm

5) Fit all M models to entire data set, produce
 \[\tilde{\mathbf{Z}}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM}) \]

6) Use function from Step 4 to produce classifications for all observations in training set
Super Learning Algorithm

5) Fit all M models to entire data set, produce
\[\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM}) \]

6) Use function from Step 4 to produce classifications for all observations in training set

7) Evaluate super learner performance:
5) Fit all M models to entire data set, produce
\[\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM}) \]
6) Use function from Step 4 to produce classifications for all observations in training set
7) Evaluate super learner performance:
 - Built in method for assessing super learner’s performance
5) Fit all M models to entire data set, produce
\[\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM}) \]

6) Use function from Step 4 to produce classifications for all observations in training set

7) Evaluate super learner performance:
 - Built in method for assessing super learner’s performance

Test Set
Super Learning Algorithm

5) Fit all M models to entire data set, produce
$$\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM})$$

6) Use function from Step 4 to produce classifications for all observations in training set

7) Evaluate super learner performance:
 - Built in method for assessing super learner’s performance

Test Set
 - Use model from Step 5 to generate predictions for all data
Super Learning Algorithm

5) Fit all M models to entire data set, produce
 $\tilde{Z}_i = (\tilde{Z}_{i1}, \tilde{Z}_{i2}, \ldots, \tilde{Z}_{iM})$

6) Use function from Step 4 to produce classifications for all observations in training set

7) Evaluate super learner performance:
 - Built in method for assessing super learner’s performance

Test Set
 - Use model from Step 5 to generate predictions for all data
 - Use function from Step 4 to generate predictions for all observations
Figure 1: Flow Diagram for Super Learner
Why Super Learn?

van der Laan et al (2007) prove:
- **Asymptotically**: super learners will perform as well the best candidates for data
- **Oracle**: performs like the best possible method among candidate methods
 - Asymptotically outperforms constituent methods
 - Performs as well as optimal combinations of those methods

Practical questions:
- **Final regression**:
 - Logistic
 - Linear
 - Could super learn again!
- **How Many Folds?**
 - van der Laan et al.’s proofs rely on growing folds with N (but slowly)
 - Use 10-fold cross validation for simulations
Super learner in R

Superlearner() is a package available in R (off of GitHub, not CRAN) https://github.com/ecpolley/SuperLearner
Automatic selection of methods, prediction, and many other features
Code yourself:

- Perform cross validation
- Apply methods/get predictions
- Final regression
- **Complicated** but not technically hard (rely on canned programs throughout)
Scaling Political Text

Scaling:

- **Spatial** model of politics (median voters, proposal games, pivotal politics, veto players, bargaining)
- Retrieve space to test spatial theories of politics
- **Stanford**: spatial modeling center
- **Space from votes**: Poole and Rosenthal; Clinton, Jackman, Rivers;...
- **Space from contributions**: Wand; Bonica; ...
- **Space from votes and survey responses**: Bafumi and Herron; Lauderdale; Rodden and Warshaw; Tausanovitch and Warshaw...

Goal:

- Low level summary of actors’ political beliefs
- **Problem**: often difficult to collect data
Wouldn’t it be great: if we could use text to retrieve low level spatial locations?

- **Existing Models?**
- **How do we evaluate?** (What is the goal when using text?) (What is ideology?)
- Prediction? Description? Summary? ...

Beauchamp (2011): summary of methods, simulations, and attempts to approximate roll call scalings
Poole and Rosenthal Scores:
- (Essentially): Factor analysis of roll call votes
- Simple (crazy!) procedure reveals highly informative ordering of legislators
- Highly predictive of Congressional voting/expected behavior, ...

For a variety of reasons, low-dimensional summaries of roll call voting behavior is useful
Allows approximation of ideology with low-dimensional (unidimensional) summaries
Scaling and US Congress: Roll Call Votes

Ideal Point Estimate

Density

Justin Grimmer (Stanford University)
Scaling and US Congress: Roll Call Votes

Two Party Vote Share, Bush
Ideal Point Estimate

Justin Grimmer (Stanford University)
Scaling and US Congress: Roll Call Votes

But this is not true in other settings

- Without votes, hard to scale other actors
- Wand; Bonica great results with campaign contributions
- But what if there are no campaign contributions?
- In highly disciplined parliaments, hard to scale in meaningful (something like ideological) way
 - Spirling and Maclean: Poole’s OC algorithm yields scaling that deviates from qualitative expectations
 - Quinn and Spirling: standard methods of scaling group together rebels and conservatives

But everybody talks!
WordScores (Laver, Benoit, and Garry 2003)

Running example:
- Develop scaling of US Senate in 2005, based on press releases
- First try: wordscores

Wordscores proceeds as follows:
- Identify set of reference texts
- Determine how well words separate reference texts (week 4 problem)
- Using this score, we assess new documents
- Generates scaling for all documents
Suppose we have reference texts:

