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Abstract In this paper, we consider a linear complementarity problem (LCP)
arisen from the Nash and Arrow-Debreu competitive economy equilibria where
the LCP coefficient matrix is symmetric. We prove that the decision problem, to
decide whether or not there exists a complementary solution, is NP-complete. Un-
der certain conditions, an LCP solution is guaranteed to exist and we present a
fully polynomial-time approximation scheme (FPTAS) for approximating a com-
plementary solution, although the LCP solution set can be non-convex or non-
connected. Our method is based on approximating a quadratic social utility opti-
mization problem (QP) and showing that a certain KKT point of the QP problem
is an LCP solution. Then, we further show that such a KKT point can be approx-
imated with a new improved running time complexity O(( n4

ε ) log log( 1
ε )) arith-

metic operation in accuracy ε ∈ (0,1). We also report preliminary computational
results which show that the method is highly effective. Applications in competitive
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market model problems with other utility functions are also presented, including
global trading and dynamic spectrum management problems.

Keywords linear complementarity problem · Arrow-Debreu-Leontief

1 Introduction

Given a real n by n matrix A, consider the linear complementarity problem (LCP)
to find u and v such that

AT u+ v = e, uT v = 0, (u 6= 0,v)≥ 0, (1)

where e is the vector of all ones. Note that uT v = 0 implies that uivi = 0 for all
i = 1, · · · ,n. Also, u = 0 and v = e is a trivial complementary solution. But we look
for a non-trivial solution where u 6= 0 (see Cottle at al. [7] for more literature on
linear complementarity problems).

The LCP problem is a very powerful and rich mathematical model; but it re-
mains difficult to solve. There is a one-to-one correspondence between the Nash
equilibria of the bimatrix game and a subclass of LCP (1), so that computing a
complementary solution of LCP (1) is harder than computing a bimatrix game
equilibrium (e.g., see Codenotti et al. [6]). The reader may want to read Brainard
and Scarf [3], Gilboa and Zemel [10], Chen, Deng and Teng [5], Papadimitriou
[17], Daskalakis, Goldberg and Papadimitriou [9], and Tsaknakis and Spirakis
[19] on hardness and approximation results of computing a bimatrix game equi-
librium. In particular, given a non-trivial solution exists for (1), computing such,
even an approximate, complementary solution is in the class of PPAD (a class of
problems between P and NP-complete); see Chen et al. [5]. Therefore, it becomes
a major open question whether or not there is a polynomial-time approximation
scheme (PTAS) to computing an approximate complementary solution (1).

In this paper, we focus on the case that A is symmetric, which corresponds to
symmetric markets and bimatrix games. Applications of the symmetric LCP arise
from the Arrow-Debreu competitive economy equilibrium, including the Leontief
utility market for global trading and the Shannon utility model for dynamic spec-
trum management. We first prove that the decision problem, to decide whether
or not there exists such a complementary solution, is NP-complete. Under cer-
tain conditions, for example, that all entries of A is non-negative, an LCP solution
is guaranteed to exist. Then, we present a fully polynomial-time approximation
scheme (FPTAS) for approximating a solution, although the LCP solution set can
be non-convex or non-connected. Note that FPTAS is actually stronger and faster
than PTAS. Thus, although it is too early to tell if our result has a serious implica-
tion for solving the general LCP, one conclusion seems clear: the symmetric LCP,
or symmetric market and bimatrix game, is much “easier” to solve than the gen-
eral LCP. (In fact, the symmetric bimatrix games are trivial to solve, since both
players share a common objective function.)

Our method considers a quadratic social utility optimization problem (QP)
and shows that a certain KKT point of the QP problem is an LCP solution. Then,
we further show that, such a KKT point can be approximated with running time
O(( 1

ε ) log( 1
ε ) log(log( 1

ε )) in accuracy ε ∈ (0,1) and a polynomial in problem di-
mensions. We also report preliminary computational results which show that the
method is highly effective in comparison with other well known LCP solvers.
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2 Connection to Competitive Market

In this section, we focus on the connection of the LCP problem, (1), to the Arrow-
Debreu competitive economy equilibrium with the Leontief utility market and to
the Shannon utility model for dynamic spectrum management.

