
A Dynamic Near-Optimal Algorithm for Online Linear Programming ∗

Shipra Agrawal † Zizhuo Wang ‡ Yinyu Ye §

November 20, 2009

Abstract

A natural optimization model that formulates many online resource allocation and revenue
management problems is the online linear program (LP) where the constraint matrix is revealed
column by column along with the objective function. We provide a near-optimal algorithm for
this surprisingly general class of online problems under the assumption of random order of arrival
and some mild conditions on the size of the LP right-hand-side input. Our learning-based algo-
rithm works by dynamically updating a threshold price vector at geometric time intervals, where
the dual prices learned from revealed columns in the previous period are used to determine the
sequential decisions in the current period. Our algorithm has a feature of “learning by doing”,
and the prices are updated at a carefully chosen pace that is neither too fast nor too slow. In
particular, our algorithm doesn’t assume any distribution information on the input itself, thus
is robust to data uncertainty and variations due to its dynamic learning capability. Applications
of our algorithm include many online multi-resource allocation and multi-product revenue man-
agement problems such as online routing and packing, online combinatorial auctions, adwords
matching, inventory control and yield management.

1 Introduction

Online optimization is attracting an increasingly wide attention in computer science, operations
research, and management science communities because of its wide applications to electronic
markets and dynamic resource allocation problems. In many practical problems, data does
not reveal itself at the beginning, but rather comes in an online fashion. For example, in the
online revenue management problem, consumers arrive sequentially requesting a subset of goods
(multi-leg flights or a period of stay in a hotel), each offering a certain bid price for his demand.
On observing a request, the seller needs to make an irrevocable decision for that consumer
with the overall objective of maximizing the revenue while respecting the resource constraints.
Similarly, in the online routing problem [6], the central organizer receives demands for subsets
of edges in a network from the users in a sequential manner, each with a certain utility and
bid price for his demand. The organizer needs to allocate the network capacity online to those
bidders to maximize social welfare. A similar format also appears in online auctions [2], online
keyword matching problems [9, 13, 16], online packing problems [5], and various other online
revenue management and resource allocation problems [15, 7, 4].

∗This research is supported in part by the Boeing Company, NSF DMS-0604513 and AFOSR Grant 08NL477
†Department of Computer Science, Stanford University. Email: shipra@cs.stanford.edu
‡Department of Management Science and Engineering, Stanford University. Email: zzwang@stanford.edu
§Department of Management Science and Engineering, Stanford University. Email: yinyu-ye@stanford.edu

1

In all these examples mentioned above, the problem can be formulated as an online linear
programming problem1. In an online linear programming problem, the constraint matrix is
revealed column by column with the corresponding coefficient in the objective function. After
observing the input arrived so far, the online algorithm must make the current decision without
observing the future data. To be precise, consider the linear program

maximize
∑n

j=1 πjxj

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . , m

0 ≤ xj ≤ 1 j = 1, . . . , n

(1)

where ∀j, πj ≥ 0, aj = (aij)m
i=1 ∈ [0, 1]m, and b = {bi}m

i=1 ∈ Rm. In the corresponding online
problem, at time t, the coefficients (πt,at) are revealed, and the algorithm must make a decision
xt. Given the previous t − 1 decisions x1, . . . , xt−1, and input {πj ,aj}t

j=1 until time t, the tth

decision is to select xt such that
∑t

j=1 aijxj ≤ bi, i = 1, . . . , m

0 ≤ xt ≤ 1.
(2)

The goal of the online algorithm is to choose xt’s such that the objective function
∑n

t=1 πtxt is
maximized.

To evaluate an online algorithm, one could consider various kinds of input models. One
approach, which is completely robust to input uncertainty, is the worst-case analysis, that is, to
evaluate the algorithm based on its performance on the worst-case input [16, 5]. However, this
leads to very pessimistic bounds for the above online problem: no online algorithm can achieve
better than O(1/n) approximation of the optimal offline solution [2]. The other approach,
popular among practitioners with domain knowledge, is to assume certain distribution on the
inputs and consider the expected objective value achieved by the algorithm. In many cases,
a priori input distribution can simplify the problem to a great extent, however, the choice of
distribution is very critical and the performance can suffer if the actual input distribution is
not as assumed. In this paper, we take an intermediate path. While we do not assume any
knowledge of the input distribution, we relax the worst-case model by making the following two
assumptions:

Assumption 1. The columns aj (with the objective coefficient πj) arrive in a random order,
i.e., the set of columns can be adversarily picked at the start. However, after they are chosen,
(a1,a2, ...,an) and (aσ(1),aσ(2), ...,aσ(n)) have same chance to happen for all permutation σ.

This assumption says that we consider the average behavior of the online algorithm over
random permutations. This assumption is reasonable in practical problems, since the order of
columns usually appears to be independent of the content of the columns. We like to emphasize
that this assumption is strictly weaker than assuming an input distribution. In particular, it
is automatically satisfied if the input columns are generated independently from some common
(but unknown) distributions. This is also a standard assumption in many existing literature on
solving online problems [2, 9, 13].

Assumption 2. We know the total number of columns n a priori.

The second assumption is needed since we will use quantity n to decide the length of history
used to learn the threshold prices in our algorithm. It can be relaxed to an approximate
knowledge of n (within at most 1 ± ε multiplicative error), without affecting the final results.
Note that this assumption is also standard in many existing algorithms for online problems

1In fact, many of the problems mentioned above take the form of an integer program. While we discuss our ideas
and results in terms of linear relaxation of these problems, our results naturally extends to integer programs. See
Section 4.3 for the detailed discussion.

2

[2] in computer science. For many practical problems, the knowledge of n can be implied
approximately by the length of time horizon T and the arrival rates, which is usually available.
As long as the time horizon is long enough, the total number of arrivals in the LP problem
will be highly accurate. This is justified in [7] and [12] when they use the expected number
of arrivals for constructing a pricing policy in a revenue management problem. Moreover, this
assumption is necessary from the algorithmic point of view. In [9], the authors showed that if
Assumption 2 doesn’t hold, then the worst-case competitive ratio is bounded away from 1 even
we admit Assumption 1.

In this paper, we present an almost optimal solution for online linear program (2) under the
above two assumptions and a lower bound condition on the size of b. We also extend our results
to the following more general online linear optimization problems:

• Problems with multi-dimensional decisions at each time step. More precisely, consider a
sequence of n non-negative vectors f1,f2, . . . ,fn ∈ Rk, mn non-negative vectors

gi1, gi2, . . . , gin ∈ [0, 1]k, i = 1, . . . , m,

and (k − 1)-dimensional simplex K = {x ∈ Rk : xT e ≤ 1,x ≥ 0}. In this problem, given
the previous t − 1 decisions x1, . . . ,xt−1, each time we make a k-dimensional decision
xt ∈ Rk, satisfying: ∑t

j=1 gT
ijxj ≤ bi, i = 1, . . . , m

xt ∈ K
(3)

where decision vector xt must be chosen only using the knowledge up to time t. The
objective is to maximize

∑n
t=1 fT

t xt over the whole time horizon. Note that Problem (2)
is a special case of Problem (3) with k = 1.