- Liberal: Ted Kennedy, \(L \)
 - Document: \(y_L \)
 - Total words: \(W_L = \sum_{m=1}^{M} y_{mL} \)
- Conservative: Tom Coburn, \(C \), \(y_C \)
 - Document: \(y_C \)
 - Total words: \(W_C = \sum_{m=1}^{M} y_{mC} \)
WordScores (Laver, Benoit, and Garry 2003)

Our first task: score each word

- How well does each word separate speakers?
- Lowe (2008) and Beauchamp (2011): approximately ask $p(L|y_{ij} = z)$
- Laver, Benoit, and Garry (2003) compute:

$$P_{zL} \equiv \frac{y_{zL}}{W_L} + \frac{y_{zC}}{W_C}$$

The score for word z is then,

$$S_z = P_{zR} - P_{zL}$$

For all other documents, compute their scores:

$$\text{Score}_i = \sum_{m=1}^{M} \frac{y_{mi}}{W_i} S_z$$

Generalize to groups, multiple dimensions [not necessary for intuition, though]
Where have we seen this before?
Where have we seen this before?

Reference texts
Where have we seen this before?

Reference texts \leadsto training set
Where have we seen this before?

Reference texts \rightsquigarrow training set
Virgin texts
Where have we seen this before?

Reference texts \leadsto training set
Virgin texts \leadsto test set
Where have we seen this before?

Reference texts \leadsto training set
Virgin texts \leadsto test set
Goal: construct dictionary to score test set according to scale in training set
Where have we seen this before?

Reference texts \leadsto training set
Virgin texts \leadsto test set
Goal: construct dictionary to score test set according to scale in training set

This a dictionary method, with features selected from training set
Where have we seen this before?

Reference texts \rightsquigarrow training set
Virgin texts \rightsquigarrow test set
Goal: construct dictionary to score test set according to scale in training set
This a dictionary method, with features selected from training set
Or: this is isomorphic to method used in Week 3 and Federalist papers
Wordscores in R

You know how to run this model! (Check Your Dictionary Homework!!)

- Generate dictionary weights using simple algorithm described above
- Score documents according to weights

Transformations (standardize results)
Applying to Senate Press Releases

Justin Grimmer (Stanford University)

Beauchamp (2011): shows wordscores and Naive Bayes (where training set are reference documents) produce similar scalings: Why?

Generalize:

- Take any week 4 method (includes all supervised learning algorithms that produce “coefficients”)
- Create scores using these coefficients

Lowe (2008): Discusses potentially problematic wordscore properties

1) Each word is weighted equally (fixable with different scoring procedure)

2) Unique words are conflated with centrist (fixable with MCQ fightin’ words style algorithm)

3) General problem: hard to interpret and no statistical model makes inference more difficult

To be fair: fast, nonparametric, and novel [trailblazing] method for scoring documents (starts conversation)

Basic idea:
- Parties have underlying latent position
- This is associated with word usage
- Some words discriminate better than others
- Fit large model to estimate

For more on IRT:
Clinton, Jackman, Rivers (2003): IRT for roll call votes
Rivers (2002): Identification for factor analysis models
WordFish

Suppose we have individual i. (We’ll ignore temporal component for now).

$$y_{ij} \sim \text{Poisson}(\lambda_{ij})$$

$$\lambda_{ij} = \exp(\alpha_i + \psi_j + \beta_j \times \theta_i)$$

Where,

- λ_{ij} = Rate individual i uses word j
- α_i = Individual i loquaciousness
- ψ_j = Word j’s frequency
- β_j = Word j’s discrimination
- θ_i = Legislator i’s latent positions

Running WordFish in R

Slapkin and Proksch have code available at: http://www.wordfish.org
Apply simply to term document matrix.
WordFish on Senate Press Releases

Fit model (using defaults).
WordFish on Senate Press Releases

Fit model (using defaults).
Scaling Wrap-up

Goal:
- What exactly do we want when we scale?
- Submit: just as ambiguous as clustering problem (perhaps more?)
- Without goal \(\Rightarrow\) hard to validate, hard to make real progress

Problem:
- US Congress has been easy
- Text is harder
- Goal cannot be replication of voting scales
- Need more supervision (survey-like questions to classify texts)
- Makes clear immediately what we want: low-level summary of supervised components?
Where We’ve Been

- Class 1: Finding Text Data
- Class 2: Representing Texts Quantitatively
- Class 3: Dictionary Methods for Classification
- Class 4: Comparing Language Across Groups
- Class 5: Texts in Space
- Class 6: Clustering
- Class 7: Topic models
- Class 8: Supervised methods for classification
- Class 9: Ensemble methods for classification
- Class 10: Scaling Speech
Class Theme: **Think!**

Statistical/Algorithmic tools for text create new possibilities

Do not eliminate the need to THINK

When applying methods:

- Think: is this a useful model
- Can I accomplish my goal using a different tool?
- How do I validate my results

From here:

1) Natural Language Processing Courses
 - Part of speech tagging
 - Sentence parsing
 - ...

2) Machine Learning
 - Bayesian statistics
 - High dimensional data
 - ...
Thanks!
Thanks!

Jackie!
Thanks!