2.1 The Arrow-Debreu competitive with the Leontief utility

The Arrow-Debreu exchange competitive economy equilibrium problem was first
formulated by Léon Walras in 1874 [20]. In this equilibrium problem everyone
in a population of m traders has an initial endowment of a divisible goods and
a utility function for consuming all goods—their own and others’. Every trader
sells the entire initial endowment and then uses the revenue to buy a bundle of
goods such that his or her utility function is maximized. Walras asked whether
prices could be set for everyone’s goods such that this is possible. An answer was
given by Arrow and Debreu in 1954 [1] who showed that, under mild conditions,
such equilibrium would exist if the utility functions were concave. In general, it is
unknown whether or not an equilibrium can be computed efficiently.

Consider a special class of Arrow-Debreu problems, where each of the n
traders has exactly one unit of a divisible and distinctive good for trade, and let
trader i, i = 1, ...,n, bring good i. This class of problems is called the pairing class
[23]. For given prices p j on good j, consumer i’s maximization problem is

maximize ui(xi1, ...,xin)
subject to ∑ j p jxi j ≤ pi,

xi j ≥ 0, ∀ j.
(2)

Let x∗i denote a maximal solution vector of (2). Then, vector p is called the Arrow-
Debreu price equilibrium if there exists an x∗i for consumer i, i = 1, ...,n, such that

∑
i

x∗i = e

where e represents available amount of goods on the exchange market.
The Leontief exchange economy problem is the Arrow-Debreu equilibrium

when the utility functions are in the Leontief form:

ui(xi) = min
j: ai j>0

{
xi j

ai j

}
,

where the Leontief coefficient matrix is given by

A =




a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann


 .

It was proved that
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Theorem 1 (Ye [23]) Let B⊂{1,2, ...,n}, N = {1,2, ...,n}\B, ABB be irreducible,
and uB satisfy the linear system

AT
BBuB = e, AT

BNuB ≤ e, and uB > 0.

Then the (right) Perron-Frobenius eigen-vector pB of UBABB together with pN = 0
will be a Leontief economy equilibrium. And the converse is also true. UB is the
diagonal matrix with diagonal uB, and for the definition of irreducible matrix,
please refer to [11].

Theorem 1 has thus established a combinatorial algorithm to compute a Leontief
economy equilibrium by finding a right block B 6= /0, which is precisely a (non-
trivial) complementary solution to the LCP problem (1).

The Leontief economy model, together with the Coub-Douglass model, have
been widely used in describing certain exchange or trading market (e.g., [4]). In
particular, if A is symmetric, it means that the model exhibits a symmetric bilat-
eral trading structure such as maintaining bilateral trade balances. Computational
study of the equilibrium characterization of symmetric(1) would enable us to tell
where or not the bilateral trade balance policy is a good thing in global trading.

2.2 The Nash and market equilibrium in spectrum management

Dynamic spectrum management (DSM) is a technology to efficiently share the
frequency spectrum among users in a communication system. This technology
can be used in digital subscriber line (DSL) and multiple access of overlay cog-
nitive radio systems to reduce cross-talk interference and improve total system
throughput.

Recently, the game-theoretic formulation of DSM has attracted interest in a
variety of contexts (see for examples [25,14]). In the game-theoretic formulation,
user i ∈ {1, · · · ,m} maximizes her data rate, the Shannon utility function ([18]),
with the knowledge of other users’ current power allocations in an n channel sys-
tem:

ui(xi, x̄i) =
n

∑
j=1

log

(
1+

xi j

σi j +∑k 6=i a j
ikxk j

)
. (3)

Here x̄i = [x1, · · · ,xi−1,xi+1, · · · ,xm] is the power allocation of the other m− 1
users; σi j > 0 is the noise level for user i on channel j; and a j

ik ≥ 0 is the crosstalk
coefficient for interference on channel j from user k 6= i on user i.

The equilibrium power allocation xi of user i and x̄i of the other users, is de-
termined by the following convex optimization problem

xi = argmaxxi ui(xi, x̄i)
subject to eT xi ≤ 1,

xi ≥ 0.

where 1, without loss of generality, represents her desired total power demand.
Then, the equilibrium solution for each user is determined by

xi j =

(
νi−σi j−∑

k 6=i
a j

ikxk j

)+

(4)
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where the dual variable νi is determined by the demand constraint eT xi ≤ 1. Thus,
we obtain the following LCP (for simplicity, we consider n = 2):