• Problem (2) with both buy-and-sell orders, that is,

πj either positive or negative, and aj = (aij)m
i=1 ∈ [−1, 1]m. (4)

1.1 Our key ideas and main results

In the following, let OPT denote the optimal objective value for the offline problem (1).

Definition 1. An online algorithm A is c-competitive in random permutation model if the
expected value of the online solution obtained by using A is at least c factor of the optimal
offline solution. That is,

Eσ[
∑n

t=1 πtxt(σ,A)] ≥ cOPT

where the expectation is taken over uniformly random permutations σ of 1, . . . , n, and xt(σ,A)
is the tth decision made by algorithm A when the inputs arrive in the order σ.

Our algorithm is based on the observation that the optimal solution x∗ for the offline linear
program is almost entirely determined by the optimal dual solution p∗ ∈ Rm corresponding to
the m inequality constraints. The optimal dual solution acts as a threshold price so that x∗j > 0
only if πj ≥ p∗T aj . Our online algorithm works by learning a threshold price vector from
the input received so far. The price vector then determines the decision for the next period.
However, instead of computing a new price vector at every step, the algorithm initially waits
until nε steps or arrivals, and then computes a new price vector every time the history doubles.
That is, at time steps nε, 2nε, 4nε, . . . and so on. We show that our algorithm is 1 − O(ε)-
competitive in random permutation model under a size condition of the right-hand-side input.
Our main results are precisely stated as follows:

3

Theorem 1. For any ε > 0, our online algorithm is 1−O(ε) competitive for the online linear
program (2) in random permutation model, for all inputs such that 2

B = min
i

bi ≥ Ω
(

m log (n/ε)
ε2

)
(5)

We give the following alternative condition for the theorem to hold:

Corollary 1. Theorem 1 still holds if condition (5) is replaced by

B ≥ Ω
(

(mλ + m2) log(1/ε)
ε2

)
(6)

where λ = log log(πmax

πmin
), πmax = maxj=1,...,n πj , πmin = minj=1,...,n πj.

Observe that the lower bound in the condition on B depends on log(1/ε)/ε2. We may
emphasize that this dependence on ε is near-optimal. In [14], the author proves that k ≥ 1/ε2

is necessary to get 1−O(ε) competitive ratio in the k-secretary problem, which is a special case
of our problem with m = 1, B = k and at = 1 for all t.

We also extend our results to more general online linear programs as introduced in (3) and
(4):

Theorem 2. For any ε > 0, our algorithm is 1−O(ε) competitive for the general online linear
problem (3) or (4) in random permutation model, for all inputs such that:

B = min
i

bi ≥ Ω
(

m log (nk/ε)
ε2

)
. (7)

Remark 1. Our condition to hold the main result is independent of the size of OPT or objective
coefficients, and is also independent of any possible distribution of input data. If the largest entry
of constraint coefficients does not equal to 1, then our both theorems hold if the condition (5) or
(7) is replaced by:

bi

āi
≥ Ω

(
m log (nk/ε)

ε2

)
, ∀i,

where, for each row i, āi = maxj{|aij |} of (2) and (4), or āi = maxj{‖gij‖∞} of (3). Note that
this bound is proportional only to log(n) so that it is way below to satisfy everyone’s demand.

It is apparent that our generalized problem formulation should cover a wide range of online
decision making problems. In the next section, we discuss the related work and some sample
applications of our model. As one can see, indeed our result improves the competitive ratios
for many online problems studied in the literature and introduces new insights for solving many
online resource allocation and revenue management problems.

1.2 Related work

Online decision making has been a topic of wide recent interest in the computer science, op-
erations research, and management science communities. Various special cases of the general
problem presented in this paper have been studied extensively in the computer science literature
as “secretary problems”. The authors of [2] provide a comprehensive survey of existing results
on the secretary problems. In particular, constant factor competitive ratios have been proven
for k-secretary and knapsack secretary problems under random permutation model. Further,

2For any two functions f(n), g(n), f(n) = O(g(n)) iff there exists some constant c1 such that f(n) ≤ c1g(n); and
f(n) = Ω(g(n)) iff there exists some constant c2 such that f(n) ≥ c2g(n). The precise constants required here will
be illustrated later in the text.

4

for many of these problems, a constant competitive ratio is known to be optimal if no additional
conditions on input are assumed. Therefore, there have been recent interests in searching for
online algorithms whose competitive ratio approaches 1 as the input parameters become large.
The first result of this kind appears in [14], where a 1−O(1/

√
k)-competitive algorithm is pre-

sented for k secretary problem under random permutation model. More recently, the authors of
[9] presented a 1−O(ε)-competitive algorithm for the online adwords matching problem under
assumptions of certain lower bounds on OPT in terms of ε and other input parameters. In [9],
the authors raise several open questions including the possibility of such near-optimal algorithms
for a more general class of online problems. In our work, we give an affirmative answer to this
questions by showing a 1−O(ε)-competitive algorithm for a large class of online linear programs
under a weaker lower bound condition.

On the other hand, in the management science community, a dynamic and optimal pricing
strategy for various online resource allocation problems has always been an important research
topic, some literatures include [10, 11, 12, 19, 15, 7, 4]. In [12, 11, 4], the arrival process are
assumed to be price sensitive. However, as commented in [7], this model can be reduced to a
price independent arrival process with availability control under Poisson arrivals. Our model
can be further viewed as a discrete version of the availability control model which is also used as
an underlying model in [19] and discussed in [7]. The idea of using a threshold - or “bid” - price
is not new. It is initiated in [21, 18] and investigated further in [19]. In [19], the authors show
that the bid price is asymptotically optimal. However, they assume the knowledge on the arrival
process and therefore the price is obtained by “forecasting” the future using the distribution
information rather than “learning” from the past observations as we do in our paper. The idea
of using linear programming to find dual optimal bid price is discussed in [7] where asymptotic
optimality is also achieved. But again, the arrival process is assumed to be known which made
their analysis relatively simple.

Our work significantly improves upon these existing work in various manners. We provide
a common near-optimal solution for a wide class of online linear programs which encompasses
many special cases of secretary problems and resource allocation problems discussed above.
Moreover, due to its dynamic learning capability, our algorithm is distribution free–no assump-
tion or knowledge on input distribution is made except for the random order of arrival. The
techniques proposed in this paper may also be considered a step forward in the threshold price
learning kind of approaches. A common element in the techniques used in existing work on sec-
retary problems [2] (with the exception of [14]), online combinatorial auction problems [1], and
adwords matching problem [9], has been one-time learning of threshold price(s) from first few
(nε) customers, which is then used to determine the decision for remaining customers. However,
in practice one would expect some benefit from dynamically updating the prices as more and
more information is revealed. Dynamic pricing has been a topic of wide attention in many of
the management science literature [10], and a question of increasing importance is: how often
and when to update them? In [7], the authors demonstrate with a specific example application
that updating the price too frequently may even hurt the results. In this paper, we propose
a dynamic pricing algorithm that updates the prices at geometric time intervals–not too soon
and not too late. In particular, we present an improvement from a factor of 1/ε3 to 1/ε2 in the
lower bound requirement on B by using dynamic price updating instead of one-time learning.
Thus we present, for the first time, a precisely quantified strategy for dynamic price update.

