Hashing
A Genomics Problem

• Suppose that you and I each own a genomics lab in which we store millions of human genomes.
 • Each genome is a six-billion character string.

• We want to compare which genomes we have in common and we have the ability to communicate over a network.

• Sending data over a network is much slower than processing the data locally.
 • Say, 1,000,000x slower.

• How might we determine which genomes we have in common?
A Naive Solution

- I send you all of my genomes and you compare them against the ones you have.

- **Pros:** Very easy to implement.

- **Cons:** Extremely slow.
 - Might have to transmit thousands of terabytes (petabytes) of information!
 - Even on a very fast network, this could take weeks.
A Slightly Better Solution

- I send you the first 1000 characters of each genome. (Remember a genome is six billion characters long).
- You look at the genomes you have that also start with that prefix and let me know which prefixes match.
- I then send you just those genomes, at which point you can find all matches.
- **Pros**: Cuts down data transmitted by a factor of *one million*!
- **Cons**: If many genomes start the same way, I might have to send you a *bunch* of redundant genomes.
Another Possible Solution

- In advance, we count up the number of each type of letter in each of our genomes. This gives a *frequency histogram*.

- I send you the frequency histograms for each of my genomes.

- You then let me know which histograms match your own histogram.

- I then send you the genomes matching those histograms. From there, you can find the matches.
Yet Another Possible Solution

• In advance, we run the following functions on each of our genomes:

```cpp
string getSynopsis(string& input) {
    string result;
    for (int i = 0; i < input.size(); i += 1000000)
        result += input[i];
    return result;
}
```

• I send you the synopses of each of my genomes.

• You then let me know which of my synopses match your synopses.

• I then send you all genomes matching those synopses, from which you can find all matches.
The Essential Structure

• The general sketch of these latter approaches is:
 • In advance, we find some quick way of summarizing our genomes.
 • I send you just the summaries.
 • You find genomes that match the summaries and let me know which ones match.
 • I only send you complete genomes over the network if this first step yields a match.
 • I might send you more genomes than you need, but I will never send you fewer genomes than you need.
The Essential Structure

The general sketch of these latter approaches is:

- **In advance, we find some quick way of summarizing our genomes.**

 I send you just the summaries.

 You find genomes that match the summaries and let me know which ones match.

 I only send you complete genomes over the network if this first step yields a match.

 I might send you *more* genomes than you need, but I will never send you *fewer* genomes than you need.
Hash Functions

- A **hash function** is a function that converts a large object (a genome, a string, a sequence of elements, etc.) into a smaller object (a shorter string, an integer, etc.).

- A hash function **must** be deterministic: given an input, it must always produce the same output.
 - *Why?*

- A hash function **should** try to produce different outputs for different inputs.
 - Not always possible if there are only finitely many possible outputs.
Why Hash Functions Matter
The Story So Far

- We have now seen two approaches to implementing collections classes:
 - Dynamic arrays: allocating space and doubling it as needed.
 - Linked lists: Allocating small chunks of space one at a time.
- These approaches are good for **linear structures**, where the elements are stored in some order.
Associative Structures

- Not all structures are linear.
- How do we implement `Map`, `Set`, and `Lexicon` efficiently?
- There are many options; we'll see one today.
An Initial Implementation

- One simple implementation of `Map` would be to store an array of key/value pairs.
- To look up the value associated with a key, scan across the array and see if it is present.
- To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

<table>
<thead>
<tr>
<th>Kitty</th>
<th>Puppy</th>
<th>Ibex</th>
<th>Dikdik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awww...</td>
<td>Cute!</td>
<td>Huggable</td>
<td>Yay!</td>
</tr>
</tbody>
</table>
An Initial Implementation

- One simple implementation of **Map** would be to store an array of key/value pairs.
- To look up the value associated with a key, scan across the array and see if it is present.
- To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

<table>
<thead>
<tr>
<th>Kitty</th>
<th>Puppy</th>
<th>Ibex</th>
<th>Dikdik</th>
<th>Hagfish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awww...</td>
<td>Cute!</td>
<td>Huggable</td>
<td>Yay!</td>
<td>Ewww..</td>
</tr>
</tbody>
</table>
An Initial Implementation

• One simple implementation of Map would be to store an array of key/value pairs.

• To look up the value associated with a key, scan across the array and see if it is present.

• To insert a key/value pair, check if the key is mapped. If so, update it. If not, add a new key/value pair.

<table>
<thead>
<tr>
<th>Kitty</th>
<th>Puppy</th>
<th>Ibex</th>
<th>Dikdik</th>
<th>Hagfish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awww...</td>
<td>Really Cute!</td>
<td>Huggable</td>
<td>Yay!</td>
<td>Ewww..</td>
</tr>
</tbody>
</table>
Analyzing this Approach

- What is the big-O time complexity of inserting a value?
 - Sorted: $O(n)$.
 - Unsorted: $O(n)$.
- What is the big-O time complexity of looking up a key?
 - Sorted: $O(\log n)$.
 - Unsorted: $O(n)$.
Knowing Where to Look

- Our linked-list Queue implementation has O(1) enqueue, dequeue, and front.
- Why is this?
- Know exactly where to look to find or insert a value.
- Queue implementation was O(n) for enqueue, but was improved to O(1) by adding extra information about where to insert.
An Example: Clothes
Overview of Our Approach

• To store key/value pairs efficiently, we will do the following:
 • Create a lot of **buckets** into which key/value pairs can be distributed.
 • Choose a rule for assigning specific keys into specific buckets.
 • To look up the value associated with a key:
 - Jump into the bucket containing that key.
 - Look at all the values in the bucket until you find the one associated with the key.
Overview of Our Approach
Why Linked Lists?