A1 0 −I
0 A2 −I
I I 0







x1
x2
ν


−




s1
s2
0


 =



−σ1
−σ2

e


 ,

(
x1
x2

)
≥ 0, and

(
s1
s2

)
≥ 0, (5)

where we look for a complementarity solution xT
1 s1 + xT

2 s2 = 0. Here matrix A j

with ones on the diagonal, [A j]ii = 1, and [A j]ik = a j
ik for k 6= i, σ j := [σ1 j; · · · ;σm j],

and ν := [ν1; · · · ;νm].
The Arrow-Debreu exchange competitive economy model with the Shannon

utility can be also adapted in DSM, where a competitive market equilibrium for
DSM is a price spectra and a frequency power allocation that independently and
simultaneously maximizes each user’s utility. Furthermore, under an equilibrium
the market clears, meaning that the total power supply at each channel will be all
allocated to users. Surprisingly, Xie et al. [21] showed that the competitive market
model for DSM can also be formulated as an LCP problem.

In these models, if the matrix A j is symmetric for all j, it means that the model
exhibits a symmetric interference structure on each channel, which is typically
assumed in industries. Again, computational study the equilibrium characteriza-
tion of symmetric (1) would enable us to install power capacity at each channel to
improve network efficiency in either Nash game-theoretic or Arrow-Debreu com-
petitive market model.

3 Decision of the Existence of an LCP Solution

In general, it’s difficult to decide if LCP (1) has a complementary solution or not,
even when A is symmetric.

Theorem 2 Let A be a real symmetric matrix. Then, it is NP-complete to decide
whether or not LCP (1) has a complementary solution such that u 6= 0.

Proof Given a symmetric matrix A, it’s NP-complete (see Murty and Kabadi [16])
to decide if

∃ u≥ 0 such that uT Au > 0? (6)

The complement problem is to decide if or not for all u≥ 0 one has uT Au≤ 0, or
−A is co-positive plus.

We now prove that the decision problem (6) is equivalent to the problem that
if or not LCP (1) has a complementary solution u 6= 0.

If (1) has a complementary solution u 6= 0, then

0 = uT (e−Au) = eT u−uT Au.

Since u≥ 0 and u 6= 0, we have uT Au = eT u > 0.
On the other hand, if the answer to the decision problem (6) is “yes”, then the

maximal value of the following bounded quadratic problem:

(QP) maximize uT Au (7)

subject to eT u = 1, u≥ 0,
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is strictly positive. Let u∗ be the global maximizer of the problem. Then, u∗ must
satisfy the Karush-Kuhn-Tucker (KKT) conditions:

−2Au+λe = v (8)
uT v = 0,

eT u = 1,

(u,v)≥ 0,λ free.

The first two equations in (8) imply that λ = 2(u∗)T Au∗
eT u∗ = 2(u∗)T Au∗ > 0. Thus,

ū = 2u∗
λ ≥ 0 is complementary solution of LCP (1) and ū 6= 0. ut

The question remains: given symmetric A, is it easy to compute one if LCP (1)
is known to have a complementary solution? Note that, the complementary solu-
tion set of (1), even non-empty, is not convex nor even connected. For example,
let

AT =
(

2 1
1 2

)
.

Then, there are three isolated non-trivial complementary solutions.

u1 = (1/2; 0), u2 = (0; 1/2), u3 = (1/3; 1/3).

In the next section, however, we develop a fully polynomial-time approxima-
tion scheme (FPTAS) to compute ε-approximate complementary solution for LCP
(1) when A is symmetric and ∑i, j ai j > 0, that is, the sum of all entries of A is pos-
itive. Here, an ε-approximate complementary solution is a pair (u 6= 0,v) such
that

AT u+ v = e, (u 6= 0,v)≥ 0,
uT v
ā
≤ ε,

where ā is the largest entry in A:

ā = max
i, j
{ai j} (> 0). (9)

In most applications, one can scale A such that ā = 1, which we will assume in the
following sections.

4 A Social Optimization and FPTAS

We consider a quadratic “social” utility function uT Au, which we like to maxi-
mize over the simplex {u : eT u = 1, u≥ 0}. This can be written as the quadratic
programming problem of QP (7) in the previous section.