In our analysis, we apply many standard techniques from PAC-learning3, in particular,
concentration bounds and covering arguments. These techniques were also heavily used in [3]
and [9]. In [3], price learned from one half of bidders is used for the other half to get an
incentive compatible mechanism for combinatorial auctions. Their approach is closely related
to the idea of one-time learning of price in online auctions, however, their goal is offline revenue
maximization and an unlimited supply is assumed. And [9], as discussed above, considers a

3Probably Approximately Correct learning: which is a framework for mathematical analysis of machine learning

5

special case of our problem. Part of our analysis is inspired by some ideas used there, as will be
pointed out in the text.

1.3 Specific Applications

In the following, we show some of the applications of our algorithm. It is worthy noting that for
many of the problems we discuss below, our algorithm is the first near-optimal algorithm under
the distribution-free model.

1.3.1 Online routing problems

The most direct application of our online algorithm is the online routing problem. In this
problem, there are m edges in a network, each edge i has a bounded capacity bi. There are n
customers arriving online, each with a request of certain path at ∈ {0, 1}m, where ait = 1, if
the path of request t contains edge i, and a utility πt for his request. The offline problem for
the decision maker is given by the following integer program:

maximize
∑n

t=1 πtxt

subject to
∑n

t=1 aitxt ≤ bi i = 1, . . . , m
xt ∈ {0, 1}

(8)

By Theorem 1, and its natural extension to integer programs as will be discussed in Section 4.3,
our algorithm gives a 1−O(ε) competitive solution to this problem in the random permutation
model as long as the edge capacity is reasonably large. Earlier, a best of log(mπmax

πmin
) competitive

algorithm was known for this problem under worst case input model [6].

1.3.2 Online single-minded combinatorial auctions

In this problem, there are m goods, bi units of each good i are available. There are n bidders
arriving online, each with a bundle of items at ∈ {0, 1}m that he desires to buy, and a limit
price πt for his bundle. The offline problem of maximizing social utility is same as the routing
problem formulation given in (8). Due to use of a threshold price mechanism, where threshold
price for tth bidder is computed from the input of previous bidders, it is easy to show that
our 1−O(ε) competitive online mechanism also supports incentive compatibility and voluntary
participation. Also one can easily transform this model to revenue maximization. A log(m)-
competitive algorithm for this problem in random permutation setting can be found in recent
work [1].

1.3.3 The online adwords problems

The online adwords allocation problem is essentially the online matching problem. In this
problem, there are n queries arriving online. And, there are m bidders each with a daily budget
bi, and bid πij on query j. For jth query, the decision vector xj is an m-dimensional vector,
where xij ∈ {0, 1} indicates whether the jth query is allocated to the ith bidder. Also, since
every query can be allocated to at most one bidder, we have the constraint xT

j e ≤ 1. Therefore,
the corresponding offline problem can be stated as:

maximize
∑n

j=1 πT
j xj

subject to
∑n

j=1 πijxij ≤ bi, i = 1, . . . , m

xT
j e ≤ 1

xj ∈ {0, 1}m

The linear relaxation of above problem is a special case of the general linear optimization problem
(3) with f j = πj , gij = πijei where ei is the ith unit vector of all zeros except 1 for the ith

6

entry. By Theorem 2 (and remarks below the theorem), and extension to integer programs
discussed in Section 4.3, our algorithm will give a 1−O(ε) approximation for this problem given
the lower bound condition that for all i, bi

πmax
i

≥ m log(mn/ε)
ε2 , where πmax

i = maxj{πij} is the
largest bid by bidder i among all queries.

Earlier a 1 − O(ε) algorithm was provided for this problem by [9]. We may point out that
we eliminate the condition on OPT obtained by [9] and only have a condition on bi which may
be checkable before the execution, a property which is not provided by the condition of former
type. Further, our lower bounds on B are weaker by an ε factor to the one obtained in [9].
Later, we show that this improvement is a result of dynamically learning the price at geometric
intervals, instead of one-time learning in [9]. Richer models incorporating other aspects of
sponsored search such as multiple slots, can be formulated by redefining f j , gij ,K to obtain
similar results.

1.3.4 Yield management problems

Online yield management problem is to allocate perishable resources to demands in order to
increase the revenue by best online matching the resource capacity and demand in a given time
horizon T . It has wide applications including airline booking, hotel reservation, media and the
internet resource allocation problems. In these problems, there are several types of product j,
j = 1, 2, ..., J , and several resources bi, i = 1, ..., m. To sell a unit demand of product j, it
requires to consume certain units rij of resource i, for all i. Buyers, each demanding certain
type of product, come in a stationary Poisson process and each offers a price π for his or her
unit product demand. The objective of the seller is to maximize his or her revenue in the time
horizon T while respecting given resource constraints. The offline problem can be written as
follows:

maximize
∑

t πtxt

subject to
∑

t atxt ≤ b
xt ∈ {0, 1}, ∀t,

(9)

where at is a type of product demanded by tth buyer, i.e. ait = rij , if tth buyer demands
product of type j, j = 1, ..., J . In practice, we may not know the exact number n of the total
buyers in advance. However, by discretizing the time horizon T to sufficiently small time periods
such that there is at most one arrival in each time period and setting at = 0 for period t if
there is no arrival in that period, the above model well approximates the arrival process under
the assumption of stationary Poisson arrivals [19]. Furthermore, the arrivals can be viewed
as randomly ordered. Therefore, our online linear programming model encompasses the above
revenue management problem and our algorithm will provide a near-optimal solution to this
problem without any knowledge on the distribution of the demands. In this case, our dynamic
price updating algorithm will update the threshold prices at time periods εT, 2εT, 4εT, . . . till T .

1.3.5 Inventory control problems with replenishment

This problem is similar to the yield management problem discussed in the previous subsection
but has multiple time period. The sellers have m items to sell. At each time step j, a bidder
comes and requests a certain bundle of items aj and offers a price πj . In each period, the seller
has to choose an inventory b at the beginning, and then allocate the demand of the buyers
during this period. Each unit of bi costs capital ci and the total investment

∑
i bici in each

period is limited by budget C. There are T periods and the objective is to maximize the total
revenue in these periods. The offline problem of each period, for all bidders who arrive in that

7

period, is as follows:
maximize x,b

∑
t πtxt

subject to
∑

t atxt − b ≤ 0∑m
i=1 cibi ≤ C

0 ≤ xt ≤ 1, ∀t.
(10)

Note that given b, the problem for one period is exactly as we discussed before. Given the
bids come in a random permutation over the total time horizon, our analysis will show that the
itemized demands b learned from the previous period, together with its itemized dual prices,
will be approximately the same for the remaining periods. Thus, installing inventory b and
online pricing the bids for each of the remaining periods based on the learnt demand and dual
prices would give a revenue that is close to the optimal revenue of the offline problem over the
entire time horizon:

maximize x,b
∑

j πjxj

subject to
∑

j ajxj − b ≤ 0∑m
i=1 cibi ≤ T · C

0 ≤ xj ≤ 1, ∀j.
(11)

The rest of the paper is organized as follows. In Section 2 and 3, we present our online
algorithm and prove that it achieves 1 − O(ε) competitive ratio under mild conditions on the
input. To keep the discussion clear and easy to follow, we start in Section 2 with a simpler
one-time learning algorithm. While the analysis for this simpler algorithm will be useful to
demonstrate our proof techniques, the results obtained in this setting are weaker than those
obtained by our dynamic price update algorithm, which is discussed in Section 3. In Section 4,
we present many extensions, including the extension to multi-dimensional online linear programs,
to linear program with negative coefficients, to integer programs, and discuss the applicability
of our model to solving large static linear programs. Then we conclude our paper in Section 5.