- A dynamically allocated array of linked lists!
- This seems complicated, why are we using linked lists instead of \texttt{Vectors}?
 - We'll give a very good reason for doing this.
How Do We Distribute Elements?

- **Use a hash function!**
 - The input to the hash function is the object to distribute.
 - The output of the function is the index of the bucket in which it should be.

- **To do a lookup:**
 - Apply the hash function to the object to determine which bucket it belongs to.
 - Look at all elements in the bucket to determine whether it's there.

- This data structure is called a **hash table**.
OurHashMap::OurHashMap()
OurHashMap::~OurHashMap()
Distributing Keys

- When distributing keys into buckets, we want the distribution to be as even as possible.
- Best-case: totally even spread.
- Worst-case: everything bunched up.
Distributing Keys

- When distributing keys into buckets, we want the distribution to be as even as possible.
- Best-case: totally even spread.
- Worst-case: everything bunched up.
Distributing Keys

• We want to choose a hash function that will distribute elements as evenly as possible to try to guarantee a nice, even spread.

• Suppose you want to build a hash function for names.

• One initial idea: Hash each last name to the first letter of that last name.

• How well will this distribute elements?
Spring CS106B Name Distributions

By First Letter of Last Name
Benford's Law

A graph showing the frequency of leading digits according to Benford's Law compared to physical constants.

The graph illustrates that the frequency of leading digits in naturally occurring data tends to follow the distribution predicted by Benford's Law, which is different from the distribution expected for random data.

http://en.wikipedia.org/wiki/File:Benford-physical.svg
Building a Better Hash Function

• Designing good hash functions requires a level of mathematical sophistication far beyond the scope of this course.
 • Take CS161 for details!

• Generally, hash functions work as follows:
 • Scramble the input up in a way that converts it to a positive integer.
 • Using the % operator, wrap the value from a positive integer to something in the range of buckets.
Good Hash Functions

- A good hash function typically will scramble all of the bits of the input together in a way that appears totally random.
- Hence the name “hash function.”
Bad Hash Functions
Bad Hash Functions #1

```c
int myHash(string key) {
    return 0;
}
```
Bad Hash Functions #1

int myHash(string key) {
 return 0;
}

All key will be put in the same bucket!
int myHash(string key) {
 return randomInteger(0, NUM_BUCKETS);
}
Bad Hash Functions #2

int myHash(string key) {
 return randomInteger(0, NUM_BUCKETS);
}

Can't look up elements!
int myHash(string key) {
 int sum = 0;
 for (int i = 0; i < key.length(); i++) {
 sum += key[i];
 }
 return sum;
}
Bad Hash Functions #3

```cpp
int myHash(string key) {
    int sum = 0;
    for (int i = 0; i < key.length(); i++) {
        sum += key[i];
    }
    return sum;
}
```

All permutations of the same string will be put in the same bucket!

```cpp
myHash("abc") = myHash("cab")
```
test-hash-codes.cpp
Some Interesting Numbers

• For 451 students and 26 buckets, given an optimal distribution of names into buckets, an average of 8.65 lookups are needed.

• Using first letter of first name: an average of 12.7 lookups are needed.

• Using the SAX hash function: an average of 9.6 lookups are needed.

• That's 25% faster than by first letter!
OurHashMap::put()
OurHashMap::get()
Hash Table Performance

• Suppose that we have n elements and b buckets.

• Assuming a good hash function, the expected time to look up an element is $O(1 + n / b)$.

• The ratio n / b is called the **load factor**.

• Intuitively, this makes sense – if the elements are distributed evenly, you only need to look, on average, at n / b of them.
Hashing and Rehashing

0 1 2

Dumbledore Harry Lily

Draco Hermione Minerva

Ron Hagrid Snape
Hashing and Rehashing

Voldemort

0 1 2

Dumbledore Harry Lily

Draco Hermione Minerva

Ron Hagrid Snape
Hashing and Rehashing

Voldemort

Minerva Lily Dumbledore Hagrid Harry Snape

Ron Draco Hermione
Hashing and Rehashing

0 1 2 3 4 5

Minerva Lily Dumbledore Hagrid Harry Voldemort

Ron

Draco Snape Hermione
Hashing and Rehashing

- Idea: Track the number of buckets b and the number of total elements n.
- When inserting, if n/b exceeds some small constant (say, 2), double the number of buckets and redistribute the elements evenly.
- This makes $n/b \leq 2$, so the expected lookup time in a hash table is $O(1)$.
- On average, the lookup time is independent of the total number of elements in the table!
Why Linked Lists?

- Because we use linked lists, we don't need to create a bunch of new *Vectors* when we rehash!
OurHashMap::rehash()
The Final Analysis

- Expected time to do a lookup: $O(1)$.
- Expected time to do an insertion:
 - Every n elements, must double the table size and rehash. Does $O(n)$ work, but only every n iterations.
 - Then does $O(1)$ expected work to do the insertion.
- **Amortized expected** $O(1)$ insertion!
Next Time

• Binary Search Trees
 • Why are our Map and Set stored in sorted order?