Suppose the non-negative Leontief coefficient matrix A is nontrivial, in other
words eT Ae > 0, which gives a certificate that LCP (1) has at least one non-trivial
complementary solution. Furthermore, the maximal value of QP (7) is strictly
greater than 0 but bounded above by ā (recall that ā = 1 is the largest entry of
A). These facts, together with the proof of Theorem 2, lead to

Lemma 1 Let A be symmetric. Then, every KKT point u of problem (7), with
uT Au > 0, is a (non-trivial) complementary solution for LCP (1).
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Computing or checking the existence of a KKT point are NP-complete problems
as general LCPs are (see, e.g., Murty and Kabadi [16]), however there exists an
FPTAS for computing an ε-approximate KKT point of general quadratic program-
ming with bounded feasible region (see, e.g. [23]):

minimize q(x) := 1
2 xT Qx+ cT x

subject to x ∈Fp := {x : Ax = b,x≥ 0}, (10)

where Q ∈ Rn×n,c ∈ Rn,A ∈ Rm×n, and b ∈ Rm are given data. There is a dual
problem associated with (10):

maximize d(x,y) :=− 1
2 xT Qx+bT y

subject to (x,y,s) ∈Fd := {(x,y,s) : AT y+ s−Qx = c,x,s≥ 0}. (11)

Under the assumption that Fp is bounded and non-empty, (10) has a minimizer
and a maximizer. Let z and z be their minimal and maximal objective values, re-
spectively. Then, an ε-approximate KKT solution for (10) is defined as an (x,y,s)
such that x ∈Fp,(x,y,s) ∈Fd , and

xT s
z− z

=
q(x)−d(x,y)

z− z
≤ ε.

The potential function of 0 < x ∈Fp is defined as

φ(x) = ρ log(q(x)− z)−
n

∑
j=1

log(x j),

where ρ > n, and z ≤ z, i.e. z is a lower bound on the value of the objective
function over the feasible region. A potential reduction algorithm for solving an
ε-approximate KKT solution of (10) is given in [23]: Starting from 0 < x0 ∈Fp,
the potential reduction algorithm will generate a sequence of {xk} ∈Fp such that
a potential function may be reduced by a fixed constant amount. The algorithm
stops in O( n3

ε (log( 1
ε ) + n logn)) iterations and returns an ε-approximate KKT

point of (10). Each iteration of the algorithm solves a ball-constrained QP us-
ing O(n3 log log( 1

ε )) arithmetic operations. This yield an overall complexity of

O( n6

ε log log( 1
ε )(log( 1

ε )+n logn)) arithmetic operations.
Next, we improve this result by designing a tailored algorithm for computing

an ε-approximate KKT point of (7).

4.1 Tailored potential function for the social problem

Our potential function for solving (7) is

P(u) = ρ log
(
ā+1−uT Au

)−
n

∑
j=1

log(u j) = ρ log
(
2−uT Au

)−
n

∑
j=1

log(u j),
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where ρ = 4(n+
√

n)/ε . Since uT Au≤ ā = 1 for any u ∈ {u : eT u = 1, u > 0},

P(u)≥−
n

∑
j=1

log(u j)≥ n log(n).

Let the initial point u0 = 1
n e. Then, since eT Ae≥ 0,

P(u0) = ρ log
(

2− 1
n2 eT Ae

)
+n log(n)≤ ρ log(2)+n log(n),

and, for any u ∈ {u : eT u = 1, u > 0},

P(u)−P(u0)≥−ρ log(2). (12)

Given u ∈ {u : eT u = 1, u > 0}, let ∆ = 2−uT Au and let du, eT du = 0, be a
vector such that u+ := u+du > 0. Then

ρ log(2− (u+)T Au+)−ρ log(2−uT Au)

= ρ log(∆ −dT
u Adu−2(Au)T du)−ρ log∆

= ρ log
(
(∆ −dT

u Adu−2(Au)T du)/∆
)

≤ ρ
∆

(−dT
u Adu−2(Au)T du

)
.

In addition, if ‖U−1du‖ ≤ β < 1, where U = Diag(u), then u+ := u+du > 0 and

−
n

∑
j=1

log(u+
j )+

n

∑
j=1

log(u j) ≤ −eTU−1du +
β 2

2(1−β )
.

Thus, if ‖U−1du‖ ≤ β < 1, not only u+ = u+du > 0 but also

P(u+)−P(u)≤ ρ
∆

(
−dT

u Adu−
(

2Au+
∆
ρ

U−1e
)T

du

)
+

β 2

2(1−β )
. (13)

4.2 Solving a ball-constrained QP problem

To achieve a potential reduction at u, we minimize the quadratic function of du on
the right-hand side of (13) subject to an ellipsoid constraint:

z∗ := minimize −dT
u Adu−

(
2Au+ ∆

ρ (U)−1e
)T

du

subject to eT du = 0,

‖U−1du‖2 ≤ β 2.