2 One-time learning algorithm

For the linear program (1), we use p ∈ Rm to denote the dual variable associated with the first
set of constraints

∑
t atxt ≤ b. Let p̂ denote the optimal dual solution to the following partial

linear program defined only on the input until time s = dnεe:

maximize
∑s

t=1 πtxt

subject to
∑s

t=1 aitxt ≤ (1− ε) s
nbi, i = 1, . . . , m

0 ≤ xt ≤ 1, t = 1, . . . , s
(12)

Also, for any given dual price vector p, define the allocation rule xt(p) as:

xt(p) =
{

0 if πt ≤ pT at

1 if πt > pT at
(13)

Our one-time learning algorithm can now be stated as follows:

Algorithm 1 One-time Learning Algorithm (OLA)

1. Initialize s = dnεe, xt = 0, for all t ≤ s. And p̂ is defined as above.

2. Repeat for t = s + 1, s + 2, . . .

(a) If aitxt(p̂) ≤ bi −
∑t−1

j=1 aijxj , set xt = xt(p̂); otherwise, set xt = 0. Output xt.

8

This algorithm learns a dual price vector using the first dnεe arrivals. Then, at each time
t > dnεe, it uses this price vector to decide the current allocation, and executes this decision
as long as it doesn’t violate any of the constraints. An attractive feature of this algorithm is
that it requires to solve only one small linear program, defined on dnεe variables. In the next
subsection, we prove the following proposition regarding the competitive ratio of this algorithm,
which relies on a stronger condition than Theorem 1:

Proposition 1. For any ε > 0, the one-time learning algorithm is 1 − 6ε competitive for the
online linear program (2) in random permutation model, for all inputs such that

B = min
i

bi ≥ 6m log(n/ε)
ε3

(14)

2.1 Competitive ratio analysis

Observe that the one-time learning algorithm waits until time s = dnεe, and then sets the
solution at time t as xt(p̂), unless there is a constraint violation. To prove the competitive ratio
of this algorithm, we first prove that with high probability, xt(p̂) satisfies all the constraints of
the linear program. Then, we show that the expected value

∑
t πtxt(p̂) is close to the optimal

offline objective value. For simplicity of the discussion, we assume s = nε in the following.
To start with, we observe that if p∗ is the optimal dual solution to (1), then {xt(p∗)} is close

to the primal optimal solution x∗, That is, learning the dual price is sufficient to determine the
primal solution. We make the following simplifying technical assumption:

Assumption 3. The inputs of this problem are in general position, namely for any price vector
p, there can be at most m columns such that pT at = πt.

The assumption is not necessarily true for all inputs. However, one can always randomly
perturb πt by arbitrarily small amount η through adding a random variable ξt taking uniform
distribution on interval [0, η]. In this way, with probability 1, no p can satisfy m + 1 equations
simultaneously among pT at = πt, and the effect of this perturbation on the objective can be
made arbitrarily small 4. Given this assumption, we can use complementary conditions of linear
program (1) to observe that:

Lemma 1. xt(p∗) ≤ x∗t , and under Assumption 3, x∗t and xt(p∗) differ on at most m values
of t.

The lemma basically tells that, if the optimal dual solution p∗ to (1) is known, then the
(integer) solution xt(p∗) used by the online pricing algorithm is close to the optimal offline
solution. However, in the online algorithm, we use the price p̂ learned from first few inputs,
instead of the optimal dual price. The remaining discussion attempts to show that the learned
price will be sufficiently accurate for our purpose. Note that the random order assumption can
be interpreted to mean that the first s inputs are a uniform random sample without replacement
of size s from the n inputs. Let S denote this sample set of size s, and N denote the complete set
of size n. Consider the sample linear program (12) defined on the sample set S with right hand
side set as (1 − ε)εb. Then, p̂ was constructed as the optimal dual price of the sample linear
program, which we refer to as the sample dual price. In the following two lemmas, we show that
the primal solution xt(p̂) constructed from this sample dual price is feasible and near-optimal:

Lemma 2. The primal solution constructed using sample dual price is a feasible solution to the
linear program(1) with high probability. More precisely, with probability 1− ε,

n∑
t=1

aitxt(p̂) ≤ bi, ∀i = 1, . . . , m

4This technique for resolving ties was also used in [9].

9

given B ≥ 6m log(n/ε)
ε3 .

Proof. The proof will proceed as follows: Consider any fixed price p. We say a random sample
S is “bad” for this p if and only if p = p̂(S), but

∑n
t=1 aitxt(p) > bi for some i. First, we show

that the probability of bad samples is small for every fixed p. Then, we take union bound over
all “distinct” prices to prove that with high probability the learned price p̂ will be such that∑n

t=1 aitxt(p̂) ≤ bi for all i.
To start with, we fix p and i. Define Yt = aitxt(p). If p is an optimal dual solution for

sample linear program on S, then by the complementary conditions, we have:
∑

t∈S Yt =
∑

t∈S aitxt(p) ≤ (1− ε)εbi (15)

Therefore, the probability of bad samples is bounded by:

P (
∑

t∈S Yt ≤ (1− ε)εbi,
∑

t∈N Yt ≥ bi) ≤ P (|∑t∈S Yt − ε
∑

t∈N Yt| ≥ ε2bi|
∑

t∈N Yt = bi)
≤ 2 exp (−ε3bi

2+ε) ≤ δ

(16)
where δ = ε

m·nm . The last step follows from Hoeffding-Bernstein’s Inequality (Lemma 11 in
appendix A), and the condition made on B.

Next, we take a union bound over all “distinct” p’s. We call two price vectors p and q
distinct if and only if they result in distinct solutions, i.e., {xt(p)} 6= {xt(q)}. Note that we
only need to consider distinct prices, since otherwise all the Yt’s are exactly the same. Thus,
each distinct p is characterized by a unique separation of n points ({πt,at}n

t=1) in m-dimensional
space by a hyperplane. By results from computational geometry [17], the total number of such
distinct prices is at most nm. Taking union bound over nm distinct prices, and i = 1, . . . , m, we
get the desired result.

Above we showed that with high probability, xt(p̂) is a feasible solution. In the following,
we show that it actually is a near-optimal solution.

Lemma 3. The primal solution constructed using sample dual price is a near-optimal solution
to the linear program (1) with high probability. More precisely, with probability 1− ε,

∑

t∈N

πtxt(p̂) ≥ (1− 3ε)OPT (17)

given B ≥ 6m log(n/ε)
ε3 .

