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Sensor network localization (SNL) problem

Suppose that there are n different sensors in our network and that
the noisy Euclidean distance dij between sensors i and j is known if
(i , j) ∈ N. We want find x1, . . . , xn ∈ Rr that solve the problem:

Anchor-Free

minimize
∑

(i ,j)∈N l(‖xi − xj‖22 − d2
ij )

subject to x1 + · · ·+ xn = 0
(1)

Anchored

minimize
∑

(i ,j)∈N l(‖xi − xj‖22 − d2
ij )

subject to x1 = a1, · · · , xr = ar
(2)

for some loss function l(·) (assumed smooth).

The problem is generally non-convex even though l(·) is convex.



SNL semidefinite programming (SDP) representation

Lift the quadratic expression ‖xi − xj‖22 to the equivalent linear
expression Uii − Uij − Uji + Ujj or (ei − ej)(ei − ej)

T · U, where U
is the positive semidefinite matrix with entries Uij = xTi xj .

In other words, U = XXT for X =
[
x1 · · · xn

]T
.

Problem (1) is then equivalent to

minimize
∑

(i ,j)∈N l(Uii − Uij − Uji + Ujj − d2
ij )

subject to U � 0
U1 = 0
rank(U) ≤ r .

(3)

Problem (2) can be represented in a similar fashion.
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Simplify constraints in the representation
We can eliminate the equality constraints in problem (3) with the
reparameterization U = CVCT for

C =

[
− 1√

n
1Tn−1

I − 1
n+
√
n
1n−11Tn−1

]
∈ Rn×(n−1)

to obtain a problem of the form

minimize g(V )
subject to V � 0

rank(V ) ≤ r .
(4)

Unfortunately, problem (4) remains non-convex, but we can project
any symmetric matrix A onto the feasible set easily, meaning that
the following minimization problem can be solved easily

minimize ‖V − A‖2f
subject to V � 0

rank(V ) ≤ r .
(5)



Steepest descent projection method (SDPM)

Taking a step back, we want to solve the general problem

minimize f (x)
subject to x ∈ X

where f is differentiable and satisfies the Lipschitz condition:

f (y) ≤ f (x) +∇f (x)T (y − x) +
L

2
‖y − x‖22

for all x , y ∈ X . Let x? denote an optimal solution.
X is a general set.



Key assumption

We can project any point y onto X exactly and easily by solving
the problem

minimize ‖x − y‖2
subject to x ∈ X

Projection may not be unique!



Sets that are easy to project onto

I Nonnegative orthant: x = max{0, y}
I s(< n)-sparse vectors in Rn or Rn

+: keep the largest s
absolute-value entries and zero the rest

I SDP cone Sn
+: keep the positive eigenvalue part

I r -rank matrices in Rm×n or Sn
+

I some lattices (like Zn)

I unit sphere

I orthogonal matrices



Steepest descent projection method

Start from xk ∈ X , then let

xk+1 = projX

(
xk − 1

2L
∇f (xk)

)

Standard steepest descent step: x̂k+1 = xk − 1
L∇f (xk) but we take

a half of the standard step-size.

x̂k+1 may be infeasible so that we project it back to the feasible
set.

It is a ”Descent-First and Feasible-Second” approach.
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Convergence analysis

In each iteration, the method solves the convex QP problem

minimize ∇f (xk)T (x − xk) + L‖x − xk‖22
subject to x ∈ X .

Because xk is feasible,

∇f (xk)T (xk+1 − xk) + L‖xk+1 − xk‖22 ≤ 0.

The L-Lipschitz assumption and the previous inequality imply

f (xk+1)− f (xk) ≤ ∇f (xk)T (xk+1 − xk) +
L

2
‖xk+1 − xk‖22

≤ −L‖xk+1 − xk‖22 +
L

2
‖xk+1 − xk‖22

= −L

2
‖xk+1 − xk‖22.

The sequence is descent unless d = xk+1 − xk = 0.



Convergence rate

With this guaranteed decrease at each iteration, it is simple to
show that in at most

2(f (x0)− f (x?))

Lε2

iterations, the method generates points such that

‖xk+1 − xk‖2 ≤ ε.



Interpretation of d = xk+1 − xk

Consider the case X being the nonnegative orthant. We have the
following cases:

∇f (xk)j < 0 ⇒ dj = − 1
2L∇f (xk)j

∇f (xk)j ≥ 0 & xj >
1
2L∇f (xk)j ⇒ dj = − 1

2L∇f (xk)j

∇f (xk)j ≥ 0 & xj ≤ 1
2L∇f (xk)j ⇒ dj = −(xk)j

Therefore d represents the complementary slackness residuals at
step k .

In general, d is a feasible direction in the convex hull of X . Thus,
d = 0 implies that xk is a first-order stationary solution.



Star-convex feasible set and convex objective

f (xk+1)− f (xk) ≤ ∇f (xk)T (xk+1 − xk) + L
2‖xk+1 − xk‖2

≤ ∇f (xk)T (xk+1 − xk) + L‖xk+1 − xk‖2.

Let X be x∗-star convex, that is, from any feasible solution x ∈ X ,
the convex combination of αx∗ + (1− α)x ∈ X for any 0 ≤ α ≤ 1
where x∗ is a minimum of the problem. Then we must have

f (xk+1)−f (xk) ≤ α∇f (xk)T (x∗−xk)+α2L‖x∗−xk‖2, ∀0 ≤ α ≤ 1.