This is the so-called ball-constrained quadratic program, where the radius of the
ball is β . This problem is known to be solved efficiently by a trust-region method
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in practice (e.g., [15]), and by a Newton method or semidefinite programming in
theory (e.g., [23]).

Let the optimal solution and multiplier of the problem be d∗u and λ ∗, respec-
tively; and

u+ = u+d∗u , s+ =−2Au+ +λ ∗e, and
p∗ = ρ

∆ Us+− e. (14)

It has been shown ([23]) that

z∗ ≤−β
∆
ρ
‖p∗‖,

so that

ρ
∆

(
−(d∗u)T Ad∗u −

(
2Au+

∆
ρ

U−1e
)T

d∗u

)
≤−β‖p∗‖,

and

P(u+)−P(u)≤−β‖p∗‖+
β 2

2(1−β )
.

There is no need to solve the ball-constrained problem exactly; we only need to
stop at a d∗x and λ ∗ such that

ρ
∆

(
−(d∗u)T Ad∗u −

(
2Au+

∆
ρ

U−1e
)T

d∗u

)
≤−(1− ε)β‖p∗‖,

and

P(u+)−P(u)≤−(1− ε)β‖p∗‖+
β 2

2(1−β )
.

The arithmetic operation complexity to compute such an approximate solution is
O(n3 log log( 1

ε )).

4.3 FPTAS for computing a KKT point of the social problem

Now we see that if ε ≤ 1
4 and ‖p∗‖ ≥ 1, and if β is chosen as 1/4, then

P(u+)−P(u)≤− 5
96

.

Therefore, according to the potential lower bound (12) and the choice of ρ we
must have

Lemma 2 In O( n
ε ) iterations or O( n4

ε log log( 1
ε )) arithmetic operations of the po-

tential reduction algorithm, we must have ‖p∗‖< 1.
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What happens if 1 > ‖p∗‖= ‖ ρ
∆ Us+− e‖? First, we must have

s+ =−2Au+ +λe≥ 0.

Furthermore,

‖ ρ
∆

Us+− e‖2 = (
ρ
∆

)2‖Us+− uT s+

n
e‖2 +‖ρuT s+

n∆
e− e‖2

≥ ‖ρuT s+

n∆
e− e‖2

=
(

ρuT s+

n∆
−1

)2

n.

Hence, ‖p∗‖< 1 implies

n−√n
ρ

≤ uT s+

∆
≤ n+

√
n

ρ
.

Moreover,

(u+)T s+ = uTU−1U+s+

≤ ‖U−1U+‖uT s+

≤ (1+β )uT s+ ≤ 2uT s+.

Therefore, from the choice of ρ we have

(u+)T s+

∆
≤ 2(n+

√
n)

ρ
≤ ε/2

or, since ∆ ≤ 2,
(u+)T s+ ≤ ∆ε/2≤ ε .

That is, u+ is an ε-KKT point for (7).
Moreover, P(u+) < P(u0) implies that

ρ log
(
2− (u+)T Au+)

< ρ log
(

2− 1
n2 eT Ae

)

or

(u+)T Au+ >
1
n2 eT Ae≥ 0,

that is, any point u+ generated by the algorithm must have (u+)T Au+ > 0. To
conclude, using Lemmas 1 and 2 we have

Theorem 3 There is a FPTAS to compute an ε-approximate non-trivial comple-
mentary solution of LCP (1) when A is symmetric and eT Ae > 0. Moreover, such a
solution is an ε-approximate equilibrium of the symmetric Leontief economy when
all entries of A are positive.
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5 Preliminary Computational Results

Here, we computationally compare three types of methods to solve the comple-
mentarity problem of (1): 1) the QP-based potential reduction algorithm (referred
as QP) presented in this paper; 2) a homotopy-based path-following algorithm
(referred as HOMOTOPY) developed in Dang at al. (Dang, C., Ye, Y., Zhu, Z.,
A path-following algorithm for computing a Leontief economy equilibrium. In
preparation, 2008); 3) Mixed Complementarity Problem (MCP) general solvers
PATH (Ferris and Munson, http://www.gams.com/dd/docs/solvers/path.pdf) and
MILES (Rutherford, http://www.gams.com/dd/docs/solvers/miles.pdf), where both
solvers use a Lemke type algorithm that is based on a sequence of pivots similar to
those generated by the simplex method for linear programming; see Lemke [13].