Proof. The proof of this lemma is based on two observations. First, {xt(p̂)}n
t=1 and p̂ satisfies

all the complementarity conditions, and hence is an optimal primal-dual solution of the following
linear program

maximize
∑

t∈N πtxt

subject to
∑

t∈N aitxt ≤ b̂i, i = 1, . . . , m
0 ≤ xt ≤ 1, t = 1, . . . , n

(18)

where b̂i =
∑

t∈N aitxt(p̂) if p̂i > 0, and b̂i = max{∑t∈N aitxt(p̂), bi}, if p̂i = 0.
Second, one can show that if p̂i > 0, then with probability 1 − ε, b̂i ≥ (1 − 3ε)bi. To see

this, observe that p̂ is optimal dual solution of sample linear program on set S, let x̂ be the
optimal primal solution. Then, by complementarity conditions of the linear program, if p̂i > 0,
the ith constraint must be satisfied by equality. That is,

∑
t∈S aitx̂t = (1 − ε)εbi. Then, given

the observation made in Lemma 1, and that B = mini bi ≥ m
ε2 , we get:

∑

t∈S

aitxt(p̂) ≥
∑

t∈S

aitx̂t −m ≥ (1− 2ε)εbi. (19)

10

Then, using the Hoeffding-Bernstein’s Inequality, in a manner similar to the proof of Lemma
2, we can show that (the proof is given in Appendix A.3.) given the lower bound on B, with
probability at least 1− ε:

b̂i =
∑

t∈N

aitxt(p̂) ≥ (1− 3ε)bi (20)

Lastly, observing that whenever (20) holds, given an optimal solution x∗ to (1), (1 − 3ε)x∗

will be a feasible solution to (18). Therefore, the optimal value of (18) is at least (1− 3ε)OPT,
which is equivalently saying that

n∑
t=1

πtxt(p̂) ≥ (1− 3ε)OPT

Therefore, the objective value for online solution taken over entire period {1, . . . , n} is near
optimal. However, the online algorithm does not make any decision in the learning period S, and
only the decisions from period {s + 1, . . . , n} contribute to the objective value. The following
lemma that relates sample optimal to the optimal value of a linear program will bound the
contribution from the learning period:

Lemma 4. Let OPT(S) denote the optimal value of the linear program (12) over sample S,
and OPT(N) denote the optimal value of the offline linear program (1) over N . Then,

E[OPT(S)] ≤ εOPT(N)

Proof. Let (x∗,p∗,y∗) and (x̂, p̂, ŷ) denote the optimal primal-dual solution of linear program
(1) on N , and sample linear program on S, respectively.

(p∗,y∗) = arg min bT p +
∑

t∈N yt

s.t. pT at + yt ≥ πt t ∈ N
p,y ≥ 0

(p̂, ŷ) = arg min εbT p +
∑

t∈S yt

s.t. pT at + yt ≥ πt, t ∈ S
p,y ≥ 0

Since S ⊆ N , p∗,y∗ is a feasible solution to the dual of linear program on S, by weak duality
theorem:

OPT(S) ≤ εbT p∗ +
∑

t∈S

y∗t

Therefore,
E[OPT(S)] ≤ εbT p∗ + E[

∑

t∈S

y∗t] = ε(bT p∗ +
∑

t∈N

y∗t) = εOPT(N)

Now, we are ready to prove Proposition 1:

Proof of Proposition 1: Using Lemma 2 and Lemma 3, with probability at least 1− 2ε,
the following event happen:

n∑
t=1

aitxt(p̂) ≤ bi, i = 1, . . . , m

n∑
t=1

πtxt(p̂) ≥ (1− 3ε)OPT

11

That is, the decisions xt(p̂) are feasible and the objective value taken over the entire period
{1, . . . , n} is near optimal. Denote this event by E , where Pr(E) ≥ 1− 2ε. We have by Lemma
2, 3 and 4:

E[
∑

t∈N\S πtxt(p̂) | E] ≥ (1− 3ε)OPT− E[
∑

t∈S πtxt(p̂) | E]
≥ (1− 3ε)OPT− 1

1−2εE[
∑

t∈S πtxt(p̂)]
≥ (1− 3ε)OPT− εOPT

1−2ε

(21)

Therefore,

E[
n∑

t=s+1

πtxt(p̂)] ≥ E[
∑

t∈N\S
πtxt(p̂) | E] · Pr(E) ≥ (1− 6ε)OPT

3 Dynamic price update algorithm

The algorithm discussed in the previous section uses the first nε inputs to learn the price, and
then applies it in the remaining time horizon. While this one-time learning algorithm has its
own merits, in particular, requires solving only a small linear problem defined on nε variables,
the lower bound required on B is stronger than that claimed in Theorem 1 by an ε factor.

In this section, we discuss an improved dynamic price update algorithm that will achieve the
result in Theorem 1. Instead of computing the price only once, the algorithm will update the
price every time the history doubles, that is, it will learn a new price at time t = nε, 2nε, 4nε,
To be precise, let p̂` denote the optimal dual solution for the following partial linear program
defined only on the input until time `:

maximize
∑`

t=1 πtxt

subject to
∑`

t=1 aitxt ≤ (1− h`) `
nbi, i = 1, . . . , m

0 ≤ xt ≤ 1, t = 1, . . . , `

(22)

where the set of numbers h` are defined as follows:

h` = ε
√

n
` ∀` (23)

Also, for any given dual price vector p, define the allocation rule xt(p) as earlier in (13). Then,
our dynamic price update algorithm can be stated as follows:

Algorithm 2 Dynamic Pricing Algorithm (DPA)

1. Initialize t0 = dnεe, xt = x̂t = 0, for all t ≤ t0.

2. Repeat for t = t0 + 1, t0 + 2, . . .

(a) Set x̂t = xt(p̂`), where ` = d2rnεe for largest integer r such that ` < t.
(b) If aitx̂t ≤ bi −

∑t−1
j=1 aijxj , set xt = x̂t; otherwise, set xt = 0. Output xt.

Note that we update the price dlog2 (1/ε)e times during the whole time horizon. Thus, the
algorithm requires more computation, but as we show next it requires a weaker lower bound on
B for proving the same competitive ratio. The intuition behind this improvement is as follows.
Note that initially, at ` = nε, h` =

√
ε > ε. Thus, more slack is available, and so the large

deviation argument for constraint satisfaction (as in Lemma 2) requires a weaker condition on
B. The numbers h` decrease as ` increases. However, for large values of `, sample size is larger,

12

making the weaker condition on B sufficient for our purpose. Also, h` decrease rapidly enough,
so that the overall loss on the objective value is not significant. The careful choice of numbers
h` will play a key role in proving our results.

3.1 Competitive ratio analysis

The analysis for the dynamic algorithm proceeds in a manner similar to that for the one-
time learning algorithm. However, stronger results for the price learned in each period need
to be proven here. In this proof, for simplicity of discussion, we assume that ε = 2−E for
some integer E, and that the numbers ` = 2rnε for r = 0, 1, 2, ..., E − 1 are all integers. Let
L = {nε, 2nε, . . . , 2E−1ε}.

Lemma 5 and 6 are in parallel to Lemma 2 and 3, in the previous section, however require
a weaker condition on B:

Lemma 5. For any ε > 0, with probability 1− ε:

2∑̀

t=`+1

aitxt(p̂
`) ≤ `

n
bi, for all i ∈ {1, . . . , m}, ` ∈ L

given B = mini bi ≥ 10m log (n/ε)
ε2 .

