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Algorithms for Linear Programming

one of the most fundamental models 

in mathematical programming

• Simplex method 

• Interior point method

Solving LP has evolved into a technology, for long dominated by

• Simplex method

• Interior point method

• First-order methods

Robust and highly accurate, but not that scalable if “dense”

A recent trend of research attacks scalability issues using first-order methods 



First-order LP Algorithms: Recent Successes

First-order methods for LP  

• (Generally) based on gradient information 

integrated with many other techniques 

such as scaling, restart, parameter-tuning…

• Free of matrix factorization (each iteration)

• Able to achieve medium accuracy

• State of the art first-order solvers now solve LPs to medium/high 

relative accuracy

• Enough for certain applications



Potential Reduction for Linear Programming

• Proved as a theoretical tool to establish polynomial complexity and 

implemented as a neighborhood-tuning-free method comparing with the

path-following methods

• There are different variants of interior point methods reduce different 

potential functions under linear/affine constraints

• Manage an automatic balance between optimality 𝑮 and centrality

The potential function in linear programming:

Directly reduce the potential function using the gradients?



Choose the Right Potential Function to Reduce

• Represent LP as an unconstrained problem

• Admit cheap gradient computation

• Convergece with gradient-based optimization

A desirable first-order friendly potential function should

We choose the potential from the homogeneous self-dual model



Reducing the Potential Function

One may apply

• first-order interior point trust region

• dimension-reduced second-order interior point trust region

• second-order potential reduction method

The LP is represented by an almost unconstrained problem



A Briefing of the Algorithms

First-order interior point trust region

Second-order potential reduction • Three methods reduce the same potential 

function

• Optimization can switch between them 

seamlessly

• First-order method can either do warm-starting 

or serve as a rescue when second order method 

fails

Dimension-reduced second-order trust region



Theoretical Results (Gao at al. SHUFE, 2023)

• Linear convergence for second-order method 

• Sub-linear convergence for first-order method 



Numerical Experiments: MIPLIB instances

• Tested on 971 MIPLIB instances for 1e-04 tolerance

Timelimit set to 600 seconds

• Potential reduction switches to second-order 

method after reaching 1e-03 accuracy

• Tested different combinations of first/second order 

methods (0 step & 5 steps & 15 steps)

• First-order method alone achieves low-accuracy

• Second-order method follow up to finish solving

Why do we need Second-Order?

Necessary for Crossover: obtaining an optimal 

basis from the approximate solution



Numerical Experiments: Crossover

Often we need highly accurate or an optimal basic solution that is hardly 

achievable by first-order methods: 

So we need to do crossover to locate an optimal basis from a “quality” solution

• We crossover from both interior point solution and PDLP solution solved to the 

same accuracy (with timelimit of 600s)

• We record the time spent till finding the optimal basis

• We choose 114 Netlib datasets

• Interior point and PDLP solutions work comparatively on 70% of instances

• In general, interior point solutions tell more valueble information for crossover: for 

some instances where b or c has large norm,  solutions generated by PDLP fails to 

provide an efficient start for crossover



It can Viewed as a Cheaper Warm-Starting Presolver

• First-order method solves to 1e-02 accuracy and then switch to 

second-order 

• An average reduction of 30% iterations compared to trivial start

• There are instances where first + second is faster than first/second



There are More: Predicting Power for Mixed Integer Linear 

Programming

• MILP are hard to solve in general

• Special heuristics are needed for 

acceleration

Interior point solution of the LP relaxation is a natural prediction of the 

likelihood each variable takes 1 in the optimal solution since it contains unbiased 

information of the optimal set 

How to use this information safely and efficiently?



Pooling the Risk via Variance Reduction

• Each  𝑦 is the likelihood a variable takes 1 or 0 in the optimal solution

• Each variable introduces some risk/variance of such rounding

so that dealing them separately results in extremely risk outcomes

• Given an MILP, the interior point solution of the LP relaxation tells us

Q: What should we do seeing a set of risky guesses? A: Put them in a pool!



Risk Pooling through Variance Reduction

• Pooling the binary variables by adding “confidence” cardinality cuts

• Intuitively we know that the above two inequalities are expectedly to hold 

for 𝛼 → 0.9 and 𝛽 → 0.1

• These two inequalities are exactly cutting planes for MILP

• The last issue is how to choose 𝛼, 𝛽 to increase the confidence level:

Interpret  as Bernoulli random variables with expectation      ,

then justify by concentration inequalities



Statistical Confidence Cut Generation (Gao at al. SHUFE, 2023)

• Overall, the two cuts (and their complement) split the whole feasible region into four 

regions

• Solving the most likelihood region of two cuts often gives a satisfying solution with 

confidence

• Branching over all four regions independently will not miss the optimal solution



Numerical Experiments: Online Cut-Generation

• Tested on IEEEE unit commitment 

problems using COPT

• Using pre-solved instances to compare 

speed

Accuracy of prediction by the IPM and PDLP

Improvement of COPT on IEEE instances

• Accuracy of interior point prediction can 

reach 80% 

• No loss of optimality

• Remarkable acceleration using proper

choosing cut generation parameters

Offline-Training: Using past instances to improve prediction quality



Data-Driven Approaches to Mixed Integer Optimization
Learn from the past and predict the future such as the unit commitment

problem in Electrical Power Generation

• Many real-life MIO applications are solved on a 

regular basis

Unit commitment; portfolio; scheduling…

• Large amount of data and solutions collected 

from the past

Future instances are similar to the past

• A natural idea: use machine learning to learn 

from history

Known as pre-trained data-driven approaches

𝑥∗ 𝑥∗

? 𝑥∗



Numerical Test Results I

• The method is tested on multi-knapsack, set-covering and unit-commitment 

problems

Train from 500 instances and test on 20 instances

• Measure the speedup of finding a good solution on in the region formed by two 

cuts



Numerical Test Results II

• Acceleration by two lines of 

code

• Remarkable speedup on 

primal solution finding for 

both the state of art MIP 

solvers Gurobi and COPT

• No loss of optimality



Takeaways

• First-order potential reduction serves as a fast warm-start for 

high-precision second-order methods if needed

• Interior-point solutions provide prediction-power for cross-over 

and mixed-integer programming via statistical cardinality cut 

generation

• THANK YOU