If one applies Lemke’s algorithm directly to solving LCP (1), then it will re-
turn the trivial solution u = 0, v = e. To exclude it, we rewrite LCP (1) into an
equivalent homogeneous LCP as follows:

Mz+q = w, zT w = 0, (z,w)≥ 0, (15)

where z,w ∈ Rn+1,

M =
(−AT e

eT 0

)
∈Mn+1,q =

(
0n
−1

)
.

Then, we can obtain a solution for LCP (1) from a complementary solution of LCP
(15). However, the standard Lemke algorithm may not be able to solve LCP (15)
either, since it may terminate at the second iteration with a non-complementary
“secondary-ray” solution. Thus, as shown below, commonly used LCP solver
PATH or MILES seems cannot successfully solve LCPs (15) most of times.

Both QP and HOMOTOPY are coded in MATLAB script files, and all solvers
are run in the MATLAB environment on a desktop PC (2.8GHz CPU). For the
QP-based potential reduction algorithm, we set ε = 1.e−8. After the termination,
we use the support of u, {i : ui ≥ 1.e− 5}, to recalibrate an “exact” solution (to
the machine accuracy) for LCP (1).

For different size n ( n = 20 : 20 : 100,100 : 100 : 1000,1500 : 500 : 3000),
we randomly generate 15 symmetric and sparse matrices A of two different types
(uniform in [0,1] or binary {0,1}) and solve them by the three methods. In the
following tables, “mean sup” the average support size of u and “max sup” the
maximum support size of u in the 15 problems, “mean iter” the average number
of iterations of QP and Homotopy algorithms (each iteration solves a system of
linear equations), and “mean time” the average computing CPU time in seconds.

From our preliminary computational results, we can draw few conclusions.
First, LCP (1), although the matrix A is symmetric, seems not an easy problem
to solve. Secondly, the QP-based FPTAS algorithm lives up with its theoretical
expectation and it is numerically effective. Thirdly, the homotopy-based algorithm
seems able to solve sizable problems, although its computational complexity is not
proven to be a PTAS. Finally, as mentioned earlier, the general LCP solvers, PATH
and MILES, may terminate with a “secondary-ray” solution at the second Lemke
pivot, therefore fail to solve LCP (15). As a result, in our numerical experiments
MILES can solve none of our test problems, and PATH can only solve a small
number of test problems with size no more than 60. (PATH use an alternative
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Table 1 QP for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup

20 4.1 39.5 0.1 5
40 4.5 46.0 0.1 5
60 4.5 47.9 0.1 5
80 4.9 47.5 0.2 6

100 5.3 48.2 0.3 7
200 5.5 53.5 1.2 6
300 5.6 59.3 3.4 8
400 5.7 55.1 5.9 7
500 5.9 62.5 11.3 7
600 5.7 58.8 16.0 7
700 5.8 58.8 23.4 7
800 5.8 62.6 33.8 8
900 5.7 65.1 47.3 7

1000 6.3 65.0 60.2 7
1500 6.1 71.5 187.2 8
2000 5.9 73.5 411.9 7
2500 6.4 74.6 774.5 8
3000 6.2 78.7 1404.2 8

Table 2 HOMOTOPY for solving uniform symmetric matrix LCP

n mean sup mean iter mean time max sup

20 4.1 37.7 0.2 5
40 4.4 52.7 0.4 5
60 4.4 58.3 0.8 6
80 4.6 68.2 1.4 6

100 5.3 72.6 2.2 7
200 4.9 108.9 14.0 6
300 5.5 127.7 49.3 8
400 5.5 160.5 111.9 7
500 5.7 159.7 181.6 7
600 5.5 182.5 317.0 6
700 5.9 202.9 515.6 7
800 5.5 208.9 706.3 6
900 5.7 231.7 1039.2 7

1000 5.9 267.2 1644.0 7
1500 5.9 305.5 4726.4 7
2000 5.7 307.1 10105.2 6

Table 3 PATH for solving uniform symmetric matrix LCP

n mean sup mean time max sup

20 8.7 0.1004 12
40 13.8 0.3406 23

n≥60 fail to solve
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Table 4 QP for solving binary symmetric matrix LCP

n mean sup mean iter mean time max sup

20 11.8 35.2 0.1 13
40 16.6 43.3 0.1 20
60 21.1 44.4 0.2 23
80 22.1 46.9 0.3 25

100 23.9 53.3 0.5 27
200 30.0 54.5 1.7 34
300 32.5 66.9 5.2 35
400 34.1 65.1 9.5 38
500 35.4 67.1 16.1 39
600 36.0 82.9 31.4 39
700 37.9 68.0 35.4 42
800 37.8 74.9 55.4 41
900 37.8 78.1 76.5 43