Proof. The proof is similar to the proof of Lemma 2 but a more careful analysis is needed.
We provide a brief outline here with a detailed proof in Appendix B.1. First, we fix p i and
`. This time, we say a random order is “bad” for this p i and ` if and only if p = p̂l but∑2`

t=`+1 aitxt(p̂
l) > l

nbi. By using the Hoeffding-Berstein’s Inequality, we show that the proba-
bility of “bad” orders is less than δ = ε

m·nm·E for any fixed p, i and ` under the condition on
B. Then by taking union bound over all distinct prices, all items i and periods `, the lemma is
proved.

In the following, we will use some notations. Let LPs(d) denote the partial linear program
that is defined on variables till time s, i.e. (x1, . . . , xs), with right hand side in the inequality
constraints set as d. That is,

LPs(d) :
maximize

∑s
t=1 πtxt

subject to
∑s

t=1 aitxt ≤ di, i = 1, . . . , m
0 ≤ xt ≤ 1, t = 1, . . . , s

And let OPTs(d) denote the optimal objective value for LPs(d).

Lemma 6. With probability at least 1− ε, for all ` ∈ L:

2∑̀
t=1

πtxt(p̂
`) ≥ (1− 2h` − ε)OPT2`(

2`

n
b)

given B = mini bi ≥ 10m log (n/ε)
ε2 .

Proof. Let b̂i =
∑2`

j=1 aijxj(p̂
`) for i such that p`

i > 0, and b̂i = max{∑2`
j=1 aijxj(p̂

`), 2`
n bi},

otherwise. Then, note that the solution pair ({xt(p̂
`)}2`

t=1, p̂
`), satisfies all the complementarity

conditions, and therefore is an optimal primal-dual solution for the linear program LP2`(b̂):

maximize
∑2`

t=1 πtxt

subject to
∑2`

t=1 aitxt ≤ b̂i, i = 1, . . . , m
0 ≤ xt ≤ 1, t = 1, . . . , 2`

(24)

13

This means
2∑̀

t=1

πtxt(p̂
`) = OPT2`(b̂) ≥

(
min

i

b̂i

bi
2`
n

)
OPT2`(

2`

n
b) (25)

Now, let us analyze the ratio b̂i

2`bi/n . By definition, for i such that p`
i = 0, b̂i ≥ 2`bi/n. Otherwise,

using techniques similar to the proof of Lemma 5, we can prove that with probability 1− ε,

b̂i =
2∑̀

t=1

aitxt(p̂
`) ≥ (1− 2h` − ε)

2`

n
bi (26)

A detailed proof of inequality (26) appears in appendix B.2. And the lemma follows from
(26).

Next, similar to Lemma 4 in previous section, we prove the following lemma relating the
sample optimal to the optimal value of the offline linear program:

Lemma 7. For any `,

E
[
OPT`(

`

n
b)

]
≤ `

n
OPT

Proof. The proof is exactly the same as the proof for Lemma 4.

Now we are ready to prove Theorem 1.

Proof of Theorem 1: Observe that the output of the online solution at time t ∈ {` +
1, . . . , 2`} is xt(p̂

`) as long as the constraints are not violated. By Lemma 5 and Lemma 6, with
probability at least 1− 2ε:

2∑̀

t=`+1

aitxt(p̂
`) ≤ `

n
bi, for all i ∈ {1, . . . , m}, ` ∈ L

2∑̀
t=1

πtxt(p̂
`) ≥ (1− 2h` − ε)OPT2`(

2`

n
b)

14

Denote this event by E , where Pr(E) ≥ 1 − 2ε. Given this event, the expected objective value
achieved by the online algorithm can be bounded as follows:

E[
∑

`∈L

2∑̀

t=`+1

πtxt(p̂
`)|E]

≥
∑

l∈L

E

[
2∑̀

t=1

πtxt(p̂
l)|E

]
−

∑

`∈L

E

[∑̀
t=1

πtxt(p̂
`)|E

]

≥
∑

`∈L

(1− 2hl − ε)E
[
OPT2`(

2`

n
b)|E

]
−

∑

`∈L

E
[
OPT`(

`

n
b)|E

]

≥ OPT−
∑

`∈L

2hlE
[
OPT2`(

2`

n
b)|E

]
− ε

∑

`∈L

E
[
OPT2`(

2`

n
b)|E

]
− E [OPTεn(εb)|E]

≥ OPT− 1
Pr(E)

∑

`∈L

2hlE
[
OPT2`(

2`

n
b)

]
− ε

Pr(E)

∑

`∈L

E
[
OPT2`(

2`

n
b)

]
− 1

Pr(E)
E [OPTεn(εb)]

≥ OPT− 4
1− 2ε

∑

`∈L

hl
l

n
OPT− 2ε

1− 2ε

∑

l∈L

l

n
OPT − ε

1− 2ε
OPT

≥ OPT− 13ε

1− 2ε
OPT

where the last inequality follows from the fact that

∑

`∈L

`

n
= (1− ε), and

∑

`∈L

h`
`

n
= ε

∑

`∈L

√
`

n
≤ 2.5ε

Therefore,

E[
∑

`∈L

∑2`
t=`+1 πtxt(p̂

`)] ≥ E[
∑

`∈L

∑2`
t=`+1 πtxt(p̂

`)|E] Pr(E) ≥ (1− 15ε)OPT

Thus, Theorem 1 is proved.

Remark 2. To remove the dependence on log n in the lower bound on B as in Corollary 1,
we use the observation that the number of points n in the expression nm for number of distinct
prices can be replaced by number of “distinct points” among {(πt,at)}n

t=1 which can be reduced
to O(log1+ε (λ) logm

1+ε(1/ε)) by a simple preprocessing of the input introducing a multiplicative
error of at most 1− ε. And in this case, the condition on B is

B ≥ 10(mλ + m2 log (1/ε))
ε2

4 Extensions

We present a few extensions and implications of our results.

15

4.1 Online multi-dimensional linear program

We consider the following more general online linear programs with multi-dimensional decisions
xt ∈ Rk at each step, as defined in Section 1:

maximize
∑n

t=1 fT
t xt

subject to
∑n

t=1 gT
itxt ≤ bi i = 1, . . . , m

xT
t e ≤ 1,xt ≥ 0 ∀t

xt ∈ Rk

(27)

Our online algorithm remains essentially the same (as described in Section 3), with xt(p) now
defined as follows:

xt(p) =
{

0 if for all j, ftj ≤
∑

i pigitj

er otherwise, where r ∈ arg maxj(ftj −
∑

i pigitj)
(28)

Using the complementary conditions of (27), and the lower bound condition on B as assumed
in Theorem 2, we can prove the following lemmas; the proofs are very similar to the proofs for
the one-dimensional case, and will be provided in the appendix.

Lemma 8. x∗t and xt(p∗) differ in at most m values of t.

Lemma 9. Let p and q are distinct if xt(p) 6= xt(q) for some t. Then, there are at most
nmk2m distinct price vectors.

With the above lemmas, the proof of Theorem 2 will follow exactly as the proof for Theorem 1.

4.2 General constraint matrices

In (1), we assumed that each entry of the constraint matrix is between zero and one and the
coefficients in the objective function is positive. Here, we show that these restrictions can be
relaxed to

πj either positive or negative, and aj = (aij)m
i=1 ∈ [−1, 1]m.

(In Remark 1, we have already shown that we can deal with large coefficients by first normalizing
them using a row scaling.)