We like to find α to minimize the right-hand-side. If f is convex
then 0 ≥ f (x∗)− f (xk) ≥ ∇f (xk)T (x∗ − xk),

α∗ = min

{
1,
|∇f (xk)T (x∗ − xk)|

2L‖x∗ − xk‖2
}

f (xk+1)− f (xk) ≤ −|∇f (xk)T (x∗ − xk)|2
4L‖x∗ − xk‖2 ≤ −(f (xk)− f (x∗))2

4L‖x∗ − xk‖2 .



Convergence rate

Then it is simple to show that in at most

4L∆2

ε
log

(
f (x0)− f (x∗)

ε

)
iterations, the method generates points such that

f (xk)− f (x∗) ≤ ε.

Here, ∆ if the diameter of the level set {x ∈ X : f (x) ≤ f (x0)}.
Star-Convex Example I: non-convex cones are all 0-star convex.

Star-Convex Example II: x∗ ∈ Rn is a s(< n)-sparse optimal
solution and X is the set of all d-sparse solutions x , s ≤ d < n,
such that supp(x∗) ⊂ supp(x).



Suppose further that f is strongly convex. Then,

f (xk)− f (x∗) ≥ ∇f (xk)T (xk − x∗) + λ∆2
k ≥ λ∆2

k

for some λ ≤ L, so

f (xk+1)− f (x∗) ≤
(

1− λ

4L

)
(f (xk)− f (x∗))

which gives a linear rate of convergence.

There is an early result in compressed sensing which proves a linear
rate for the method if L

λ < 2.



Reformulation of SNL problem (4)

For notational convenience, we rewrite it as

minimize f (A(CVCT )− b)
subject to V � 0

rank(V ) ≤ r ,
(6)

where f : Rm → R is defined by f (z) =
∑m

k=1 l(zk), A : Sn → Rm

is defined entrywise by

A(U)k = Uik ik − Uik jk − Ujk ik + Ujk jk ,

b ∈ Rm is defined entrywise by bk = d2
ik jk

, and we have indexed the
m elements of N with k .



The adjoint of the linear operator A is defined for all z ∈ Rm by

A∗(z) =
m∑

k=1

zk(Eik ik − Eik jk − Ejk ik + Ejk jk ).

The gradient of the objective at some V is given by

CTA∗(∇f (A(CVCT )− b))C

and that, depending on m, multiplying it with a vector can be
done efficiently.



Algorithm 1 SDPM applied to solving problem (4)

1: determine Lipschitz constant L for the gradient of the objective
2: choose initialization Y0 ∈ R(n−1)×r

3: for t = 0, 1, 2, . . . do
4: find top r eigenvalues λ1, . . . , λr , eigenvectors Q ∈ R(n−1)×r

of the linear operator

YtY
T
t −

1

2L
CTA∗(∇f (A(CYtY

T
t CT )− b))C

5: Yt+1 = Q diag((λ1, . . . , λr )+)1/2

6: if ‖Y T
t+1Yt+1 − Y T

t Yt‖2F ≤ ε2‖Y T
t Yt‖2F then

7: find s = argmins≥0f (sA(CYtY
T
t CT )− b)

8: break with Xε =
√
sCYt

9: end if
10: end for



Convex relaxation of problem (6)

Remark: we add a scaling step in the algorithm to improve
practical performance.

Drop the rank constraint would

minimize f (A(CVCT )− b)
subject to V � 0

(7)

Then, this is a convex-objective and convex feasible set case so
that the method would converge to the (global) optimal solution.
This is guaranteed if the SNL framework is universally rigid (So &
Y, ”Theory of Semidefinite programming for sensor-network
localization”)

In practice, we may keep the solution at most rank-d , n >> d > r
to save memory space and computation time. Then gradually
reduce d to r .



Analysis of the scaling

Suppose that V is an approximate stationary point. The rescaling
in step 7 means that tr(∇g(sV )(sV )) = 0 because either s = 0 or

d

ds
g(sV ) = s tr(∇g(sV )V ) = 0.

Trivially, sV � 0 because V � 0.



The positive semidefiniteness of ∇g(sV ) cannot be guaranteed in
general, but if the number of positive eigenvalues of
sV − 2

L∇g(sV ) is less than r , then ∇g(sV ) � 0.

To see this, first let λi = λi (sV − 2
L∇g(sV ) and qi denote the

corresponding normalized eigenvector for i = 1, . . . , n. Then,

sV − 2

L
∇g(sV ) =

∑
λi>0

λiqiq
T
i +

∑
λi≤0

λiqiq
T
i

= sV +
∑
λi≤0

λiqiq
T
i ,

which implies that ∇g(sV ) � 0.



Numerical results

We generate instances of the SNL problem by choosing n = 100
points uniformly at random in [−1, 1]× [−1, 1]. We add small
random displacements of approximately 0.1 to each sensor and
attempt to recover these new positions from noisy distance
measurements using the algorithm.

We use RMS error as the metric:(
1

n

n∑
i=1

‖xi − x recoveredi ‖22

)1/2

.
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Figure 1: RMS error for varying levels of additive zero-mean Gaussian
noise.
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Figure 2: RMS error against different displacements used for initialization
(R = 0.8, σ = 0.1).
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Figure 3: Robust loss functions with unit shape parameter.
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Figure 4: RMS error at R = 0.8, σ = 0.1, and displacement of about 0.1
for the four different robust loss functions against the probability p of a
gross measurement corruption



The method is particularly effective as a post-solver for the SDP
relaxation without rank constraint.

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Figure 5: A sensor network tracking problem solved using our algorithm
with 20 of 100 trajectories shown. The large circles are true sensor
positions and small circles with a black outline are estimated.
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Remarks and Questions

Questions?
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