1000 38.7 82.1 106.6 42
1500 40.0 84.9 305.3 43
2000 42.4 91.4 702.2 45
2500 42.9 94.7 1382.8 47
3000 43.9 99.5 1959.4 48

Table 5 HOMOTOPY for solving binary symmetric matrix LCP

n mean sup mean iter mean time max sup

20 11.7 48.6 0.2 14
40 16.2 68.3 0.5 21
60 20.6 75.3 0.9 24
80 22.9 84.0 1.7 26

100 24.3 92.9 2.9 27
200 31.3 111.1 14.6 39
300 32.3 130.4 51.1 39
400 32.4 108.2 79.9 34
500 34.8 153.6 263.7 41
600 34.4 144.8 451.3 37
700 35.6 184.0 572.3 38
800 36.5 208.0 1628.1 37
900 37.2 261.2 4733.4 41

1000 37.2 502.8 5370.1 38

Table 6 PATH for solving binary symmetric matrix LCP

n mean sup mean time max sup

20 8.2 0.0445 12
40 10.2 0.3229 17

n≥60 fail to solve

default pivoting rule and it switches to original Lemke’s pivot rule only when the
default rule fails or the users force to do so.)
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6 Further Remarks

We make few final remarks and open questions.
First, in Section 2.1, since pN = 0, the goods owned by traders j ∈ N are

essentially worthless in the Leontief economy equilibrium p. This is in contrary
to other equilibrium models, such as the Coub-Douglass model, where u always
has a full support. In the context of a global trade market among n traders, this
implies that any traders in N cannot consume any good offered by any trader in B.
Then why would traders in N be willing to share their goods with the trades in the
set B for nothing in return? So, if N 6= /0, the trading from traders in N would not
be sustainable, and the only trading block that makes a practical sense is the one in
which p > 0. Thus, our LCP algorithm can actually help to identify such a sensible
trading block B where all traders can trade and benefit from each other, that is, to
find out who would remain as active trading partners (those in B) and who would
not (those in N). Furthermore, this equilibrium structure of the Leontief market
may partially explain why some countries are more favorable to the global trading
than others; and, consequently, certain incentive mechanisms are needed to keep
those countries (in N) to be engaged in trading.

In fact, it’s noticeable that the symmetric LCP solution or the symmetric Leon-
tief equilibrium u has a small support of B. Again, in the context of a global
trade market, if one needs to maintain the bilateral trade balance policy, then the
Leontief matrix A will be symmetric, and it becomes a symmetric Arrow-Debreu-
Leontief competitive economy equilibrium model. From the simulation in section
5 and in section 8 of [8] for symmetric and non-symmetric sparse Leontief matrix
A respectively, we observe a significant difference for the support size of B be-
tween the two cases, which indicate that the bilateral balance or symmetric trade
policy leads to a much smaller B, that is, much fewer traders can benefit from the
trading market. Thus, the bilateral trade balance policy may not be a good policy
for global trading.

Secondly, the computational results based on randomly generated data show
that the support of u is relative small. Is there a theoretical justification for this fact
or observation? Barany, Vempala and Vetta in [2] showed that a 2-player random
game has a Nash equilibrium with supports of size two with high probability. It
would be interesting to see if there is any underlying connection between them.

Thirdly, by restricting A being symmetric for bimatrix game setting described
in Section 2, we must have R =C, that is, the two payoff matrices are identical. But
in this case, a trivial, pure-strategic, and Pareto-optimal bimatrix game equilibrium
is to simply play the largest entry in C. Thus, it remains to be seen if the QP-based
approach offer a PTAS for computing a bimatrix equilibrium with a larger support.
Note that the constant-approximation result of Tsaknakis and Spirakis [19] was
indeed based on computing a KKT point of a social QP problem.

Finally, an important direction is to study the LCP problem (1) where A is
not necessarily symmetric. In this case, even all entries of A being non-negative
may not guarantee the existence of a (non-trivial) complementary solution; see
example:

AT =
(

0 2
0 1

)
.
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