First it is easy to note that the requirement πj ≥ 0 can be relaxed since we never used this
condition in our proof.

When negative entries exist in the coefficient matrix, everything in the proof is the same
except that there is risk of running out of inventory during the process. The following lemma
which is a strengthened statement of Lemma 5 shows that this will not happen with high
probability in our dynamic price updating algorithm.

Lemma 10. For any ε > 0, with probability 1− ε:
w∑

t=`+1

aitxt(p̂
`) ≤ `

n
bi, for all i ∈ {1, . . . , m}, ` ∈ L, ` + 1 ≤ w ≤ 2`

given B = mini bi ≥ 10(m+1) log (n/ε)
ε2 .

Proof. The idea of the proof is to add an extra n factor to the δ defined in proving Lemma 5
to guarantee that for every step, our algorithm will not violate the inventory constraint. This
will only affect the condition on B by increasing m to m + 1 which is no more than a constant
factor. The detailed proof is given in Appendix D.1.

Note that allowing negative aij ’s may have important implications in many management
problems, which means that we not only allow to sell products, but also allow buying from
others. This will be a fairly general model for many practical management problems.

16

4.3 Online integer programs

From the definition of xt(p) in (13), the algorithm always outputs integer solutions. And, since
the competitive ratio analysis will compare the online solution to the optimal solution of the
corresponding linear relaxation, the competitive ratio stated in Theorem 1 also holds for the
online integer programs. The same observation holds for the general online linear programs
introduced in Section 4.1 since it also outputs integer solutions. Our result implies a common
belief: when relatively sufficient resource quantities are to be allocated to a large number of small
demands, linear programming solutions possess a small gap to integer programming solutions.

4.4 Fast solution of large linear programs by column sampling

Apart from online problems, our algorithm can also be applied for solving (offline) linear pro-
grams that are too large to consider all the variables explicitly. Similar to the one-time learning
online solution, one could randomly sample a small subset εn of variables, and use the dual
solution p̂ for this smaller program to set the values of variables xj as xj(p̂). This approach is
very similar to the popular column generation method used for solving large linear programs [8].
Our result provides the first rigorous analysis of the approximation achieved by the approach of
reducing the linear program size by randomly selecting a subset of columns.

5 Conclusions

In this paper, we provided a 1− o(1) competitive algorithm for a general class of online linear
programming problems under the assumption of random order of arrival and some mild condi-
tions on the right-hand-side input. These conditions are independent of the optimal objective
value, objective function coefficients, or distributions of input data. The application of this
algorithm includes various online resource allocation problems which are typically very hard to
get a near-optimal bounds in the online context. This is the first near-optimal algorithm for
solving general online optimization problems.

Our dynamic learning-based algorithm works by dynamically updating a threshold price
vector at geometric time intervals. This geometric learning frequency may also be of interest to
management practitioners. It essentially indicates that not only it might be bad to react too
slow, but also to react too fast.

There are many remaining questions. Theoretically, is the bound on the size of the right-
hand-input B the optimal one can achieve under the current model? If not, could we find
an alternative proving technique to improve it? Furthermore, the comparison between this
dynamic price updating mechanism and the other price updating methods in practice will be
very interesting.

References

[1] Shipra Agrawal. Online multi-item multi-unit auctions. Technical report, 2008.

[2] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Online auctions
and generalized secretary problems. SIGecom Exch., 7(2):1–11, 2008.

[3] Maria-Florina Balcan, Avrim Blum, Jason D. Hartline, and Yishay Mansour. Mechanism
design via machine learning. In FOCS’05: Proceedings of the 46th Annual IEEE Symposium
on Foundations of Computer Science, pages 605–614, 2005.

[4] G. Bitran and R. Caldentey. An overview of pricing models for revenue management.
Manufacturing and Service Operations Management, 5(3):203–229, 2003.

17

[5] Niv Buchbinder and Joseph Naor. Online primal-dual algorithms for covering and packing.
Mathematics of Operations Research, 34(2):270–286, 2009.

[6] Niv Buchbinder and Joseph (Seffit) Naor. Improved bounds for online routing and packing
via a primal-dual approach. In FOCS’06: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, pages 293–304, 2006.

[7] William L. Cooper. Asymptotic behavior of an allocation policy for revenue management.
Operations Research, 50(4):720–727, 2002.

[8] George Dantzig. Linear Programming and Extensions. Princeton University Press, August
1963.

[9] Nikhil R. Devanur and Thomas P. Hayes. The adwords problem: online keyword matching
with budgeted bidders under random permutations. In EC’09: Proceedings of the tenth
ACM conference on Electronic Commerce, pages 71–78, 2009.

[10] W. Elmaghraby and P. Keskinocak. Dynamic pricing in the presence of inventory consid-
erations: Research overview, current practices and future directions. Management Science,
49(10):1287–1389, 2003.

[11] Guillermo Gallego and Garrett van Ryzin. Optimal dynamic pricing of inventories with
stochastic demand over finite horizons. Management Science, 40(8):999–1020, 1994.

[12] Guillermo Gallego and Garrett van Ryzin. A multiproduct dynamic pricing problem and
its application to network yield management. Operations Research, 45(1):24–41, 1997.

[13] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In SODA’08: Proceedings of the nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 982–991, 2008.

[14] Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auc-
tions. In SODA’05: Proceedings of the sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 630–631, 2005.

[15] Constantinos Maglaras and Joern Meissner. Dynamic pricing strategies for multiprod-
uct revenue management problems. Manufacturing and Service Operations Management,
8(2):136–148, 2006.

[16] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized on-line
matching. In FOCS’05: Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science, pages 264–273, 2005.

[17] Peter Orlik and Hiroaki Terao. Arrangement of Hyperplanes. Grundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag,
Berlin, 1992.

[18] R. W. Simpson. Using network flow techniques to find shadow prices for market and seat
inventory control. MIT Flight Transportation Laboratory Memorandum M89-1, Cambridge,
MA, 1989.

[19] K. Talluri and G. van Ryzin. An analysis of bid-price controls for network revenue man-
agement. Management Science, 44(11):1577–1593, 1998.

[20] Aad van der Vaart and Jon Wellner. Weak Convergence and Empirical Processes: With
Applications to Statistics (Springer Series in Statistics). Springer, November 1996.

[21] E. L. Williamson. Airline network seat control. Ph. D. Thesis, MIT, Cambridge, MA,
1992.

18

A Supporting lemmas for Section 2

A.1 Hoeffding-Bernstein’s Inequality

By Theorem 2.14.19 in [20]:

Lemma 11. [Hoeffding-Bernstein’s Inequality] Let u1, u2, ...ur be a random sample without
replacement from the real numbers {c1, c2, ..., cR}. Then for every t > 0,

P (|∑i ui − rc̄| ≥ t) ≤ 2 exp(− t2

2rσ2
R+t∆R

) (29)

where ∆R = maxi ci −mini ci, c̄ = 1
R

∑
i ci, and σ2

R = 1
R

∑R
i=1(ci − c̄)2.

A.2 Proof of Lemma 1:

Let x∗,p∗ be optimal primal-dual solution of the offline problem (1). From KKT conditions of
(1), x∗t = 1, if (p̂∗)T at < πt and x∗t = 0 if (p∗)T at > πt. Therefore, xt(p∗) = x∗t if (p∗)T at 6= πt.
By Assumption 3, there are atmost m values of t such that (p∗)T at 6= πt.

A.3 Proof of inequality (20)

We prove that with probability 1− ε

b̂i =
∑

t∈N

aitxt(p̂) ≥ (1− 3ε)bi

given
∑

t∈S aitxt(p̂) ≥ (1−2ε)εbi. The proof is very similar to the proof of Lemma 2. Fix a price
vector p and i. Define a permutation is “bad” for p, i if both (a)

∑
t∈S aitxt(p) ≥ (1 − 2ε)εbi

and (b)
∑

t∈N aitxt(p) ≤ (1− 3ε)bi hold.
Define Yt = aitxt(p). Then, the probability of bad permutations is bounded by:

Pr(|∑t∈S Yt − ε
∑

t∈N Yt| ≥ ε2bi|
∑

t∈N Yt ≤ (1− 3ε)bi) ≤ 2 exp
(
− biε

3

3

)
≤ ε

m·nm (30)

where the last inequality follows from the inequality that bi ≥ 6m log(n/ε)
ε3 . Summing over nm

distinct prices and i = 1, . . . , m, we get the desired inequality.

B Supporting lemmas for Section 3

B.1 Proof of Lemma 5

Proof. Consider the ith component
∑

t aitx̂t for a fixed i. For ease of notation, we temporarily
omit the subscript i. Define Yt = atxt(p). If p is an optimal dual solution for (22), then by the
complementarity conditions, we have:

∑`
t=1 Yt =

∑`
t=1 atxt(p) ≤ (1− h`)b `

n
(31)

Therefore, the probability of “bad” permutations is bounded by:

P (
∑`

t=1 Yt ≤ (1− h`) b`
n ,

∑2`
t=`+1 Yt ≥ b`

n)
≤ P (

∑`
t=1 Yt ≤ (1− h`) b`

n ,
∑2`

t=1 Yt ≥ 2b`
n) + P (|∑`

t=1 Yt − 1
2

∑2`
t=1 Yt| ≥ h`

2
b`
n ,

∑2`
t=1 Yt ≤ 2b`

n)

19

Define δ = ε
m·nm·E . Using Hoeffding-Bernstein’s Inequality (Lemma 11 in appendix, here R =

2`, σ2
R ≤ b/n, and ∆R ≤ 1), we have:

P (
∑`

t=1 Yt ≤ (1− h`) b`
n ,

∑2`
t=1 Yt ≥ 2b`

n) ≤ P (
∑`

t=1 Yt ≤ (1− h`) b`
n |

∑2`
t=1 Yt ≥ 2b`

n)
≤ P (

∑`
t=1 Yt ≤ (1− h`) b`

n |
∑2`

t=1 Yt = 2b`
n)

≤ P (|∑`
t=1 Yt − 1

2

∑2`
t=1 Yt| ≥ h`

b`
n |

∑2`
t=1 Yt = 2b`

n)
≤ 2 exp (− ε2b

2+hl
) ≤ δ

2

and
P (|∑`

t=1 Yt − 1
2

∑2`
t=1 Yt| ≥ h`

2
b`
n ,

∑2`
t=1 Yt ≤ 2b`

n) ≤ 2 exp(− ε2b
8+2h`

) ≤ δ
2

where the last steps hold because h` ≤ 1, and the condition made on B.
Next, we take a union bound over nm distinct prices, i = 1, . . . , m, and E values of `, the

lemma is proved.

B.2 Proof of inequality (26)

Proof. The proof is very similar to the proof of Lemma 5. Fix a p, ` and i ∈ {1, . . . , m}. Define
“bad” permutations for p, i, ` as those permutations such that all the following conditions hold:
(a) p = p̂`, that is, p is the price learned as the optimal dual solution for (22), (b) pi > 0, and (c)∑2`

t=1 aitxt(p) ≤ (1− 2h`− ε) 2`
n bi. We will show that the probability of these bad permutations

is small.
Define Yt = aitxt(p). If p is an optimal dual solution for (22), and pi > 0, then by the KKT

conditions the ith inequality constraint holds with equality. Therefore, by observation made in
Lemma 1, we have:

∑`
t=1 Yt =

∑`
t=1 aitxt(p) ≥ (1− h`) `

nbi −m ≥ (1− h` − ε) `
nbi (32)

where the second last inequality follows from B = mini bi ≥ m
ε2 , and ` ≥ nε. Therefore, the

probability of “bad” permutations for p, i, ` is bounded by:

P (|∑`
t=1 Yt − 1

2

∑2`
t=1 Yt| ≥ h`

bi`
n |

∑2`
t=1 Yt ≤ (1− 2h` − ε) 2`

n bi) ≤ 2 exp (− ε2bi

2) ≤ δ

where δ = ε
m·nm·E . The last inequality follows from the condition on B. Next, we take a

union bound over the nm “distinct” p’s, i = 1, . . . , m, and E values of `, we conclude that with
probability 1− ε

2∑̀
t=1

aitx̂t(p̂
`) ≥ (1− 2h` − ε)

2`

n
bi

for all i such that p̂i > 0 and all `.

C Online multi-dimensional linear program

C.1 Proof of Lemma 8

Proof. Using Lagrangian duality, observe that given optimal dual solution p∗, optimal solution
x∗ is given by:

maximize fT
t xt −

∑
i p∗i g

T
itxt

subject to xT
t e ≤ 1,xt ≥ 0

(33)

Therefore, it must be true that if x∗tr = 1, then r ∈ arg maxj ftj−(p∗)T gtj and ftr−(p∗)T gtr ≥ 0
This means that for t’s such that maxj ftj − (p∗)T gtj is strictly positive and arg maxj returns
a unique solution, xt(p∗) and x∗t are identical. By random perturbation argument there can be

20

atmost m values of t which do not satisfy this condition (for each such t, p satisfies an equation
ftj − pT gtj = ftl − pT gtl for some j, l, or ftj − pT gtj = 0 for some j). This means x∗ and
xt(p∗) differ in atmost m positions.

C.2 Proof of Lemma 9

Proof. Consider nk2 expressions

ftj − pT gtj − (ftl − pT gtl), 1 ≤ j, l ≤ k, j 6= l, 1 ≤ t ≤ n
ftj − pT gtj , 1 ≤ j ≤ k, 1 ≤ t ≤ n

xt(p) is completely determined once we determine the subset of expressions out of these nk2

expressions that are assigned a non-negative value. By theory of computational geometry, there
can be at most (nk2)m such distinct assignments.

D General constraint matrix case

D.1 Proof of Lemma 10

Proof. The proof is very similar to the proof of Lemma 5. To start with, we fix p and `. This
time, we say a random order is “bad” for this p if and only if there exists ` ∈ L, ` + 1 ≤ w ≤ 2`
such that p = p̂l but

∑w
t=`+1 aitxt(p̂

l) > l
nbi for some i . Define δ = ε

m·nm+1·E . Then by
Hoeffding-Berstein’s Inequality one can show that for each fixed p, i ` and w, the probability of
that bad order is less than δ. Then by taking union bound over all p, i, ` and w, the lemma is
proved.

21

